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Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths
(worms) that infect humans and mammals worldwide. Infection by these parasites,
which results in developmental maturation and sexual differentiation of the worms over
a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and
secreted glycoproteins and glycolipids. There is growing interest in defining these unusual
parasite-synthesized glycan antigens and using them to understand immune responses,
their roles in immunomodulation, and in using glycan antigens as potential vaccine targets.
A key problem in this area, however, has been the lack of information about the enzymes
involved in elaborating the complex repertoire of glycans represented by the schistosome
glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has
created the opportunity to define the glycogenome, which represents the specific genes
and cognate enzymes that generate the glycome. Here we describe the current state
of information in regard to the schistosome glycogenome and glycome and highlight the
important classes of glycans and glycogenes that may be important in their generation.
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INTRODUCTION
Schistosomiasis is a debilitating vascular disease caused by an
infection with parasitic helminths of the Schistosoma species. It is
a major public health concern in many developing countries with
a wide range of clinical manifestations (Cummings and Nyame,
1996; Jang-Lee et al., 2007; Savioli and Daumerie, 2010). These
parasitic worms have a complex life cycle that alternates between
an intermediate mollusk host and a definitive vertebrate host
resulting in significant morbidity and mortality for the infected
human or animal. With millions of people afflicted worldwide in
over seventy tropical and subtropical countries, the World Health
Organization (WHO) considers schistosomiasis second in socioe-
conomic importance among diseases worldwide and the third
most important parasitic disease in terms of public health impact
(Cummings and Nyame, 1996; Savioli and Daumerie, 2010; Elbaz
and Esmat, 2013).

Despite years of research on schistosome biology, millions are
still affected and at risk due to insufficient prevention, diag-
nostics, treatments, and absence of a vaccine. Previous vaccine
platforms have failed because of the complex tissue architecture of
schistosomes and a lack of innovative strategies to protect against
complex, multicellular pathogens. The major immune response
to schistosome infection is directed to carbohydrate (glycan) anti-
gens in surface and secreted glycoproteins and glycolipids (Omer-
Ali et al., 1986, 1989; Eberl et al., 2001; Kariuki et al., 2008).
Schistosomes possess an abundance of complex and unique gly-
cans and glycoproteins that interact with both the innate and
adaptive arms of immunity in human and animal hosts in a vari-
ety of ways (reviewed by Prasanphanich et al., 2013). A major
limitation in the study of glycans is that we are currently unable
to chemically synthesize them in an affordable and facile manner.

It is also not feasible to isolate significant quantities of individual
glycans from the parasites at each developmental stage. In the past
several years, the availability of genomic databases has allowed us
and others to take an alternative approach using enzyme tech-
nology in a chemo-enzymatic approach to generate glycans and
explore their recognition by antibodies and glycan-binding pro-
teins (Kupper et al., 2012; Peng et al., 2012; Ban et al., 2013; Tefsen
and van Die, 2013; Luyai et al., 2014; Prasanphanich et al., 2014).
In this review, we will discuss specific components of the schisto-
some glycome that contribute to immune responses and identify
key Schistosoma genes involved in glycan synthesis. Defining the
glycogenome of schistosomes will aid our understanding of the
significance and breadth of the immune response to glycan anti-
gens, as well as provide a platform for future diagnostic and
vaccine developments.

IMPORTANCE OF SCHISTOSOME GLYCOCONJUGATES
Schistosomes, like other parasitic helminths, produce many com-
plex carbohydrate structures linked to proteins and lipid, includ-
ing N-glycans, O-glycans, and glycolipids, which are structurally
distinct from their definitive host. It has long been accepted that
glycans and glycoconjugates play an essential role in the biol-
ogy of the parasite, in particular with regard to host-pathogen
interactions, however their specific functions remain unclear
(reviewed by Cummings and Nyame, 1996, 1999; Hokke et al.,
2007; Prasanphanich et al., 2013). Unlike the sequence of a pro-
tein, in which homologous protein sequences among species
imply homologous functions, glycan sequences are more com-
plex and seemingly slight changes in structures can profoundly
affect biological activities in unpredictable ways. Over the past
few decades researchers have found that schistosomal glycans
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are bioactive and can induce innate and adaptive immunolog-
ical responses (Hokke and Yazdanbakhsh, 2005; Van Die and
Cummings, 2006, 2010; Meevissen et al., 2012a; Van Diepen et al.,
2012b). Circulating antigens have also proven useful as diagnos-
tics in human and animal hosts (Nyame et al., 2004; Van Dam
et al., 2004; Sousa-Figueiredo et al., 2013). A deeper understand-
ing of these glycans and glycoconjugates, and their ability to
modulate the immune system, could potentially ignite innovative
new strategies for lessening the mortality and morbidity caused
by these parasites.

HOST-PARASITE INTERFACE
The surface of the schistosome, as well as secreted and excreted
products, are rich in glycans linked to proteins and lipids and
serve as the main source of parasite-host interactions. The schis-
tosome surface is complex and poorly understood, and the
expression of surface proteins and glycans is highly variable
throughout its life stages (Simpson et al., 1984; Robijn et al., 2005;
Braschi et al., 2006). Unlike nematodes, which are protected by
a cuticle, schistosomes are covered by a syncytial layer of cells
called the tegument. The tegument is comprised of secreted lipid-
rich membranocalyx and glycan-rich glycocalyx, which includes
membrane, secreted glycoconjugates, and associated materials.
While the glycocalyx is partially lost upon transformation of cer-
cariae to schistosomules, it remains clearly prominent in adult
worms (Samuelson and Caulfield, 1985; Dalton et al., 1987;
Abou-Zakham et al., 1990; Kusel et al., 2007).

The role of glycans in host-parasite interactions during snail
infection is less understood. Evidence suggests that glycocon-
jugates might play a pivotal role in both cellular and humoral
immune interactions between their molluscan intermediate hosts
miracidia and sporocytes (Cummings and Nyame, 1996; Loker
and Bayne, 2001; Yoshino et al., 2001; Nyame et al., 2002; Peterson
et al., 2009). Fucosylated structures prominently expressed on
the larval surface and amongst glycoproteins released during lar-
val transformation and early sporocyst development indicate a
role for these glycan epitopes in snail–schistosome interactions.
Also, snail hosts share some glycans with schistosomes suggesting
an evolutionary convergence of carbohydrate expression between
schistosomes and their snail host (Castillo et al., 2007; Lehr et al.,
2008; Peterson et al., 2009; Yoshino et al., 2013, 2012).

