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Abstract

Background: The Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several
arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Compared to
other mosquito species, Ae. albopictus females exhibit a generalist host seeking as well as a very aggressive biting
behaviour that are responsible for its high degree of nuisance. Several complex mosquito behaviours such as host
seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly
on specialized head appendages such as antennae, maxillary palps and the mouthparts.

Results: With the aim to describe the Ae. albopictus olfactory repertoire we have used RNA-seq to reveal the
transcriptome profiles of female antennae and maxillary palps. Male heads and whole female bodies were employed
as reference for differential expression analysis. The relative transcript abundance within each tissue (TPM, transcripts
per kilobase per million) and the pairwise differential abundance in the different tissues (fold change values and false
discovery rates) were evaluated. Contigs upregulated in the antennae (620) and maxillary palps (268) were identified
and relative GO and PFAM enrichment profiles analysed. Chemosensory genes were described: overall, 77 odorant
binding proteins (OBP), 82 odorant receptors (OR), 60 ionotropic receptors (IR) and 30 gustatory receptors (GR) were
identified by comparative genomics and transcriptomics. In addition, orthologs of genes expressed in the female/male
maxillary palps and/or antennae and involved in thermosensation (e.g. pyrexia and arrestin1), mechanosensation
(e.g. piezo and painless) and neuromodulation were classified.

Conclusions: We provide here the first detailed transcriptome of the main Ae. albopictus sensory appendages, i.e.
antennae and maxillary palps. A deeper knowledge of the olfactory repertoire of the tiger mosquito will help to
better understand its biology and may pave the way to design new attractants/repellents.
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Background

The Asian tiger mosquito Aedes albopictus is an aggres-

sive daytime-biting vector of several arboviruses patho-

genic to humans (e.g. dengue, chikungunya, Zika). Ae.

albopictus has been described as one of the 100 worst

invasive species in the world (Global Invasive Species

Database, http://www.issg.org/database/). Its impact on

human health relies indeed on its rapid and aggressive

worldwide spread from its native home range (South-East

Asia), along with its ecological adaptability in different

traits, including most importantly feeding behaviours, dia-

pause, and vector competence [1–5].

Biological signals captured from the surrounding

environment and sensed through olfaction and other

chemosensory modalities play a central role in the

modulation of mosquito behaviours such as host-

seeking, feeding, mating, oviposition and reception of

repellents [6]. Olfactory responses are initiated by activa-

tion of olfactory sensory neurons (OSNs) localized

mainly on antennae, maxillary palps, mouthparts

(consisting of the proboscis and labellum) and tarsi [6].

These sensory appendages may perceive extremely di-

verse extrinsic stimuli, such as volatile and non-volatile

odours or pheromones, temperature, humidity, mild or

noxious touch, gravity, etc., to activate a complex mix of
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mosquito perception pathways [7–9]. The sensing of

chemical stimuli, i.e. chemosensation, relies on chemosen-

sory neurons that are selectively activated by various

volatile compounds, such as odorant molecules and pher-

omones [10]. The molecular components underlying

peripheral olfactory signalling encompass a range of intra-

cellular and extracellular contexts. The complexity of

olfactory factors together with differential expression and/

or abundance directly contributes to the modulation of

specific behaviours across mosquito species. From a

receptor-centric perspective, chemosensation in insects is

largely mediated by diverse members of three gene fam-

ilies expressed primarily in OSNs that reside within spe-

cialized sensilla that populate olfactory appendages:

odorant receptors (ORs), gustatory receptors (GRs) and

ionotropic receptors (IRs) (reviewed in [6, 11]). Odorants

and chemical compounds cross the cuticle through sensil-

lar pores to reach the aqueous sensillar lymph, and are

then postulated to be recognized and carried to their cog-

nate specific receptors on OSN dendritic membranes by

members of a diverse family of extracellular odorant bind-

ing proteins (OBPs) and pheromone binding proteins

(PBPs) that are secreted by a network of accessory cells lo-

calized at the base of insect sensilla (reviewed in [12]).

There are several distinct types of chemosensory sensilla

which house the OSNs along other sensory neurons and

their associated accessory cells that populate mosquito

sensory appendages [13].

From a cellular and molecular perspective, several

studies concerning the activation of olfactory transduc-

tion pathways in insects suggest that ORs function as

heteromeric complexes that form ligand gated ion chan-

nels in association with the ubiquitous co-receptor ORco

[14, 15], that may also in some circumstances utilize G-

protein coupled second messenger pathways to confer

OSN odour sensitivity [16]. Activation of OSNs by odor-

ants triggers complex behavioural responses [17], and

several evidences highlight the crucial role of ORs in

accomplishing this process in mosquitoes [18, 19].

Membrane-bound insect GRs are phylogenetically re-

lated to ORs and are generally expressed in gustatory re-

ceptor neurons (GRNs) found in chemosensory sensilla

distributed on the mouthparts, wing margins, genitalia,

and tarsal segments of the legs [20–23]. In the malaria

mosquito Anopheles gambiae a suite of three highly con-

served GRs is expressed in a unique array of non-OR

containing maxillary palp OSNs that respond to volatile

CO2 [24]. Similarly, in the dengue and yellow fever mos-

quito Aedes aegypti a crucial role in host preference/

seeking was shown for two of the three GRs as compo-

nent of the CO2 receptor [25, 26]. Insect IRs are not re-

lated to ORs or GRs, but instead represent an ancient

family derived from ionotropic glutamate receptors

(iGluRs), a highly conserved family of ligand-gated ion

channels involved in neurotransmission as well as signal-

ling mechanisms in response to external chemical stim-

uli in both eukaryotes and prokaryotes [27, 28].

Mosquito IRs are not as well characterized functionally

as ORs, although recent studies in An. gambiae [29] are

consistent with work from Drosophila melanogaster

showing that IRs detect volatile compounds such as

acids, ammonia, or amines [30]. Behavioural studies in

Ae. aegypti showed that this mosquito uses polyamines

both to find feeding sources and especially to locate egg-

laying sites [31]: this attraction could be mediated by

IRs, as demonstrated in the fruit fly [31]. In addition to

the principal chemosensory receptor gene families, OSN

membranes are also populated with several important

families of olfactory genes. The sensory neuron mem-

brane proteins (SNMPs), which belong to the scavenger

receptor type B gene family (SCRB/CD36) [32, 33], are

receptors involved in cell-cell communications, ligand

(fatty acids) internalization [34] and pheromone detec-

tion as shown in D. melanogaster [35, 36]. Insect SNMPs

are well-conserved and are typically expressed in neu-

rons or support cells associated with sensilla [34].