IMMUNE MODULATION
Prior studies in the field of parasitology suggested the glycans of
parasitic worms resembled those of their vertebrate hosts, lead-
ing to a concept of molecular mimicry (Damian, 1964). However,
modern studies of schistosomes and other helminth glycocon-
jugates show that the glycans generated by these organisms are
unique and generally have features very unlike those of vertebrate
hosts (reviewed by Van Diepen et al., 2012b; Prasanphanich et al.,
2013). These observations, as well as the evidence that parasite-
derived glycans are bioactive as well as immunogenic, have led to
the concept of glycan gimmickry, which highlights the key roles
of parasite glycans in immunomodulation and evasion of host
responses and is an alternative model to pathogenic molecular
mimicry (Van Die and Cummings, 2010). Schistosome glycans
lack the most common mammalian terminal sugar, sialic acid,

which is found in both glycoproteins and glycolipids of all ver-
tebrate cells. Additionally, as we will discuss, schistosome N- and
O-glycans often contain poly-fucose and xylose, which are gly-
can modifications not found in vertebrate glycans (Faveeuw et al.,
2003; Geyer et al., 2005; Paschinger et al., 2005a; Meevissen et al.,
2012b; Luyai et al., 2014).

It has long been recognized that schistosome glycans, and
other helminth glycans, harbor potent immunomodulatory prop-
erties and have been found to induce innate and adaptive immune
responses in the host (Thomas and Harn, 2004; Hokke and
Yazdanbakhsh, 2005; Ju et al., 2006; Van Die and Cummings,
2006; Hokke et al., 2007). Understanding this process could trans-
late to improved outcome of disease and co-infections, as well as
aid in the development of anti-schistosome vaccines (Bergquist
and Colley, 1998; Knox and Redmond, 2006; Mcmanus and
Loukas, 2008). Parasite molecules involved in skewing toward a
Th2 environment and down-regulation of the immune response
could be potential treatments for autoimmune or inflammatory
conditions. There has already been success in treating animal
models of type-1 diabetes, colitis, and multiple sclerosis with ther-
apeutic helminthic infection (Zaccone et al., 2003; La Flamme
et al., 2004; Smith et al., 2007).

For example, the Lewis X (LeX) trisaccharide, a common gly-
can motif in schistosome eggs, is a potent inducer of the Th2
responses often via recognition by Toll-like receptors (TLRs) and
C-type lectin receptors (Okano et al., 1999, 2001; Velupillai et al.,
2000; Thomas et al., 2003, 2005; Van Die et al., 2003; Atochina and
Harn, 2005). In fact, egg antigens can suppress TLR-induced DC
activation when internalized by a combination of DC-SIGN, MR,
and/or MGL (Van Liempt et al., 2007). LeX can also induce prolif-
eration of B cells, the production of suppressive cytokine IL-10 in
peripheral blood mononuclear cells, and function as an initiator
and/or modulator of granuloma formation (Velupillai and Harn,
1994; Velupillai et al., 2000).

DIAGNOSTIC MARKERS AND ANTI-GLYCAN ANTIBODIES
Schistosomiasis is routinely diagnosed by the presence of eggs in
the stool or urine, depending on the infecting strain. However,
eggs are not consistently shed, the severity of infection (worm
burden) cannot be accurately determined from egg count, and
false negatives are still common (Booth et al., 2003; Gryseels
et al., 2006; Utzinger and Keiser, 2008; Knopp et al., 2011).
Carbohydrates as diagnostic antigens might be a superior alter-
native. Assays detecting circulating cathodic antigen (CCA) and
circulating anodic antigen (CAA) in serum or urine appear to
be more reliable and sensitive diagnostic methods since levels
of these antigens fluctuate less than egg counts (Polman et al.,
1998). There is now a commercially available CCA dipstick test
that successfully detects infections in very young children and
is showing promise in point-of-care settings, and a dry format
assay which rapidly detects CAA in serum (Stothard et al., 2011;
Sousa-Figueiredo et al., 2013; Van Dam et al., 2013, 2004).

Anti-glycan antibodies, which dominate the humoral
response, are also being considered for diagnostic purposes.
Certain defined glycans including LDN, LeX, F-LDN, and LDN-
DF have different, stage-specific antibody binding profiles when
used to probe worm antigen (Eberl et al., 2001; Van Remoortere
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et al., 2001, 2003; Naus et al., 2003; Nyame et al., 2003; Hokke
et al., 2007). Other highly fucosylated epitopes, such as F-LDN-F
and DF-LDN-DF are possible diagnostic epitopes due to their
unique expression on schistosomes. The monoclonal antibody
114-4D12, which targets DF-LDN-DF, can detect unconjugated
oligosaccharides excreted from S. mansoni eggs in infected urine.
MS/glycan based studies may lead to a new egg-load-related
assay helpful in the detection of mild infections (Robijn et al.,
2007, 2008). However, given the differential responses to discrete
glycans it is unclear whether immunodiagnostic tools could
differentiate between current and past infection.

GLYCOME APPROACHES AND LIMITATIONS
The identification and sequencing of schistosome glycans began
in the 1980’s with the identification of unusual N- and O-glycans
synthesized by short-term cultures of schistosomula and adult
worms (Nyame et al., 1987, 1988a,b, 1989; Makaaru et al., 1992;
Srivatsan et al., 1992a,b). Subsequent studies (Bergwerff et al.,
1994; Van Dam et al., 1994; Khoo et al., 1995, 1997a,b; Frank
et al., 2012) (also see reviews by Cummings and Nyame, 1996,
1999; Hokke and Deelder, 2001; Hokke and Yazdanbakhsh, 2005;
Hokke et al., 2007; Prasanphanich et al., 2013) identified com-
plex types of glycan structures in both membrane associated
and circulating antigens. These types of studies, now gener-
ally recognized as structural glycomics, involve complex analyses
incorporating tandem mass spectrometry (MS), nuclear mag-
netic resonance (NMR) and compositional and linkage analyses.
Unfortunately, while the field has advanced tremendously in iden-
tifying many types of glycans synthesized by schistosomes and
even glycan structure differences between sexes and schistosome
species, it is likely that only a tiny fraction of the total set of gly-
cans synthesized by any stage of the parasite is known (Khoo et al.,
1997a; Nyame et al., 1998, 2000; Van Die et al., 1999; Wuhrer
et al., 2006b). Thus, much remains to be learned about the spe-
cific sequences and complete structures of schistosome glycans as
well as their temporal and spatial expression. One obvious limi-
tation to these studies is that schistosomes are parasites and must
be isolated from infected animals, thus limiting their availabil-
ity as well as creating potential problems in contamination by
glycans from the hosts. While structural studies remain impor-
tant for confirming hypothesized structures and characterizing
glycan-protein interactions, a genome method provides many
advantages.