Beyond those membrane components, a range of se-

creted proteins makes essential extracellular contribu-

tions to olfactory signalling pathways. Of these, OBPs

are highly expressed water-soluble components of sensil-

lary lymph that are hypothesized to bind and solubilize

odorant compounds from the external environment and

to transport them to their respective olfactory receptors

triggering olfactory transduction pathways [12]. Insect

OBPs are 10–30 kDa globular proteins characterized by

six α-helical domains comprising of six highly conserved

cysteines with specific disulphide connectivity. In mos-

quitoes three sub-families of OBPs have been character-

ized so far: (i) Classic OBPs, carrying the six conserved

cysteines typical of the OBP family; (ii) PlusC OBPs, with

the same conserved cysteines and disulphide connectiv-

ity but also containing six additional cysteines; (iii) Atyp-

ical OBPs, which are among the longest known OBPs

including two domains that are homologous to the Clas-

sic OBP domain and are hence considered as “dimer

OBPs” [37, 38]. Moreover, OBPs lacking C2 and C5 cys-

teines are commonly widespread among studied organ-

isms and are named MinusC [38]. Structural studies in

mosquito described the adaptability of OBP binding site

to accommodate several ligands [39, 40]. It was also

demonstrated that some OBP might show a binding

preference for certain odour molecules. For instance, the

presence of OBP1 in An. gambiae mediates the binding

with the ligand indole [41], a known oviposition attract-

ant for the southern house mosquito Culex quinquefas-

ciatus [42]. OBPs therefore likely represent a critical

initial interface between the environment and the mos-

quito: the variety of OBPs and chemosensory receptors
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each mosquito possesses and expresses at any one time

is likely to influence specific behavioural features (i.e.,

food, host and oviposition site preference and seeking)

as reflected in their capacity to sense diverse sets of at-

tractants and repellents. In addition to OBPs, there are

several other families of secreted proteins involved in

peripheral chemosensation. Among these, members of

CheA and CheB gene families, which encode small sol-

uble proteins [43], were found expressed in sex-specific

patterns and involved in the detection of cuticular hy-

drocarbons required for the courtship in the fruit fly

[44]. CheB protein may interact with degenerin/epithe-

lial Na+ channels (pickpocket, ppk) to detect these con-

tact pheromones [43]. The molecular mechanism of

CheA and CheB function remains unknown, but may in-

volve interaction with other membrane bound receptors

or ppk channels [43]. Another class of secreted extracel-

lular proteins playing crucial roles in olfaction are the

odorant/pheromone-degrading enzymes (ODEs/PDEs),

which are involved in the degradation of odorants thus

clearing sensillar lymph [45].

Sensory appendages such as tarsi and head appendages

(labella, proboscis, maxillary palps and antennae) are not

only involved in chemosensation but also play essential

roles in mediating mosquito sensitivity to various add-

itional stimuli that include temperature, dangerous and

mild touch, humidity, gravity and other sensory modalities

[6]. In this respect there are several families of membrane-

bound molecules playing relevant roles. The pickpocket

(ppk) and the transient receptor potential channels (trp)

gene families have potential roles in insect taste, thermo-

and mechano-reception [6, 46]. Indeed, mosquitoes not

only must avoid extreme cold and heat but also accurately

sense temperature as host-seeking females are known to

be attracted to a narrow, specific temperature range asso-

ciated with vertebrate hosts [6]. In D. melanogaster, GR28

has been involved in the detection of rapid temperature

changes in adult flies [47]; in mosquitoes, TrpA1, Painless,

Pyrexia and PlcB play roles in the detection of harmful

heat thresholds and functional studies have directly impli-

cated mosquito TRPA1 in thermo-sensitivity in both An.

gambiae [48] and Ae. aegypti [49]. In addition, Painless,

Pyrexia and PlcB appear also to be involved in light detec-

tion. Mechanosensation is the entire repertoire of actions

and reactions related to the detection of sound, gravity

and mild/noxious touch [46]. Previous studies in the

fruit fly identified genes involved in some aspects of

mechanosensation: for example the proteins painless,

piezo and pickpocket (Ppk1) are mainly involved in

perception of noxious touch [50–52], whereas nompC

(no mechanoreceptor potential C), Ppk2, chloride

channel-b, narrow abdomen, mrityu, the ionotropic

receptors Nmdar1 and Nmdar2 are instead required for

mild touch detection [53, 54].

The worldwide spread of the tiger mosquito Ae. albo-

pictus, its competence in the transmission of several

pathogens and the recent involvement in arboviral out-

breaks [55–60], point out the need to acquire a deeper

knowledge on crucial aspects of its life cycle that may

help developing novel and more effective strategies for

its control [9]. Here we employ an RNA-seq based ap-

proach to generate a comprehensive transcriptome of

Ae. albopictus female antennae and maxillary palps. This

facilitates the characterization of the main Ae. albopictus

gene families involved in the perception of olfactory

stimuli as well as of several additional transcripts likely

implicated in sensing taste, temperature, humidity,

touch, injury and gravity. We believe that the assembly

of this olfactory repertoire will be useful for improving

the annotation of the Ae. albopictus genome [61, 62].

Moreover, the comparison to other mosquito species

may help understanding some particular behavioural

and ecological features of the tiger mosquito (niche

adaptation, invasiveness, feeding habits) that in the long

run it may contribute to the development of novel con-

trol strategies.

Methods

Insects and tissue dissections

The Aedes albopictus strain used in this study was ori-

ginally collected in Rome in 2012 and reared in the in-

sectary for several generations (eggs kindly provided by

Roberto Romi and Marco Di Luca, Istituto Superiore di

Sanità, Rome, Italy). Mosquitoes were reared under

standard laboratory conditions (25 ± 1 °C, relative

humidity 60 ± 10%, light:dark photoperiod 14:10 h) in

the insectary of the Department of Public Health and

Infectious Diseases at Sapienza University, Rome. Adult

females (2–6 days post-emergence, dpe) maintained on a

10% sucrose diet were used in this study. The age range

was selected in the attempt to reveal transcripts encod-

ing most of the olfactory factors involved in the prefer-

ence, selection and location of blood-meal hosts in

female mosquitoes that play critical roles in significantly

establishing their vectorial capacity. Indeed, it is known

that mosquitoes do not seek blood source in the first

24–48 h post-emergence [63], and temporal expression

analyses showed that the largest transcriptional increase

of olfactory genes occurs up to day 4 dpe in An. gambiae

[64] and up to day 6 in Ae. aegypti, followed by a plateau

in 10 dpe mosquitoes [65]. At 2 to 4 h after the gradual

onset of light in rearing chambers (“insectary sunrise”)

which corresponds to Zeitgeber time (ZT) 2 to ZT4,

mosquitoes were anaesthetized using ice (2–3 min), and

female antennae, female palps, male heads (with all the

appendages attached) were hand-dissected, frozen in

liquid nitrogen, and stored at −80 °C until needed.

Whole females were directly frozen and stored as above.
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Two independent collections of 500 female antennae,

500 female palps, 10 adult females and 15 male heads

were used for RNA extractions to obtain two independ-

ent biological replicates.

RNA extraction, library preparation and sequencing

RNA was extracted using Trizol® Reagent (Life Tech-

nologies) according to the manufacturer’s protocol. Dis-

sected tissues and entire females were initially crushed

with pestles in Trizol reagent before proceeding with the

extraction protocol. RNA concentration and quality were

evaluated using standard procedures: Take3 Module

(BioTek SynergyHT) reading and gel electrophoresis.

RNA samples were treated with DNAseI (Ambion).

Amounts of total RNA used to synthesize mRNA Tru-

Seq libraries were the following: 500 Antennae (A):

1.4 μg; 500 Antennae (B): 1.9 μg; 500 Palps (A): 500 ng;

500 Palps (B): 400 ng 10 Female Body (A): 4.5 μg; 10 Fe-

male Body (B): 4.2 μg; 15 Male Heads (A): 3.3 μg; 15

Male Heads (B): 3 μg. cDNA library preparation, includ-

ing fragmentation and barcoding (ligation of specific

adapters), was performed following the Illumina TruSeq

RNA Library v2 protocol (Illumina, San Diego, CA,

USA). After quality evaluation with an Agilent 2010

Bioanalyzer, as recommended for Illumina sequencing,

the libraries were diluted with an elution buffer and

loaded on an Illumina HiSeq2000 for sequencing

(paired-end, PE, 2 × 100 bp), and each cDNA library was

sequenced.

Assembly, sequence annotation and expression profiling

Clean reads were generated from raw reads by removing

adaptor sequences, ambiguous reads, and low-quality

reads with a qual value cutoff of 15. De novo assembly

of clean data was accomplished by ABySS® and

SOAPdenovo-trans® software, using several k-mers

(every 10th from 25 to 95). Quality control between

RNA-seq replicates was performed using the PtR Trinity

perl script (release 2014–07-17) prior to merging of the

duplicate (A/B) assemblies. Merged assembly (BLAST

and cap3 assembler) was used to extract putative protein

coding sequences (CDS). When the Ae. albopictus gen-

ome was made available [61, 62], we have compared (by

BLAST) the VectorBase AaloF1 gene annotation [62]

with the olfactory transcriptome predictions to assign

VectorBase ID and reduce redundancy (annotation Soft-

ware @CBS-DTU). Coding sequences (CDS) were ex-

tracted based on the existence of a signal peptide in the

longer open reading frame (ORF) and by similarities to

other proteins found in the Refseq invertebrate database

from the National Center for Biotechnology Information

(NCBI), proteins from Diptera deposited at NCBI’s Gen-

bank and from SwissProt. To identify gene categories

and PFAM terms enriched in the pairwise comparisons

between the four tissues a GO/PFAM term enrichment

analysis was performed using the Annocript software

[66] and the Fisher Exact Test (adjusted p-value <0.01)

in R package [67]. Clean reads were mapped back onto

the assembled transcriptome using RSEM software and

read count for each gene was obtained from the map-

ping results. Expression levels were assessed in terms of

TPM values (transcripts per kilobase per million reads),

which were calculated based on the number of mapped

transcript fragments corrected for transcript length and

sequencing depth. Differential expression analysis of two

samples was performed using the edgeR R package [68].

P value was adjusted using FDR (False Discovery Rate).

Then, paired comparisons were conducted in the follow-

ing manner: female antennae vs. female body, female

palps vs. female body and male heads vs. female body.

EdgeR was run only for transcripts having at least one li-

brary with RPKM equal or larger than one, and only

contigs with 2 < logFC < −2 were considered. Pairwise

comparisons using edgeR were done using the general-

ized linear model (GLM) likelihood ratio test.

Identification of chemosensory genes, sequence

alignment and phylogenetic analysis

As mentioned in the paragraph above, each contig was

analysed by BLAST analysis interrogating several data-

bases. Contigs showing significant matches with proteins

involved in chemosensation in different insects (the

mosquitoes An. gambiae, C. quinquefasciatus and Ae.

aegypti and other insects such as the fruit fly D. melano-

gaster) were identified. Moreover, a reciprocal BLAST

analysis was carried out using FASTA sequences of Ae.

aegypti OR [69–71], GR [22, 69, 71], IR [27, 69, 71],

OBP [38, 69, 71] and of genes involved in more general

sensorial functions [71]. True orthologs were therefore

identified by reciprocal best-hit BLASTP analysis screen-

ing the Ae. albopictus olfactory transcriptome. These

lists were then manually refined by TBLASTN searches

taking also into account other relevant biological fea-

tures such as high percentages of identity over shorter

regions or possible gene duplication events. Deduced

protein sequences were aligned using Clustal Omega on

line tool at EMBL-EBI (http://www.ebi.ac.uk/Tools/msa/

clustalo/). Alignments reported in this manuscript

should be considered as provisional and susceptible of

improvement, especially considering the limited overall

reliability of the present genome annotation. Neverthe-

less, they provide clear clues and justification for the

classification in the different families and subfamilies.

Phylograms were obtained by using MEGA 5.0 software

and Maximum likelihood protocol. Bootstrapping was

performed by the re-sampling amino acid positions of

1000 replicates (Additional file 1).
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Quantitative real-time PCR

To verify transcript abundance patterns from RNA-seq

analysis, RT-qPCR reactions were performed on eleven se-

lected genes. Two novel batches of both antennae and

maxillary palps were dissected from Ae. albopictus females

2–5 dpe (days post emergence); two batches of whole fe-

male mosquitoes were also collected. Total RNA was ex-

tracted using Trizol® reagent (Invitrogen) following

manufacturer’s instruction and finally resuspended in

DNAse-RNAse-free ultrapure ddH2O. Quantity and qual-

ity of RNA was evaluated by spectrophotometric measure-

ment (using the Take3 module of plate reader BioTek

SynergyHT and GEN5™ software) and agarose gel electro-

phoresis, respectively. DNAseI (using Ambion DNA-free

kit®, per manufacturer’s instruction) treatment was

followed by standard PCR (without Reverse Transcription)

to verify efficacy of treatment. DNAseI-treated total RNA

(~ 1 μg for dissected tissues and 5 μg for whole females)

was used as substrate to generate First-Strand cDNA using

SuperScript II RT (Invitrogen) and OligodT (Invitrogen).

The synthesized cDNA samples were diluted to 5 ng/μl: in

each qPCR reaction 2 μl of cDNA were used. For each

gene, a standard curve was included in each plate, together

with the endogenous reference gene (ribosomal protein

S5, RpS5, AALF013336, [72, 73]). cDNA templates for the

standard curve were obtained from whole female RNA

samples, a dilution series starting from 100 ng/reaction

was followed by 1:5 dilutions. cDNA templates were

mixed with 2× PowerUp™ SYBR™ Green Master Mix

(Applied Biosystem) and specific primers as listed in

Additional file 2: Table S6. Each reaction included an

initial holding stage of 2 min at 50 °C and of 2 min

at 95 °C, followed by 40 cycles of PCR (95 °C, 15 s;

60 °C, 1 min); a final stage to obtain melting curves

was also included in each plate, with detection steps

every 0.3 °C. In relative quantification, the relative

amount of each gene in each tissue is determined by

the ratio between the amounts of target gene and en-

dogenous reference gene calculated using their Ct

values and the corresponding standard curves. This

ratio is then compared between different samples,

choosing a sample as calibrator. The relative tran-

scription levels normalized by reference gene were

compared with expression levels of RNA-seq. We ini-

tially evaluated the correlation between duplicates in

both RNA-seq and qPCR datasets. To obtain values

suitable for statistical comparisons, we calculated (for

each gene) a fold-change (FC) value as the ratio of

abundance over the group median. Duplicates were

then averaged to obtain a single FC value for each

gene. These values were used to evaluate the correl-

ation between RNA-seq and qPCR methods, applying

statistical evaluation throughout Spearman and

Pearson tests. For both techniques, statistical

evaluation (Spearman and Pearson tests) revealed also

a significant linear correlation between duplicates

(Additional file 3: Figure S11 A-D).