A GENOMIC APPROACH
While knowledge of schistosome glycans is woefully incomplete,
the available evidence indicates that many different glycan link-
ages and sequences occur. In both simpler organisms, such as
C. elegans, as well as more complex organisms, such as mice
and humans, many genes within the genome have been shown
to encode enzymes responsible for elaboration of the glycome.
These genes, typically referred to as comprising the glycogenome,
encode glycosyltransferases, glycosidases, sugar and nucleotide
sugar metabolizing enzymes important in glycan biosynthesis,
nucleotide sugar transporters, and glycan-binding proteins. It is
estimated that mice and humans have over 900 genes involved in
elaboration and recognition of their glycomes (Cummings and

Pierce, 2014). This background knowledge has set the stage for
now exploring the glycogenomes of schistosomes and other para-
sites and identifying the genes important for elaboration of their
glycomes (Figure 1).

In 2009 the nuclear genome of S. mansoni was published
in Nature as a result of a successful international collabora-
tion among multiple institutions (Berriman et al., 2009). The
analysis of the 363 megabase genome utilized several gene predic-
tion algorithms, including the extended similarity group (ESG)
method, which performs iterative sequence database searches and
annotates a query sequence with Gene Ontology terms. At least
11,809 genes were annotated encoding over 13,000 transcripts
with unusual intron sizes, distributions, and frequent alterna-
tive splicing. The annotated genome sequence was submitted to
EMBL (accession numbers FN357292-FN376313) and GeneDB
(http://www.genedb.org/Homepage/Smansoni) (Berriman et al.,
2009; Chitale et al., 2009; Criscione et al., 2009).

Shortly after the genome was published, SchistoDB (http://
schistoDB.net/) was created to offer researchers a plethora of tools
for genomic data mining. SchistoDB incorporates sequences and
annotations for S. mansoni in a single directory. Several genomic
scale analyses are available as well as expressed sequence tags,
oligonucleotides, and metabolic pathways. By 2012, the directory
was expanded by integrating the data sets from other Schistosome
species, S. japonicum and S. haematobium (Zerlotini et al., 2009;
Zhou et al., 2009; Young et al., 2012). Current studies have utilized
the genomic data to highlight transcriptional differences seen
throughout lifecycle progression and identify anti-schistosomal
candidate molecules including fucosyltransferases via transcrip-
tome analyses and gene micro-arrays (Fitzpatrick et al., 2009;
Protasio et al., 2012).

The KEGG (Kyoto Encyclopedia of Genes and Genomes)
database uses large-scale molecular datasets generated by genome
sequencing and other high-throughput experimental technolo-
gies to help scientists understand high-level functions and utilities
of various biological systems. With the information generated
from the Schistosoma genome sequences, KEGG Glycan con-
structed pathway maps on molecular interactions including gly-
can biosynthesis and metabolism that are annotated with the
specific enzymes/proteins involved and the corresponding genes
(http://www.genome.jp/kegg/glycan). The system also character-
izes gene/protein functions across organisms, allowing for genes
like glycosyltransferases to be finely classified within ortholog
groups which may have been overlooked by previous sequence
similarity algorithms (Aoki et al., 2004; Kawano et al., 2005;
Hashimoto et al., 2006, 2009; Kanehisa et al., 2010).

With the amount of information now available, genomics
technologies can be applied to unravel the biology of some of
these parasites, including the complexity of glycan biosynthesis
(Figure 1). Given the vast assortment of glycan epitopes, as well as
available databases, it can be predicted that schistosomes express a
plethora of glycosyltransferases and other genes required for gly-
can biosynthesis (Table 1). A more thorough understanding of
the schistosome glycome could promise faster identification of
targets for diagnostics and drug development, as well as a col-
laborative approach to antigen chemo-enzymatic synthesis and
discovery of a glycan-based vaccine platform.
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FIGURE 1 | The glycogenome represents the genes encoding the

various glycosyltransferases, glycosidases, sugar, and nucleotide

sugar metabolizing enzymes important in glycan biosynthesis, and

nucleotide sugar transporters. The glycosyltransferases generated from
the glycotranscriptome in schistosomes represent a large class of
predicted enzymes, often requiring metal cofactors, such as manganese
(Me2+), that synthesize glycans using donor nucleotide sugars to form
glycosidic bonds to acceptors, here represented by a sugar-R, where
R = sugar, protein, or lipid to which a sugar is linked. The products of the

biosynthetic reactions have specific glycosidic linkages, e.g., β1,4 or α1,3,
and the glycans produced are often acceptors for additional enzymes, thus
generating the complex set of glycans representing the glycome of the
organism. Examples are shown for two glycosyltransferase reactions that
together can synthesize the LDN and LDNF antigen determinants. The
key for several of the monosaccharides found in schistosome glycans are
indicated—Glc (Glucose), Gal (Galactose), Man (Mannose), GlcNAc
(N-acetylglucosamine), GalNAc (N-acetylgalactosamine), Fuc (Fucose), and
Xyl (Xylose).

GLYCAN BIOSYNTHESIS PATHWAYS
Previous structural studies of schistosome glycoconjugates pri-
marily depend on analytical techniques, but are limited due
to insufficient quantities of glycans and the need to prepare
glycans from parasites isolated from infected hosts, as well as
variation in glycan expression among the life stages, resulting
in incomplete glycome profiling (Khoo et al., 2001; Paschinger
et al., 2005a; Van Balkom et al., 2005; Wuhrer et al., 2006a,b;
Hokke et al., 2007; Roger et al., 2008). Nevertheless, using the
available glycan sequence data and developmentally-regulated
expression of glycan antigens, it is predicted that schistosomes
contain a multitude of different classes of glycosyltransferases
involved in glycan biosynthesis and that their expression is differ-
entially regulated by tissue and life stage (Joziasse, 1992; Breton
et al., 1998; Kapitonov and Yu, 1999). To date, very few of
these enzymes in distinct glycan classes have been studied in
detail, however, with the genomic data now available, glyco-
related genes might be easier to explore in the future (Figure 1;
Table 1).

N-GLYCANS
The N-glycans found in Schistosoma glycoproteins feature high
mannose and complex-type structures common in eukaryotes
and higher organisms (Nyame et al., 1988a, 1989). Thus, it
appears that schistosomes follow the conventional pathway for
N-glycan core synthesis, where the precursors are synthesized
on the cytoplasmic face of the ER membrane beginning with
dolichol phosphate (Dol-P) in a step-wise process catalyzed by
ALG gene enzymes (for altered in glycosylation). Fourteen sugars
are sequentially added before en bloc transfer of the entire struc-
ture to an Asn-X-Ser/Thr site in a protein. The protein-bound
N-glycan is subsequently remodeled in the ER and Golgi by a
complex series of reactions catalyzed by membrane-bound gly-
cosidases and glycosyltransferases (Sharma et al., 2005; Stanley
et al., 2009).

The genome of S. mansoni appears to contain homologs to the
ALG genes required for synthesis and remodeling (Table 1). The
splice variant Smp 051360.1 most likely functions as a UDP-N-
acetylglucosamine (GlcNAc) dolichylphosphotransferase which
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Table 1 | Components of the S. mansoni glycogenome.