Results and discussion

Transcriptome sequencing, de novo assembly and genome

release

Duplicate transcriptomes of olfactory appendages of the

tiger mosquito Ae. albopictus were obtained for each of

the four samples and general assembly statistics are

summarized in Table 1 and Fig. 1. A comprehensive

transcriptome was produced following de novo assembly

procedures. Extracted CDS were compared by BLAST

analysis to predicted peptides from the recently released

Ae. albopictus genome [AaloF1 database, Foshan strain,

[62]]. We found 6069 sequences that had at least 95%

amino acid identity and at least 95% coverage to the

Foshan predictions. Of these, 262 were at least 5% longer

than the predictions. 20,085 contigs had less than 95%

identity to the genomic predictions, and included 972

transcripts that produced >75% coverage and >50% iden-

tity to proteins from Diptera downloaded from

GenBank. Altogether, we submitted 1842 protein coding

sequences to the Transcriptome Shotgun Assembly

(TSA) portal of the NCBI. This procedure produced a

final spreadsheet of 33,846 contigs (Additional file 4: Data-

set S1, Additional file 5: Dataset S2, Additional file 6:

Dataset S3, Additional file 7: Dataset S4 and Fig. 1) and

allowed assigning a VectorBase ID code (AALFxxxxxx) to

14,386 transcriptome contigs and significantly reducing

redundancy. Mapping the reads to the transcriptome re-

vealed an overall acceptable correlation between replicates

Table 1 Summary of sequencing and assembly statistics

Female Antennae A (reads) 29,945,374

Female Antennae B (reads) 17,712,800

Female Palps A (reads) 7,698,073

Female Palps B (reads) 5,354,526

Female Whole body A (reads) 25,639,847

Female Whole body B (reads) 19,011,547

Male Heads A (reads) 8,457,785

Male Heads B (reads) 19,688,382

Total bases (bp) 133,508,334

Total assembled bases (bp) 27,866,796

Assembled contigs 33,846

Average contig length (bp) 823

N50 (bp) 1563

Shortest transcript length (bp) 150

Longest transcript length (bp) 32,463

transcripts >1Kb 8953

transcripts >2Kb 3100
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for each tissue (Fig. 1c). The maxillary palp samples of fe-

males showed the highest divergence (but still highly cor-

related) whereas, as expected, reads derived from head

tissues (female antennae, FA; female palps, FP and male

heads, MH) displayed a higher correlation between them

when compared to the female whole body (FB). Finally, a

detailed cluster analysis was performed after assessment

of TPM (transcripts per million) values for each replicate

dataset (Additional file 8: Figure S1). This analysis con-

firmed the overall quality of replicates in our RNA-seq

procedure and facilitated the identification of several

groups of co-expressed genes that represent transcriptome

profile signatures of the different tissues/sexes.

Transcript abundance profiling in chemosensory tissues

Tissue-specific transcript enrichment was evaluated by

pairwise comparisons between samples. Fold change (FC)

Logarithmic values and false discovery rates (FDR) were

calculated using edgeR to provide a statistical validation

(Additional file 6: Dataset S3). We selected transcripts

(represented hereafter as genes) showing enhanced abun-

dance in chemosensory tissues (female antennae, female

palps and male heads) when compared to female whole

body and compared them to each other (Figs. 2 and 3). A

strict statistical FDR threshold (P < 0.001) was used to de-

fine subsets of highly enhanced genes in female antennae

(620 contigs) and in female palps (268 contigs, Table 2

and Figs. 2 and 3. Within these criteria, 171 contigs were

enriched in male heads as compared to female body, indi-

cating a sex-biased abundance profile (Fig. 3). Previous

Fig. 1 Tissues, RNA-seq method and cluster analysis. a. Schematic representation of female head with highlighted in red antennae and palps
(upper part of the panel), male head and whole female mosquito (lower part of the panel). b. Workflow chart of procedures used for the
assembly and the annotation of the Ae. albopictus olfactory transcriptome. c. Multidimensional plot of RNA-seq duplicates used in this study

Table 2 Gene expression profiling by edgeR

P < 0.05 P < 0.01 P < 0.001

FA vs FB FA UP: 1992 1129 620

FB UP: 3068 1962 1207

Total: 5060 3091 1827

FP vs FB FP UP 1752 731 268

FB UP 3445 1755 807

Total: 5197 2486 1075

MH vs FB MH UP 2137 819 171

FB UP 2918 1768 1091

Total: 5055 2587 1262

Table 2. Gene expression profiling by edgeR. Pairwise comparisons (FA vs FB,

FP vs FB and MH vs FB) highlight genes upregulated in each sample according

to different probability thresholds (P < 0.05, P < 0.01 and P < 0.001)
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transcriptomic analysis in An gambiae and Ae. aegypti

mosquitoes reported 2277 and 244 contigs differentially

enhanced in female antennae, respectively [71, 74].

Evaluation of both PFAM and GO enrichment in the

enhanced gene sets was performed (Tables 3-5 and

Additional file 9: Figure S2). The PFAM analysis was

performed selecting the gene sets identified by the

restrictive FDR < 0.001 threshold to increase the likeli-

hood of isolating “tissue-specific” contigs. Not surpris-

ingly, the three most frequent gene families in the

antennae-enriched subset are 7tm Odorant receptor,

PBP/GOBP and Ligand-gated ion channel (Table 3),

similarly to previous observations in An. gambiae [74].

For the maxillary palps, the most significantly enhanced

gene family comprises the ninjurin genes that are in-

volved in several biological processes such as cell-cell,

cell-matrix adhesion and nervous tissues development

(Table 4). Other gene families enriched in the Ae. albo-

pictus maxillary palps are the 7tm Chemosensory recep-

tor (gustatory receptors), PBP/GOBP family and CD36

family that were also shown enriched in the maxillary

palps of An. gambiae mosquitoes [74]. Finally, enriched

gene families in male heads are represented mainly by

Neurotransmitter-gated ion-channel ligand binding do-

main and 7 transmembrane receptor (rhodopsin family),

since composed eyes and ganglia are large and abundant

organs in this body part (Table 5).

Enrichment analysis of GO terms was performed com-

paring GO terms frequencies in tissue-specific subsets

(P < 0.01) with GO terms frequencies in the transcrip-

tome. Statistically significant GO terms (cellular compo-

nent, molecular function and biological process) are

shown in Additional file 9: Figure S2. By this analysis,

OBPs (in both antennae-UP and palps-UP specific sub-

sets) as well as odorant and ionotropic glutamate recep-

tors (in the antennae-UP subset) are among the most

highly represented molecular functions. Structural

Fig. 2 Pairwise sample comparisons. Proportional Venn diagram
showing pairwise comparisons between female antennae, female
palps and male heads. Gene subsets enhanced in each sample
versus female body according to the edgeR threshold at P < 0.001
(see Table 2) were compared to each other. Overlaps (and relative
numbers) represent the subsets of genes that are differentially
expressed in more than one tissue

Fig. 3 Differential expression (DE) of chemosensory genes. Volcano
plots show the relative expression of contigs in pairwise comparisons.
The x-axis represents the logFC (fold change) between tissues. The
y-axis represents the negative log10 of the p-value (false discovery rate)
as calculated by the Fisher’s Exact test. a. Female bodies vs Antennae.
b. Female bodies vs Palps. c. Female bodies vs Male Heads. Only
differentially expressed contigs (P < 0.05, logFC <−2 and >2) are
shown in the plot (grey dots) with OBP indicated in black,
OR in red, GR in green and IR in blue

Lombardo et al. BMC Genomics  (2017) 18:770 Page 7 of 23



features such as dynein complex (cellular component)

and microtubule-based movement and cilium assembly

(biological process) are also significantly represented

among antennae-specific GO terms.

Ae. albopictus antennae and palps are not only distin-

guishable as a result of significant differences in both

PFAM and GO enrichment analyses but also when look-

ing at specific and shared transcripts (i.e., contigs spe-

cific to the antennae, to the palps and to male heads as

well as those whose expression was enhanced in more

than one chemosensory appendage). These relationships

are represented in a proportional Venn diagram (Fig. 2)

that highlights the overlaps between tissues (antennae

and palps) as well as tissue- and sex-specific groups.

Comparison between the subset of female antennae-

enriched contigs with those enriched in palps revealed a

relevant overlap, with 119 enriched transcripts (44% of

palp set) in common (Fig. 2). Around 28% of transcripts

enhanced in male heads are also enhanced in the female

antennae, while only 5% of palps-specific contigs are en-

hanced in male head. This comparison also identified

groups of transcripts specific to the female antennae

(457/620, 73%), female palps (143/268, 53%) and male

heads (118/171, 69%).

Chemosensory gene families

Chemosensory pathways in vector mosquitoes have been

extensively characterized through genomics and tran-

scriptomics studies in the last 10 years providing the sci-

entific community with comprehensive lists of olfactory

genes from An. gambiae, Ae. aegypti and C. quinquefas-

ciatus [38, 69–71, 74–77]. We have searched the

Table 3 PFAM enrichment in Ae. albopictus female antennae vs transcriptome

PFAM TERM PFAM DESCRIPTION N° PFAM Transcriptome N° PFAM FA UP 620 p value FDR

PF02949 7tm Odorant receptor 77 35 3.74E-116 1.62E-113

PF01395 PBP/GOBP family 111 23 2.56E-38 5.54E-36

PF00060 Ligand-gated ion channel 45 14 1.50E-33 2.16E-31

PF03028 Dynein heavy chain and region D6 of dynein motor 16 6 5.12E-16 5.54E-14

PF03148 Tektin family 9 4 1.48E-11 1.28E-09

PF00025 ADP ribosylation factor 17 4 3.92E-07 1.70E-05

PF04923 Ninjurin 17 4 3.92E-07 1.70E-05

PF13414 TPR repeat 29 5 6.95E-07 2.74E-05

PF00043 Glutathione S-transferase. C-terminal domain 12 3 1.81E-05 0.00052

PF00250 Forkhead domain 18 3 0.00057 0.01179

PF04415 Protein of unknown function (DUF515) 19 3 0.00084 0.01671

PF02497 Arterivirus glycoprotein 7 2 0.00089 0.01692

PF03392 Insect pheromone-binding family. A10/OS-D 20 3 0.00121 0.02198

Table 3. PFAM enrichment in Ae. albopictus female antennae vs transcriptome. Summary of Protein families statistically overrepresented in tissue-enriched

subset, FA-UP

Table 4 PFAM enrichment in Ae. albopictus female maxillary palps vs transcriptome

PFAM TERM PFAM DESCRIPTION N° PFAM Transcriptome N° PFAM FP UP 268 p value FDR

PF04923 Ninjurin 17 4 2.67E-16 1.32E-14

PF08395 7tm Chemosensory receptor 33 5 1.76E-14 6.96E-13

PF01395 PBP/GOBP family 111 8 1.27E-11 4.19E-10

PF01130 CD36 family 17 3 3.81E-09 1.08E-07

PF00650 CRAL/TRIO domain 40 4 8.93E-08 2.21E-06

PF06585 Haemolymph juvenile hormone binding protein (JHBP) 26 3 2.10E-06 3.77E-05

PF00188 Cysteine-rich secretory protein family 29 3 7.86E-06 0.00012

PF00106 short chain dehydrogenase 71 4 0.00015 0.00095

PF02958 Ecdysteroid kinase 51 3 0.00150 0.00663

PF00135 Carboxylesterase family 66 3 0.00815 0.02086

PF02949 7tm Odorant receptor 77 3 0.01891 0.04150

Table 4. PFAM enrichment in Ae. albopictus female maxillary palps vs transcriptome. Summary of Protein families statistically overrepresented in tissue-enriched

subset, FP-UP
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transcriptome profiles for genes with products that are

involved in sensory functions by blasting the contigs

against several databases (as, for instance, Invertebrate

and Diptera protein databases), as detailed in the

Methods section. We have also used published data-

sets of Ae. aegypti chemosensory genes as a query

(ORs: [69–71]; GRs [22, 69, 71]; IRs: [27, 69, 71];

OBPs: [38, 69, 71]) and a reciprocal BLASTP algo-

rithm to identify true orthologs in our Ae. albopictus

transcriptome. Finally, the lists were further extended

by manually guided reciprocal BLAST that allowed

including contigs showing high similarity over shorter

regions. Lists of 77 OBPs, 82 ORs, 60 IRs and 30 GRs

were obtained (Table 6 and Figs. 4-7). As detailed below,

several members of each family showed specific or

enriched abundance in one or both olfactory appendages

(Additional file 10: Table S1 and Figs. 3-7).

Odorant binding proteins

Taken together our RNA-seq analysis indicates that Ae.

albopictus transcriptome includes at least 77 OBPs carry-

ing amino acid signatures characteristic of several different

OBP sub-families and clusters as described in [38] (Fig. 4,

Additional file 11: Figure S3, Additional file 12: Figure S4,

Additional file 13: Figure S5, Additional file 14: Figure S6).

Accordingly, these could be classified as Classic OBPs

(32), PlusC OBPs (16) and Atypical OBPs (26). In addition,

3 OBPs could be classified as MinusC, lacking cysteines

C2 and C5 (Fig. 4). The evolution of the MinusC subfam-

ily in Holometabola is quite intriguing, since members of

this sub-group were found in the Drosophilidae, Bombyx/

Tribolium, and Apis lineages as well as in the genomes of

Ae. aegypti and C. quinquefasciatus but not in An. gam-

biae [38]. A possible link to the Atypical/Two domains

subfamily is provided by the observation that the

“matype2” group (name of this OBP cluster as defined in

[38]) is characterized by a first OBP-like domain lacking

C2 and C5 cysteines [38]. Four of the putative OBP

proteins identified (AalbOBP20/59-AALF005057, Aal-

bOBP25/24-AALF018602, AalbOBP26/23-AALF018601

and AalbOBP63/42-Ae2SigPSigP-217188_FR2_96–312)

show the same percentage of identity with multiple Ae.

aegypti OBPs. Moreover, two contigs (AALF022642 and

AALF020568) showing high sequence similarity with OBP

domains were unusually long and therefore have been

manually annotated. They were probably chimeric genes

wrongly built during the assembly step: the novel putative

sequences are reported in Additional file 15: Dataset S5.

The intensity range of OBP transcript abundance is

broad, spanning from 0 to 33,100 TPM. As expected,

most transcripts encoding Classic OBPs displayed

enhanced abundance in female antennae (heat map in

Fig. 4), while PlusC family members showed a less de-

fined profile with some OBP specifically enhanced in fe-

male palps (e.g. AalbOBP51 and AalbOBP70). Atypical

(Two domains) OBPs were generally expressed at low

levels in all samples analysed, with the only exception of

AalbOBP107, which is the only Atypical OBP with

TPM > 1. Classic and PlusC OBP transcripts were also

robustly abundant in male heads. Although our dataset

does not include female heads, which would give indica-

tion regarding non-chemosensory neuronal tissues, it is

likely that at least some of these proteins (especially be-

longing to the Classic sub-family) may be involved in

physiological processes and perhaps behaviours shared

between the two sexes (Additional file 10: Table S1).