Category # of Putative Genes Gene ID

GLYCOSYLTRANSFERASES

Galactosyltransferases and N-acetylglucosaminyltransferases
(GalTs and GnTs)a

14b Smp 058670 Smp 056260 Smp 102400

Smp 006930 Smp 024650 Smp 007950

Smp 210290c Smp 015920 Smp 151210

Smp 146430 Smp 153110 Smp 151220

Smp 042720 Smp 149820c

N-acetylgalactosamine transferases (GalNAcTs) 7b Smp 057620c Smp 159490c Smp 005500c

Smp 139230c Smp 211240 Smp 021370

Smp 047240

Fucosyltransferases (FucTs) 22d Smp 175120 Smp 175120 Smp 137740

Smp 194990 Smp 205640 Smp 028910

Smp 199790 Smp 154410 Smp 065240

Smp 030650 Smp 138750 Smp 212520

Smp 138730 Smp 211180 Smp 137730

Smp 193870 Smp 193620 Smp 142860

Smp 054300 Smp 209060 Smp 129750

Xylosyltransferase 2 Smp 128310 Smp 125150

BIOSYNTHESIS PATHWAYS

N-Glycan 18e,f Smp 051360 Smp 045430 Smp 082710

Smp 055010 Smp 177080 Smp 052330

Smp 161590 Smp 103930 Smp 020770

Smp 035470 Smp 055200 Smp 105680

Smp 210360 Smp 210370 Smp 024580

Smp 018760 Smp 018750 Smp 143430

O-Glycan 5e Smp 149820c Smp 057620c Smp 015949c

Smp 005500c Smp 139230c

Glycolipid 2e Smp 160210 Smp 157080

GPI-anchor 14e Smp 154600 Smp 136690 Smp 145290

Smp 155890 Smp 155900 Smp 017730

Smp 046880 Smp 163640 Smp 152460

Smp 035080 Smp 128810 Smp 177040

Smp 053460 Smp 021980

GAG 6e Smp 178490 Smp 083130 Smp 124020

Smp 075450 Smp 134250 Smp 210290c

aGrouped in database, see text for details.
bTally in text references a subset of genes (Ex: 3 β1-4GalNAcTs, 7 total GalNAcTs)
cListed in both glycosyltransferases and pathways.
d Genes have redundancies, see text reference for details.
eDenotes current gene annotations discussed in the text. Not an exhaustive list.
f Tally does not account for splice variants.

forms GlcNAc-P-P-Dol. A second GlcNAc and five mannose
(Man) residues are subsequently added by specific glycosyl-
transferases to generate Man5GlcNAc2-P-P-Dol on the cytoplas-
mic side of the ER. Homologs in this pathway include Smp
045430.3 and Smp 082710 as UDP-N acetylglucosaminyltrans-
ferase (GlcNAcT) subunits (similar to ALG 14), Smp 055010
as a chitobiosyldiphosphodolichol α-mannosyltransferase, Smp

177080 as an α-1,3-mannosyltransferase (ALG 2), and Smp
052330 probably functions like asparagine-linked glycosy-
lation protein 11 (ALG 11). Other genes responsible in
forming the common 14-sugar lipid-linked precursor in
animals, Glc3Man9GlcNAc2-P-P-Dolichol, are Smp 161590
(simply designated a glycosyltransferase but contains regions
similar with an α-1,6-mannosyltransferase), splice variants of
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Smp 103930 (α-1,2-mannosyltransferase), and Smp 096910/Smp
15120 (α-1,3-glucosyltransferases) (Sharma et al., 2005; Berriman
et al., 2009; Stanley et al., 2009).

The transfer of the 14-sugar glycan in Glc3Man9GlcNAc2-
P-P-Dolichol to Asn-X-Ser/Thr sequons of a newly synthesized
protein is catalyzed by a set of proteins termed the oligosaccha-
ryltransferase (OST) complex. S. mansoni genes likely to function
as OST subunits are Smp 020770 (α unit), Smp 035470 (β unit),
Smp 055200 (γ unit), Smp 105680 (ribophorin I), and Smp
210360/210370 (δ unit) (Chavan et al., 2005; Berriman et al.,
2009; Stanley et al., 2009). After covalent attachment of the
14-sugar glycan (Glc3Man9GlcNAc2-Asn) a series of processing
reactions trim the glycan using α-glucosidases. Smp 024580 and
Smp 018760 most likely remove the three Glc residues leaving
the high mannose Man9GlcNAc2-Asn structure. Smp 018750 (α-
1,3-mannosidase) and Smp 143430 (α-mannosidase II) remove
mannose allowing for the N-glycans to be recognized and further
extended/modified by glycosyltransferases, as discussed below,
which generate the hybrid or complex-type N-glycans with termi-
nal glycan motifs (Nyame et al., 1988a, 1989; Wuhrer et al., 2006b;
Berriman et al., 2009; Stanley et al., 2009).

O-GLYCANS
O-glycosylation in schistosomes range from a single sugar residue
to large, complex, multi-fucosylated structures fluctuating from
12 to at least 60 glycosyl residues in length in the cercarial glyco-
calyx (Nyame et al., 1987, 1988b; Khoo et al., 1995). Many surface
localized schistosome glycoproteins contain a simple O-linked
GlcNAc, which probably occurs on intracellular and intranuclear
glycoproteins (Nyame et al., 1987; Ma and Hart, 2014). Other
common structures include Galβ1-3(Galβ1-6)GalNAc (O-glycan
schisto core) and mucin-type sequences including GalNAcα1-
Ser/Thr (Tn antigen), Galβ1-3GalNAcα1-Ser/Thr (T antigen,
core 1), and Galβ1-3(GalNAcβ1-6)GalNAc (core 2) with the core
1 structure being the most common (Nyame et al., 1988b; Van
Dam et al., 1994; Jang-Lee et al., 2007). The more complex
O-glycans contain unique repeating elements with GalNAcβ1-
4GlcNAcβ1-3Galα1-3 units carrying fucosylated sequences linked
to the internal GlcNAc and terminal GalNAc structures (Nyame
et al., 1987; Cummings and Nyame, 1996).