Among contigs enhanced in the antennae, AALF023075

encodes for the putative homolog of An. gambiae OBP1

(AGAP003309, 78% identity) that was shown to mediate

the binding with the attractant indole [41]. Recent

Table 5 PFAM enrichment in Ae. albopictus male heads vs transcriptome

PFAM TERM PFAM DESCRIPTION N° PFAM Transcriptome N° PFAM MH UP 171 p value FDR

PF02931 Neurotransmitter-gated ion-channel ligand binding domain 29 3 5.56E-09 2.06E-07

PF00001 7 transmembrane receptor (rhodopsin family) 81 4 2.60E-06 1.48E-05

PF00400 WD domain. G-beta repeat 86 3 0.00216 0.00533

Table 5. PFAM enrichment in Ae. albopictus male heads vs transcriptome. Summary of Protein families statistically overrepresented in tissue-enriched

subset, MH-UP

Table 6 Chemosensory gene families

Transcriptome (33,846) Antennae (5060) Palps (5197) Male Heads (5055)

OBP 77 (68) 30 26 15

OR 82 (59) 52 11 3

IR 60 (43) 25 6 6

GR 30 (28) 2 4 0

Tot. 249 109 47 24

Table 6. Chemosensory gene families. In the column Transcriptome is reported the number of genes belonging to each chemosensory family identified in the

transcriptome upon manual and automated (in brackets) BLAST analysis. In the other columns (Antennae, Palps and Male Heads) are reported the number of

chemosensory genes in each enriched subset (see Table 2, threshold at FDR < 0.05)
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functional studies based on the analysis of binding affin-

ities for physiologically relevant compounds showed a cer-

tain degree of selectivity for a few mosquito OBPs, able to

preferentially carry certain ligands than others [39, 41, 78].

Taken together, the transcriptome profiles presented here

are consistent with previously published transcriptomic

datasets of Ae. aegypti palps [69] and antennae [71, 79]. A

total of 28 OBPs were previously described in Ae. albopic-

tus [80–82] and are summarized in Additional file 16:

Table S2. A comprehensive list of Ae. albopictus putative

OBP (86) was predicted from the genome sequence and

validated by RNA-seq analysis of developmental stages

[62]: a detailed comparison with OBP from our transcrip-

tome is reported in Additional file 17: Table S3.

Odorant receptors

Our analysis identified 82 contigs encoding putative ORs

in the combined transcriptome profile of Ae. albopictus

chemosensory tissues. Within a threshold of TPM > 3 in

at least one sample, 49 OR transcripts may be classified

into three broad categories. Most ORs (39) are enriched

in the female antennae (using as sorting criteria, those

with TPM > 3 in the antennae, TPM < 3 in the other tis-

sues and at least 10-fold TPM increase in the antennae

compared to palps and/or male heads). Among these,

the homologue (79% identity) of AaegOR4 was identified

in Ae. albopictus and showed a comparable intensity and

specificity of expression in the female antennae [71, 79].

Recent studies in Ae. aegypti found AaegOR4 enriched

in the antennae of Ae. aegypti mosquitoes with an

anthropophilic host preference therefore suggesting this

OR could play an important role in establishing that im-

portant behavior [19]. A second group comprising 6

ORs displayed a more ubiquitous abundance profile and,

not surprisingly, this includes the transcript for the obli-

gate ORco co-receptor that is expressed in all ORNs

where it is required for establishing functional OR-

complexes [6]. Finally, three ORs (AalbOR8, AalbOR49

and AalbOR91) are highly enriched if not specific to Ae.

albopictus maxillary palps Fig. 3 and Fig. 5, which aligns

to similar patterns already described for their orthologs

in An. gambiae [24, 83] and Ae. aegypti [69]. Indeed,

homologues of AalbOR8 show enhanced expression

profiles in Ae. aegypti and An. gambiae maxillary palps,

as the homologue of AalbOR49 in Ae. aegypti is similarly

enriched in the palps [24, 69]. In An. gambiae AgOR8 is

expressed in maxillary palp OSNs that are highly sensi-

tive to 1-octen-3-ol [24], a chemical component

contained in human breath and sweat, one of the factors

responsible for the attraction to human host. Interest-

ingly, Ae. albopictus mosquitoes are similarly attracted

by 1-octen-3-ol [84].

Beyond these, 25 contigs encode putative ORs that

display low sequence identity (< 70%) with cognate Ae.

aegypti orthologs; some of these may be novel Ae.

albopictus receptors resulting from gene duplication

and subsequent evolutionary divergence. As in Anoph-

elines [85], the rapid gain (and loss) of ORs that belong

to chromosomal gene clusters is a hallmark of species-

specific evolution. This can be inferred especially when

multiple putative Ae. albopictus orthologs (with more

than ~70% identity) are found by BLASTP searches

using the same Ae. aegypti OR as query, and quite a

few examples (9 AAELxxxxxx queries match with

more than one AALFxxxxxx/contig) can be found in

Fig. 5. Among these, Ae. aegypti OR61 (AAEL017277)

identifies 4 putative homologs in the Ae. albopictus

transcriptome (Additional file 18: Figure S7). However,

only AALF018937/AalbOR61 was relatively abundant

(5 < TPM < 80) in all samples analysed and may be

considered the true ortholog of AaegOR61 also in view

of the higher identity (79%). The remaining three

(AALF018936/AalbOR61-N1, AALF003919/Aal-

bOR61-N2 and AALF003920/AalbOR61-N3) are most

likely the result of gene duplication, show lower tran-

script abundance (5 < TPM) in all samples and their

possible role needs further investigation. A similar

situation is found for AaegOR70 (AAEL001224) with

two hits in the Ae. albopictus transcriptome: (i)

Ae2SigPSigP-43314_FR6_155–284/AalbOR70, which is

rather abundant in all samples and shows higher iden-

tity (79%) to AaegOR70 and (ii) AALF019061/Aal-

bOR70-N1, which is enriched in female antennae and

shares 64% identity with AaegOR70.

Further studies will be necessary to validate the hy-

pothesis that gene duplication events took place in the

Ae. albopictus OR gene families. Antennal transcrip-

tomic analysis of two sibling Anophelinae species with

different feeding behaviour showed that while their OR

repertoires were highly conserved, the rates of evolution

of each chemosensory gene family were more rapid than

the genomic background and, importantly, there were

species-specific shifts in OR transcriptome profiles [86].

Moreover, while there is an overall conservation in OR

gene numbers among 16 anophelinae species, probably

because of their role in several critical behaviours,

(See figure on previous page.)
Fig. 4 Odorant binding proteins (OBPs) in Ae. albopictus transcriptome. Left panel, abundance profile map: intensity scale (color gradient from
blue to yellow indicates levels from high TPM to low) as indicated at the bottom. FA, female antennae; FP, female palps; MH male heads and FB,
female body. Assigned OBP names, ID in Ae. albopictus (VectorBase ID AALFxxxxxx when available or contig ID in the transcriptome), number of
cysteines, OBP subfamily, name and ID of the presumed Ae. aegypti ortholog and percentage of identity are reported
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numerous examples of gene gain and loss in specific

anophelinae lineages were noted, reflecting the import-

ance of ORs in the functional divergence and acquisition

of novel features in the evolution of different behavioural

traits (feeding behaviour, mating, oviposition site choice,

etc.) [85]. A few Ae. albopictus ORs have been previously

characterized: the female antennae-specific AalOR2 [87]

renamed as AalbOR2 in this study, the Ae. albopictus

ORco co-receptor and a subset of tuning AalbORs

already published [88]. Moreover, a list of predicted OR

was deduced from the genome sequence and validated

by RNA-seq analysis of developmental stages [62]: the

comparison with OR described in our transcriptome is

shown in Additional file 17: Table S3.