In vertebrates, the core 1 O-glycan disaccharide is also the
most common of such O-glycan cores and is a precursor to more
complex O-glycans such as extended core 1 and core 2 struc-
tures. The core 1 structure is synthesized from GalNAcα1-Ser/Thr
by the addition of galactose, a reaction catalyzed by the enzyme
core 1 UDP-Gal:GalNAcα1-Ser/Thr β1,3-galactosyltransferase
(core 1 β3-Gal-T or T-synthase) (Wandall et al., 1997; Ju and
Cummings, 2002; Ju et al., 2006). In S. mansoni, Smp 149820 is
the only gene designated a glycoprotein-N-acetylgalactosamine
β3galactosyltransferase and is considered the ortholog to T-
synthase (Ju and Cummings, 2002), whereas S. japonicum has
five genes annotated as core 1 β3-Gal-transferase (Sjp 005210,
Sjp 0042730, Sjp 0055580, Sjp 0064840, Sjp 0093870) (Berriman
et al., 2009; Zhou et al., 2009). The gene in the nematode C. ele-
gans encoding the T-synthase was identified earlier to encode a
functional enzyme that also has homology to the S. mansoni gene
Smp 149820 (Ju et al., 2006).

Several UDP-N-Acetylgalactosamine:polypeptideN-acetylga
lactosaminyltransferases (GalNAc-transferases, ppGalNAcTs),
which generate GalNAcα1-Ser/Thr have been identified and
characterized in humans. While the human ppGalNAcTs show
similarities in domain structures, sequence motifs, and conserved
cysteine residues the overall amino acid sequence similarity of
less than 50% suggests changes within this enzyme family during
evolution (Wandall et al., 1997). The S. mansoni ppGalNAcTs
(Smp 005500, Smp 057620, Smp 139230, and Smp 159490)
have comparable levels of amino acid similarity (approximately
30–50%) among them (Berriman et al., 2009).

GLYCOLIPIDS
Schistosome glycolipids consist of galactosylceramide, glucosyl-
ceramide, and glycolipids with extended glycans emanating from
the “schisto core” (GalNAcβ1-4Glc-ceramide). This is in contrast
to the human glycolipid core, which is lactosylceramide Galβ1-
4Glc-ceramide. Schistosomes synthesize glycosphingolipids with
a similar acceptor to vertebrates using a glucocerebroside pre-
cursor, but instead of adding the galactose, as in animals, schis-
tosomes instead generate the “schisto-core” structure by the
addition of a β1-4GalNAc residue (Makaaru et al., 1992; Wuhrer
et al., 2000). The simple schisto-core structure is extensively mod-
ified in egg glycosphingolipids of S. mansoni and S. japonicum
with repeating GlcNAc motifs with multiple fucosylation units
(Fucα1-2Fucα1-3GlcNAcβ1-R) (Khoo et al., 1997a; Cummings
and Nyame, 1999). S. mansoni glycolipids are dominated by
fucose. Cercariae often express terminal LeX and pseudo Lewis Y
(Fucα1-3Galβ1-4(Fucα1-3)GlcNAc; pseudoLey) structures, while
the Fucα1-3GalNAc terminal element was confirmed in S. man-
soni egg glycolipids (Wuhrer et al., 2000, 2002).

Sequencing of the S. mansoni genome indicated that schis-
tosomes contain a full complement of genes required for most
lipid metabolic processes. In reference to ceramide as a major
precursor to glycosphingolipids, S. mansoni encodes two puta-
tive ceramide glucosyltransferases (Smp 160210 and Smp 157080)
while S. japonicum genome contains four (Sjp 0094210, Sjp
0065630, Sjp 0054080, Sjp 0093880) (Berriman et al., 2009;
Zhou et al., 2009). Although not a “classical” sugar, the genome
sequencing of S. mansoni also revealed a lipid deficiency where the
worms must depend on its host as a source of inositol (Brouwers
et al., 1997; Berriman et al., 2009).

GPI-ANCHORED GLYCOPROTEINS
It is well known that S. mansoni and other schistosome species
produce glycoproteins anchored to membranes through a glyco-
sylphosphatidylinositol lipid anchor (GPI anchor) and thus lack
a transmembrane protein domain. Such GPI anchored glycopro-
teins have now been found in all animal cells, and in the parasite
world were first extensively studied in trypanosomes (reviewed by
Ferguson, 1999). Examples of common GPI-anchored proteins
previously characterized in schistosomes include alkaline phos-
phatases and acetylcholinesterase (Espinoza et al., 1988; Sauma
et al., 1991; Hawn and Strand, 1993; Castro-Borges et al., 2011).
Both S. mansoni and S. japonicum genomes contain annota-
tions for acetylcholinesterase (Smp 154600, Smp 136690, Sip
0070510, Sjp 0045440, and Sjp 0036280), however only S. mansoni
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appears to have genes currently designated as alkaline phos-
phatases (Smp 145290, Smp 155890, and Smp 155900) (Berriman
et al., 2009; Zhou et al., 2009). S. mansoni also expressed a
200 kDa GPI-anchored glycoprotein on its surface which is a tar-
get for antibodies that can act synergistically with praziquantel
treatment (Sauma et al., 1991; Hall et al., 1995). According to
the database this protein is a product of the gene Smp 017730,
however that record has not yet been subjected to final NCBI
review (Berriman et al., 2009). Vaccination with S. mansoni tegu-
mental GPI-anchored glycoproteins partially protected mice from
infection and reduced infection, warranting further investiga-
tion of the biochemistry and genetics of such glycoconjugates in
schistosomes (Martins et al., 2012).

Previously, details about the GPI-anchor biosynthesis pathway
in schistosomes were unknown, however several putative pro-
teins from the S. mansoni genome are believed to be involved.
Phosphatidylinositol N-acetylglucosaminyltransferase catalyzes
the first step of GPI anchor formation in all eukaryotes. In
mammalian cells, this enzyme is composed of at least five sub-
units (PIG-A, PIG-H, PIG-C, GPI1, and PIG-P), with PIG-A
functioning as the catalytic subunit (Hawn and Strand, 1993;
Watanabe et al., 1998). A splice variant of Smp 046880 (termed
Smp 046880.1) has around 50% identity with PIG-A isoforms
in a variety of mammals. Smp 163640 and Smp 152460 also
show homology with subunits PIG-P and GPI1 respectively. N-
acetylglucosaminylphosphatidylinositol deacetylase (PIG-L), the
enzyme responsible for the second step in GPI-anchor forma-
tion, and PIG-M, which transfers the first mannose to glyco-
sylphosphatidylinositol on the lumenal side of the ER also show
homology with the products from genes Smp 035080 and Smp
128810 (Nakamura et al., 1997; Maeda et al., 2001; Berriman
et al., 2009). Other genes possibly involved in building the com-
mon GPI ethanolamine-glycan core include Smp 177040, Smp
053460, and Smp 021980. There is a probability that schistosomes
also encode enzymes which allow for heterogeneity within the
common core of GPI-anchors, like what is observed in mammals
(Takahashi et al., 1996; Kang et al., 2005; Berriman et al., 2009;
Ferguson et al., 2009).

GLYCOSAMINOGLYCANS AND PROTEOGLYCANS
Little is known about the glycosaminoglycan (GAG) or proteo-
glycan (PG) content of schistosomes. Two studies have isolated
GAGs from schistosomes, demonstrating the presence of glycans
resembling heparin/heparan sulfate (HS), chondroitin sulfate
(CS) and hyaluronic acid (Robertson and Cain, 1985; Hamed
et al., 1997). It has been hypothesized that heparin/heparan
sulfate in the worm tegument could provide a mechanism of
immune evasion by inhibiting the host clotting cascade; however,
it has not been verified whether the GAGs isolated are from the
parasite or the host and their structures have not been chemically
defined (Robertson and Cain, 1985).

The Schistosoma genomes indicate that much of the genetic
machinery necessary for synthesizing GAGs is present. S. man-
soni, S. japonicum, and S. haematobium all have genes homol-
ogous to the xylosyltransferase genes in mammals, mollusks,
and nematodes which code for protein-O-xylosylation activity
(XYLT1 and XYLT2 in mammals; XYLT or sqv8 in C. elegans).

These genes encode enzymes which catalyze the first step in
addition of the HS/CS core to proteoglycans, and share the con-
served Xylosyltransferase C terminal domain and other domains
with the Core-2/I-branching enzyme family. Other enzymes
necessary for construction of the HS/CS core that have been
characterized in C. elegans include sqv3 (Gal-transferase I in
mammals, encoded by β4GalT7), sqv8 (GlcA transferase I) and
sqv7 (a UDP-GlcA/GalNAc transporter) (Bulik et al., 2000). The
three Schistosoma genomes possess genes homologous to each
of these, containing the relevant conserved domains (B4GALT7:
Smp 210290, Sjp 0062870, Sha 200402; UDP-GlcA/GalNAc trans-
porter: Smp 178490; Sjp 0089300, Sha 103448; GlcA transferase I:
Smp 083130, Sjp 0062810, Sha 108192). The enzymes that cat-
alyze polymerization of HS chains in vertebrates are exotosins
(EXTs), at least three of which are annotated for S. mansoni (Smp
172060, Smp 146320—two splice variants, Smp 073220). Putative
HS 2-O- and 6-O-sulfotransferases and a HS N-deacetylase/N-
sulfotransferase are also annotated (Smp 124020, Smp 075450,
Smp 134250; Sjp 0060410, Sjp 0082020, Sjp 0094660) (Berriman
et al., 2009; Zhou et al., 2009). Interestingly, no homolog of 3-O-
sulfotransferase, the activity of which is required for generating
the anti-thrombin inhibitory motif of mammalian HS, was found
(Ragazzi et al., 1987).

Circulating anodic antigen (CAA) is another GAG-like, O-
linked glycoprotein antigen excreted by schistosomes, which is
also under investigation as a diagnostic target (Vermeer et al.,
2003). CAA is completely unique among all previously iden-
tified glycan structures, consisting of the repeating trisaccha-
ride GalNAcβ1,6-(GlcAβ1,3)-GalNAcβ1,6-, although it slightly
resembles the backbone sequence of mammalian chondroitin
sulfate, a repeating disaccharide containing GalNAc and GlcA
(Deelder et al., 1980; Bergwerff et al., 1994; Esko et al., 2009).
Currently, there are no genes annotated as β-1,6-GalNAcT in the
Schistosoma genomes.

Interestingly, the NCBI gene database contains a second gene
annotated as a β3GlcAT (Accession no. CAD98790.1) (Zhou et al.,
2009). The conserved residues and domains of β3GlcAT responsi-
ble for donor (UDP-GlcA) and acceptor (UDP-Gal) binding, and
other critical aspects of the enzyme function, have been charac-
terized (Fondeur-Gelinotte et al., 2006). The residues associated
with donor binding are well-conserved in the schistosome genes.
The conserved amino acids associated with acceptor binding are
almost completely maintained among the human, mouse, C. ele-
gans, S. mansoni, and Sjp 0062810 β3GlcAT genes. However, there
is a 15-amino acid stretch within the acceptor binding region in
which all the sequences are well-conserved except for the second
S. japonicum β3GlcAT gene. It is tempting to speculate that if the
second β3GlcAT indeed represents a distinct gene sequence, then
it may be responsible for the addition of GlcA to CAA, a linkage
that is otherwise unknown in the animal kingdom. Or, perhaps
one of the EXT genes or splice variants could be involved in CAA
synthesis.

GLYCAN MOTIFS
It should be noted that sialic acids, common terminal sugars of
mammalian glycans, have never been demonstrated as part of
schistosome glycan motifs (Nyame et al., 1987, 2004). In animals

www.frontiersin.org August 2014 | Volume 5 | Article 262 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


Mickum et al. Deciphering the glycogenome of schistosomes

and microbes, sialic acid must be activated for use in glycan
biosynthesis by conjugation with CTP, a process catalyzed by
CMP-Sialic acid synthetase (Kean et al., 2004). These are encoded
by the CMAS gene, which is highly conserved among vertebrates
and well-conserved even in other prokaryotes and eukaryotes
(Sellmeier et al., 2013). No genes with significant homology span-
ning the functional domains of this gene were found in C. elegans
or Schistosoma genomes.

LN AND LDN
LacNAc (Galβ1-4GlcNAc; LN; N-acetyllactosamine) and
LacdiNAc (GalNAcβ1-4GlcNAc; LDN) are terminal modifica-
tions in Schistosoma glycoproteins. LN is more typically found in
mammalian glycan structures and is frequently modified through
sialylation, fucosylation, sulfation, or other sugars to generate
a wide range of glycan epitopes. Glycans containing the LDN
motif are commonly expressed by many invertebrates, including
schistosome intermediate hosts and human pathogens, but also
sometimes occur in vertebrates including several mammalian
glycoproteins (Khoo et al., 1997a; Van den Eijnden et al., 1997;
Van de Vijver et al., 2006; Van Die and Cummings, 2010; Yoshino
et al., 2012, 2013). LDN determinants present in parasite glycans
have been shown to generate a humoral response by the human
immune system, and interestingly both LN and LDN expression
can initiate the formation of a granuloma in humans (Van
Remoortere et al., 2001; Van de Vijver et al., 2006; Prasanphanich
et al., 2014).

Galactosyltransferases (GalTs) and N-acetylgalactosaminyl
transferases (GalNAcTs) are crucial to LN and LDN synthesis,
respectively. The presence of β1-4GalNAcT and β1-4GalT activ-
ity were discovered using extracts created from S. mansoni and
the bird schistosome Trichobilharzia ocellata (Rivera-Marrero and
Cummings, 1990; Neeleman et al., 1994; Srivatsan et al., 1995).
Unlike its mammalian homolog, the schistosome β1-4GalT activ-
ity is not altered by the presence of α-lactalbumin (Sato et al.,
1998). While a family of human glycosyltransferases responsi-
ble for LN synthesis has been reported, the first β1-4GalNAcT
cloned and characterized was from C. elegans (Wandall et al.,
1997; Amado, 1999; Kawar et al., 2002). The Ceβ1-4GalNAcT has
been shown to be fully functional with the ability to create the
LDN antigen on transfected Chinese Hamster Ovary cells (Kawar
et al., 2002). An equivalent enzyme that creates the UDP-Gal:β-
1,4-GlcNAc linkage necessary for the LN structure has not been
identified in C. elegans. These advancements in understanding
glycosyltransferases are a necessary first step, but research is still
far from understanding the complex regulation and glycomics of
LN and LDN synthesis.