Ionotropic receptors

Sixty contigs encoding putative Ae. albopictus IRs (Aal-

bIRs) were identified, most of which enriched in female

antennae (Fig. 3 and Fig. 6). Setting the threshold at

TPM > 3 in at least one tissue, 29 putative AalbIRs could

be identified. Among these 15 AalbIRs are either specific

to the female antennae or display at least a 10-fold in-

crease in raw TPM when compared to male heads and

female palps. A second group of at least 8 AalbIRs

showed similar abundance in most if not all samples

analysed and, not surprisingly, they include the Ae. albo-

pictus orthologs of IR25a and IR8a which were shown to

act as IR co-receptors in both Drosophila [28, 89–91]

and more recently An. gambiae (Pitts et al. 2017). It is

worth noticing that IR25a and IR8a transcripts are

highly abundant in antennae and/or maxillary palps of

Ae. albopictus, Ae. aegypti and An gambiae mosquitoes

[69, 71, 83]; instead in Culex quinquefasciatus while

IR8a was found the most abundant IR expressed in the

antennae [92], IR25a was absent [93]. Finally, AalbIR76b,

which is the homologue of the third IR co-receptor

IR76b, recently shown to be required to detect the smell

and taste of polyamines in the fruit fly [31], is only mod-

erately abundant in the Ae. albopictus female antennae.

In contrast, IR76b is expressed at high levels in both An.

gambiae antennae and maxillary palps [74, 94], in the

antennae, palps and labellum of Ae. aegypti [69, 71, 79],

as well as is found enriched in the antennae of C.

quinquefasciatus [93].

Beyond these co-receptors, thirteen members of the

IR41 sub-family of receptors are found in the transcrip-

tome, with most of them (11/13) showing an enriched

presence in the antennae sample. IR41a and IR41c have

been recently shown to bind the heterocyclic amine pyr-

rolidine in An. gambiae [29]. Moreover, studies in the

fruit fly demonstrated that IR41a, co-expressed with

IR76b, mediates odour attraction, detecting polyamines

present in fruits and in specific oviposition sites [31].

Interestingly, polyamines are also responsible for the

attraction of Ae. aegypti mosquitoes to egg-laying sites

[31].Two putative orthologs of AgIR41a are found in Ae.

albopictus, AALF009939 (AalbIR41a.1) and Ae2–

248,662 (AalbIR41a.2) showing 56% and 44% identity,

respectively. Another possible gene duplication event

may be described for IR41p.1, which is encoded by two

genes in Ae. aegypti: AAEL000063 and AAEL018060. In

Ae. albopictus, AalbIR41p.1 (AALF024315) shows a good

level (77%) of identity with Ae. aegypti AAEL000063

(Fig. 6 and Additional file 19: Figure S8) and presents a

weak expression profile (only in male heads TPM > 1).

AAEL018060 has two putative orthologs in Ae. albopic-

tus, showing different expression profiles: AALF009945

(AalbIR41-like1) that is specifically expressed only in fe-

male antennae (TPM = 8,82 and TPM < 1 in the other

tissues) and AALF026946 (AalbIR41-like2) that is spe-

cific of both female antennae and palps. Other putative

gene duplication events were found while using the Ae.

aegypti AaegIR111.2 (AAEL003249) as query to search

our transcriptome. Indeed, five Ae. albopictus homologs

(58 to 66% identity) expressed at low abundance in ol-

factory organs (TPM < 1) and four of which arranged in

cluster were identified in our olfactory transcriptome

(Fig. 6, Additional file 20: Figure S9B). Moreover, as

shown in Additional file 20: Figure S9A (from Vector-

Base), ten putative Ae. albopictus homologues of

AaegIR111.2 and of the 75% identical AAEL018094 are

predicted by the Comparative Gene Tree tool in Vector-

Base (VBGT00730000019944). Finally, another example

of genetic cluster rearrangement was analysed in detail

for IR7. In Ae. albopictus, at least 10 contigs belonging

to the IR7 family were found. They show a generally

weak expression profile; seven of these are clustered in a

~50 kb region and careful analysis indicated that two

additional family members with no evidence of expres-

sion may be part of the same cluster (Additional file 21:

Figure S10). Comparison to the Ae. aegypti genomic

scaffold containing the IR7 cluster reveals a certain de-

gree of gene shuffling among family members previously

annotated in Ae. aegypti, with six orthologs identified in

(See figure on previous page.)
Fig. 5 Odorant receptors (OR) in Ae. albopictus transcriptome. Left panel, abundance profile map: intensity scale (color gradient from blue to
yellow indicates levels from high TPM to low) as indicated at the bottom. FA, female antennae; FP, female palps; MH male heads and FB, female
body. OR name and Ae. albopictus ID columns indicate respectively the name assigned to OR in Ae. albopictus and the ID (VectorBase ID
AALFxxxxxx when available or contig ID in the transcriptome). Ae. aegypti OR name ID columns list the OR name in Ae. aegypti and the
VectorBase code (AAELxxxxxx) of Ae. aegypti orthologs, respectively, with the percent (%) of identity reported in the last column
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a 100 kb region (Additional file 21: Figure S10 and

Additional file 15: Dataset S5).

Gustatory receptors

We identified 30 distinct contigs encoding putative GR

in the transcriptome of Ae. albopictus two of which

(AalbGR20 and AalbGR63) are modestly abundant

across all samples. Furthermore, as expected, three puta-

tive GRs (AalbGR1, AalbGR2 and AalbGR3) which are

orthologous to a triad of GRs expressed in the maxillary

palp of An. gambiae [24] and Ae. aegypti females [69]

were similarly differentially abundant in the palps of Ae.

albopictus female (Fig. 3 and Fig. 7). Functional studies

revealed a central role of both AaegGR1 and AaegGR3

in the perception of CO2 [25, 26] which plays a crucial

role in mosquito perception of both heat and the attract-

ant lactic acid in Ae. aegypti thus supporting the hypoth-

esis that multimodal integration of CO2, heat, and

odours mediates host-seeking and blood-feeding behav-

iour [26]. The high degree of identity of AalbGR1 and

AalbGR3 with their Ae. aegypti homologues (86% and

91%, respectively) along with data from field studies re-

vealing that Ae. albopictus mosquitoes respond to attrac-

tants l-octen-3-ol (octenol) and L-lactic acid [84], lead

us to hypothesize that AalbGR1 and AalbGR3 are likely

to be components of Ae. albopictus maxillary palp CO2

receptor complex. In addition, only a single putative GR

(AalbGR58) was found to be specifically expressed and

relatively abundant (TPM > 3) in Ae. albopictus female

antennae. Three other GRs (AalbGR20, AalbGR35 and

AalbGR63) showed an ubiquitous presence in different

samples of the mosquito. According to recent transcrip-

tomic catalogues, homologues of these three receptors

were not transcriptionally active in antennae and palps

of Ae. aegypti mosquitoes [69, 71]. Sequence homology

among these seven abundant GRs spans between 5.9

and 37%, as reported in Additional file 22: Table S4.

Other contigs overexpressed in sensory organs

In addition to the OBP, OR, IR and GR gene families,

which are often labeled as the “main chemosensory com-

ponents”, several contigs encoding putative proteins in-

volved in olfaction are found among those differentially

expressed in antennae and palps (FDR < 0.001, Fig. 8).