Currently the schistosome database contains several glyco-
syltransferases potentially capable of generating these glycan
linkages. A search of the database yields three putative β1-
4GalNAcT and six β1-4GalT sequences (Berriman et al., 2009).
The nucleotide sequences of the β1-4GalNAcTs contain little
homology to the C. elegans equivalents. However, protein align-
ments show improved homology among the catalytic domains of
the S. mansoni and C. elegans β1-4GalNAcTs with approximately
30–40% identity. Similar levels of homology are found when
comparing the Ceβ1-4GalTs to the putative β1-4GalT sequences.

However, the database is far from complete, with many gene
sequences lacking exons responsible for transmembrane regions
or parts of the catalytic domain.

FUCOSYLATED VARIANTS
The LN and LDN motifs of schistosomes are also prominently α3-
fucosylated on GlcNAc, resulting in LeX and LDNF, respectively.
These trisaccharides function as both immunomodulators and
antigens during infection. They are perhaps the best characterized
of the C-type lectin ligands present in schistosomes and targeted
by antibodies of many infected hosts, but their exact roles in infec-
tion have yet to be elucidated (Van Die et al., 2003; Van Vliet et al.,
2005; Van Liempt et al., 2006; Meevissen et al., 2012a; Van Diepen
et al., 2012a; Luyai et al., 2014; reviewed by Prasanphanich et al.,
2013).

Both LeX and LDNF have been documented on glycoproteins
and glycolipids of all three major schistosome species (Nyame
et al., 1998, 2000; Frank et al., 2012). LeX is also a common fea-
ture of mammalian glycosylation, although it is often sulfated or
sialylated (reviewed by Cummings, 2009). Its expression in schis-
tosomes appears to be limited to the intramammalian stages and
is especially prominent in the adult worm gut (Van Remoortere
et al., 2000; Nyame et al., 2003; Peterson et al., 2009; Mandalasi
et al., 2013). LeX is also one of the major secreted schistosome
antigens, with repeats of the antigen making up the polysac-
charide portion of circulating cathodic antigen (CCA) found in
serum and urine (Van Dam et al., 1994). LDNF appears to be
expressed by all stages of the parasite, most highly by eggs and
the intramolluscan stages (Van Remoortere et al., 2000; Nyame
et al., 2002, 2003; Frank et al., 2012). In contrast, expression of
LDNF is highly restricted in mammals—in humans it has been
identified in urokinase and glycodelin (Bergwerff et al., 1992; Dell
et al., 1995).

Alpha2- and α3-linked multifucosylated glycans are major
constituents of a diverse group of immunologically important
LDN derived epitopes. These epitopes contain unique linkages
including polyfucose elements Fucα1-2Fucα1-3-R and the Fucα1-
3GalNAc-motif generating F-LDN, F-LDN-F, LDN-DF and DF-
LDN-DF variants (Khoo et al., 1995, 1997a; Kantelhardt et al.,
2002; Peterson et al., 2013). These structures are not documented
in any other parasitic or mammalian host species and induce high
antibody responses in humans and primates (Van Remoortere
et al., 2001, 2003; Kantelhardt et al., 2002; Naus et al., 2003).
In fact, F-LDN-F is believed to be the motif responsible for the
serological cross-reactivity with S. mansoni glycoconjugates and
keyhole limpet hemocyanin (KLH) of the mollusc Megathura
crenulata (Grzych et al., 1987; Kantelhardt et al., 2002; Geyer
et al., 2004, 2005; Robijn et al., 2005). Additionally, the chito-
biose core (-GlcNAcβ1-4GlcNAcβ1-) in complex type N-glycans
can contain α6-linked fucose and the non-mammalian α3-linked
fucose (Khoo et al., 1997a; Peterson et al., 2013). Such core mod-
ifications, especially α3-fucosylation, account for the interspecies
immunological cross-reactivity observed among plant, insect,
and helminth glycoproteins (Van Die et al., 1999; Paschinger et al.,
2004; Peterson et al., 2013).

Prior to 2013 the fucosyltransferase (FucT) multigene family
in S. mansoni was essentially unknown and most of the predicted
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genes had not been substantively characterized (Marques et al.,
1998; Trottein et al., 2000; Paschinger et al., 2005b). GeneDB des-
ignated 22 genes as putative FucTs with various specificities (α3-,
α6-, O-). Two genes are further annotated as functioning on the
core (Smp 154410) or generating Lewis structures (Smp 193620),
however this activity has not been verified (Berriman et al., 2009).
Analysis of the protein products from those genes revealed the
database was incomplete, and the genes were fragments of what
is expected in a full length FucT protein. Some gene products
were prematurely truncated or missing exons in the stem or cat-
alytic domains (Joziasse, 1992; Fukuda et al., 1996; Lairson et al.,
2008). Ascertaining this problem with the database, Peterson et al.
(2013) published a comprehensive in silico study using RACE
(Rapid Amplification of cDNA Ends) PCR to determine the full-
length transcripts of the FucT genes from a S. mansoni cDNA
library. Their study identified six α3-FucTs (four new enzymes,
one pseudogene, one previously discovered), six α6-FucTs, and
two protein O-FucTs. Interestingly, no α2-FucTs were identified.
The FucTs identified contain conserved motifs as well as charac-
teristic transmembrane domains, consistent with their putative
roles as fucosyltransferases (Breton et al., 1998; De Vries et al.,
2001; Peterson et al., 2013). This new data, when grouped with
previous transcript level results, suggest a possible mechanism
for differential expression of fucosylated glycans in schistosomes
(Fitzpatrick et al., 2009; Protasio et al., 2012; Peterson et al.,
2013).

POLYLACTOSAMINE AND POLY-LDN
S. mansoni, like mammals, generates extended poly-N-acetyllacto
samine (Galβ1,4-GlcNAcβ1,3-Galβ1,4-GlcNAc; poly-LN) chains
which can be further modified, most notably in the form of
poly-Lewis X (poly-LeX) (Srivatsan et al., 1992b). Poly-LeX has
been demonstrated on N-glycans as well as on the secreted O-
linked (possibly core 1 and/or core 2-linked) CCA (Bergwerff
et al., 1994; Van Dam et al., 1994). Unusually, S. mansoni is
also able to form extended polymers of LacdiNAc (GalNAcβ1,4-
GlcNAcβ1,3-GalNAcβ1,4-GlcNAc; poly-LDN) and fucosylated
LacdiNAc (poly-LDNF) (Wuhrer et al., 2006a,b). This is the only
naturally-occurring example of such a structure; however, cloning
of C. elegans β1,4-GalNAcT and human α1,3-fucosyltransferase
9 into Chinese Hamster Ovary Lec8 cells resulted in poly-LDN
and poly-LDNF on N-glycans (Kawar et al., 2005). A β1,3-N-
Acetylglucosaminyltransferase (β3GnT) in human serum also
demonstrates extension activity in chemo-enzymatic generation
of both poly-LeX and poly-LDN on synthetic acceptors (Yates
and Watkins, 1983; Salo et al., 2002). These data indicate that the
β3GnTs which normally generate poly-LN in mammals are likely
able to perform the reaction with either β-linked Gal or GalNAc
as an acceptor. This is hypothesized to be the case in schistosomes
as well (Wuhrer et al., 2006a), although the regulatory factors that
allow extension of LDN in schistosomes but not in mammals are
unknown.

Mammalian β3GnTs are part of a family of structurally-related
β1,3-glycosyltransferase genes, which includes both GlcNAc-
and Gal-transferases (Togayachi and Narimatsu, 2012). The
Schistosoma genomes contain several genes homologous to this
family, some of which are annotated as β3GnTs and others

as β3GalTs, which have the conserved Galactosyl-T domain as
well as a transmembrane region (Berriman et al., 2009; Zhou
et al., 2009; Protasio et al., 2012). The enzymatic activities of
the eight known mammalian β3GnT genes have been well-
characterized, and each appears to have preferred substrates, such
as β3GnT2, which extends poly-LN on 2,6-branches of tri- and
tetra-antennary N-glycans, and β3GnT3, which extends poly-LN
on O-linked core 1 (Togayachi and Narimatsu, 2012). As most
of the Schistosoma genes have a similar level of protein sequence
similarity to several of the mammalian β3GnT and vice versa,
they will need to be cloned and biochemically characterized in
order to determine which are responsible for extension of poly-
LeX, poly-LDN(F) on N-glycans and poly-LeX on O-linked CCA,
for example. A better understanding of the genetic basis of these
polymeric antigens would be helpful as they are thought to be
important antigenic targets, immunomodulators and, in the case
of CCA, a validated diagnostic antigen (Van Dam et al., 1996; Van
Roon et al., 2004; Wuhrer et al., 2006a; Sousa-Figueiredo et al.,
2013; Luyai et al., 2014; Prasanphanich et al., 2014).

XYLOSE
Core β1,2-xylose linked to the β-mannose of N-glycans was first
identified in plants and has since been recognized as a com-
mon modification of plant N-glycans and an important epitope
of plant glycoprotein allergens. β2-xylosylation was subsequently
identified in molluscs and then in S. mansoni and S. japon-
icum egg glycoproteins as well as S. mansoni cercariae in mass
spectrometry studies (Khoo et al., 1997a, 2001). Western blot
experiments suggest that several nematode and helminth species
carry core β1,2-xylose and that it is variably expressed on glyco-
proteins of all of the intramammalian life stages of S. mansoni,
with highest expression in cercariae and eggs (Van Die et al., 1999;
Faveeuw et al., 2003). Core α3-fucosylated/core β2-xylosylated
egg glycoproteins are also drivers of the Th2-immune response in
mice and targeted by IgG in S. mansoni-infected mice, humans
and rhesus monkeys (Faveeuw et al., 2003; Luyai et al., 2014).
However, it is not clear what role such glycoconjugates play in
schistosome infection, how they are developmentally regulated,
and if antibodies to β1,2-xylose contribute to protection.

There are two xylosyltransferases annotated in the S. mansoni
genome and three in the S. japonicum genome (Berriman et al.,
2009; Zhou et al., 2009). Sjp 0055390 (Zhou et al., 2009) shares
the greatest protein sequence similarity with other worm, mol-
lusk and plant sequences annotated as β1,2-xylosyltransferases,
including the well-characterized β1,2-xylosyltransferase from
Arabidopsis thaliana (AtXYLT). AtXYLT is a type-II transmem-
brane protein, similar to other Golgi glycosyltransferases, with
a conserved domain of unknown function (DUF563) that also
occurs in the S. japonicum protein. AtXYLT adds a xylose β-
linked to the central mannose of the N-glycan core structure,
possibly acting at several points after the addition of GlcNAcβ1,2
to the α1,3-Mannose at the non-reducing end during Golgi N-
glycan processing (Strasser et al., 2000; Bencúr et al., 2005; Kajiura
et al., 2012). Smp 125150 is a shorter sequence which is also
annotated as a β1,2-xylosyltransferase (Berriman et al., 2009),
but may be a partial sequence as it aligns well with the N-
terminal domain of Sjp 0055390 and AtXYLT but ends before
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the conserved DUF commonly associated with β1,2-XYLTs.
Transcriptome analysis (RNA-Seq) of the S. mansoni genome sug-
gested that Smp 125150 expression was high in cercariae and
decreased through the schistosomula stages to undetectable lev-
els in adult worms (Protasio et al., 2012), which is potentially in
agreement with the β2-xylosylation data described above from
mass spectrometry and Western blot studies. These two genes
therefore represent likely candidates for the Schistosoma β1,2-
xylosyltransferases, and their improved characterization would
benefit the developmental and immunological understanding of
these worms.

CONCLUSIONS
The identification of novel glycans synthesized by schistosomes
and their unique functions as immunomodulators and recogni-
tion as antigens has raised awareness of their importance. The
complementary elucidation of the genomes of Schistosoma species
has now opened the way to linking the glycogenome to the
glycome, which has important consequences for the future of
research in this area. Knowledge of specific genes encoding key
parasite enzymes important in glycan synthesis may lead to new
drugs targeted to block glycan synthesis or metabolism in the
parasite. Such a strategy has the potential to target the parasites
directly and/or to modulate the host’s immune response to the
parasite, both of which could have therapeutic value. The avail-
ability of identified and functional genes for schistosome glyco-
syltransferases could lead to their use in semi-synthetic strategies
to produce glycans that are very difficult to obtain from chemical
synthesis. Using chemo-enzymatic approaches it may be possible
to generate a wide-variety of schistosome-related glycans and gly-
can determinants that would be ideal for screening of immune
responses to glycan antigens in human and animal (Luyai et al.,
2014; Prasanphanich et al., 2014). Finally, knowledge of the schis-
tosome genes could lead to their use in recombinant forms
expressed in mammalian or insect cells to elaborate the schisto-
some glycome in a heterologous cells for use in immunization and
functional studies (Prasanphanich et al., 2014).
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