Contigs encoding for putative odorant and pheromone-

degrading enzymes (ODEs and PDEs), that play essential

roles in clearing sensillar lymph, were identified. Among

these, members of four relevant subfamilies were found:

(i) cytochrome P450 (CYPs), with 8 and 2 contigs in the

antennae-and palps-specific clusters, respectively [95,

96]; (ii) esterases (ESTs) with 1 contig in the antennae-

and 3 contigs in the palps-specific clusters [97, 98]; (iii)

hydroxysteroid dehydrogenases (HSD), also involved in

the degradation of hormones [99], with 3 and 4 contigs

in the antennae- and palps-specific clusters, respectively;

(iv) glutathione S-transferase (GST), which has also been

implicated in odorant clearing and degradation pathways

[100, 101] and, according to TPM values, it is one of the

most abundant contigs in the antennae-enriched list. It

is worth mentioning that insect GSTs are generally

involved in the protection against oxidative stress,

detoxification of both endogenous and xenobiotic com-

pounds and are also entailed in intracellular transport,

biosynthesis and metabolism of hormones. Moreover, a

crucial role of insect GSTs in insecticide resistance was

also proved [102, 103].

Beyond ODEs/PDEs other contigs were found signifi-

cantly enriched in antennae and palps. One of the most

abundant female antennal contig is AALF015401, which

encodes a conserved secreted protein whose putative

ortholog in An. gambiae (AGAP007976) is also antennae-

specific and encodes a protein with as yet no function. An-

other antennae-enriched contig (AALF007737) encodes

for a putative peptide showing similarity with antennal car-

rier protein AP-2 [104]. Finally, several additional

antennae-enriched contigs coded for putative cuticular

proteins [105], core cytoskeletal components (dynein

heavy chains), juvenile hormone-inducible protein and

hemolymph juvenile hormone binding protein. Some of

the ODEs (esterases, cytochrome P450) as well as juvenile

hormone-inducible proteins were among the most abun-

dant contigs found in the palps. Moreover, AALF013835

that encodes for a potassium/sodium hyperpolarization-

activated cyclic nucleotide-gated channel (HCN) showed

high and specific expression in Ae. albopictus palps where,

in light of the odorant-gated ion channel based activity of

insect chemosensory neurons, it likely plays a modulatory

role in maintaining neuronal membrane potential (and

therefore action potential frequency) [106]. Finally, contigs

encoding for proteins possibly involved in immune defense

mechanisms were found in both antennae- and palps-

specific clusters. In particular, palps-specific contigs

(See figure on previous page.)
Fig. 6 Ionotropic receptors (IR) in Ae. albopictus transcriptome. Left panel, abundance profile map: intensity scale (color gradient from blue to
yellow indicates levels from high TPM to low) as indicated at the bottom. FA, female antennae; FP, female palps; MH male heads and FB, female
body. IR name and Ae. albopictus ID columns indicate respectively the name assigned to IR in Ae. albopictus and the ID (VectorBase ID
AALFxxxxxx when available or contig ID in the transcriptome). Ae. aegypti IR name and ID columns list the IR name in Ae. aegypti and the
VectorBase code (AAELxxxxxx) of Ae. aegypti orthologs, respectively, with the percent (%) of identity reported in the last column
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encoding for leucine rich repeats protein (LRR,

AALF017691), prophenoloxidase (PPO, AALF012718),

cecropin C (CEC, Ae2SigPSigP-213035_FR1_18–90), and

for a member of the nimrod family (AALF007372) were

identified.

Genes involved in other sensory modalities

In addition to the sensory genes described so far, several

other protein families play crucial roles in insect sensing

of the external environment. These proteins are involved

in different physiological pathways such as mechanosen-

sation, thermosensation, perception of taste, light, hu-

midity and gravity, sound detection and other forms of

stimuli. A selection of these sensory genes and their

abundance profiles is shown in Fig. 8, that highlights

also their wide functional overlap, with members of a

gene family often involved in more than one perception

pathway (see ppk family members taking part to both

mechano- and taste/chemo-perception). We will de-

scribe some of the most relevant protein families

involved in i) taste- and chemo-perception, ii) mechano-

sensation and iii) thermosensation.

Chemo- and taste-perception

Members of the CheA/CheB gene family are small and se-

creted proteins mainly involved in perception of chemical

stimuli and most of them interact with ppk channels.

Using a list of 10 Ae. aegypti CheA and 3 CheB se-

quences [69, 79] we have identified 17 Ae. albopictus

contigs. Of these, only 3 CheA/B transcripts

(AALF012531, AALF021726 and Ae2-204624_FR6_8–

206) display TPM > 1 in antennae and/or palps. In par-

ticular, AALF021726 (orthologs of AAEL012061) is by

far the most abundant (TPM > 10) and specific CheA of

female antennae, differently from its Ae. aegypti

ortholog (TPM < 1 in the antennae, [71]). Ae2-

204624_FR6_8–206 (ortholog of AAEL009978, very

scarce in Ae. aegypti antennae, TPM < 1) is abundant in

female antennae (TPM = 3.6) and to a lesser extent in

the palps (TPM = 1.0) (Fig. 8 and Additional file 23:

Table S5). Both CheA/CheB are highly expressed in the

Fig. 7 Gustatory receptors (GR) in Ae. albopictus transcriptome. Left panel, abundance profile map: intensity scale (color gradient from blue to
yellow indicates levels from high TPM to low) as indicated at the bottom. FA, female antennae; FP, female palps; MH male heads and FB, female
body. GR name and Ae. albopictus ID columns indicate respectively the name assigned to GR in Ae. albopictus and the ID (VectorBase ID
AALFxxxxxx when available or contig ID in the transcriptome). Ae. aegypti GR name and ID columns list the GR name in Ae. aegypti and the
VectorBase code (AAELxxxxxx) of Ae. aegypti orthologs, respectively, with the percent (%) of identity reported in the last column
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tarsi of Ae. aegypti mosquitoes [23] and at a lesser ex-

tent in maxillary palps [69]. Moreover, orthologs of

AALF021726 and Ae2-204624_FR6_8–206 in Ae.

aegypti mosquitoes are the most abundant members of

CheA and CheB expressed in the labella [23]. The third

member of Ae. albopictus CheA family (AALF012531),

putative ortholog of AAEL004928, was found expressed

in female antennae and male heads.

Members of the pickpocket gene family (degenerin/epi-

thelial Na+ channel, DEG/ENaC) and members of the

trp family (transient receptor potential channels) are as-

sociated with taste perception, photo-, thermo-, and

mechanoreception [46]. In mosquitoes, maxillary palps

and proboscis are head appendages that along with the

tarsi and labella play an essential role in gustatory path-

ways [23, 69, 79, 107]. We have identified 18 ppk

Fig. 8 Abundance profiles of sensory genes in Ae. albopictus. Abundance profile map: intensity scale (color gradient from blue to yellow indicates
levels from high TPM to low) as indicated at the bottom. Gene name and contig ID (VectorBase codes when available) are also reported
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receptors in the Ae. albopictus transcriptome (Additional

file 23: Table S5). Of these, 5 contigs have a TPM value

>1 (Additional file 23: Table S5) in at least one sensory

appendage library, with two abundance patterns: i) con-

tigs enhanced in antennae vs palps (AALF023313,

AALF023314 and AALF008757); ii) contigs that are

more abundant in female maxillary palps than antennae

(AALF005496 and AALF014432).

SNMPs belong to the scavenger receptor type B gene

family (SCRB/CD36) [32, 33], are involved in a more

wide range of functions. Using 13 Ae. aegypti putative

SCRB genes as query we identified 12 putative orthologs

(identity >73%) in Ae. albopictus. SNMP1 was strongly

enhanced in female antennae, while SNMP2 showed a

more ubiquitous expression profile (Additional file 23:

Table S5 and Fig. 8) as also reported in Ae. aegypti [79].

Among the 11 other SCRBs found in Ae. aegypti sensory

organs [69], we identified 10 orthologs in Ae. Albopictus.

Overall, they are abundantly expressed in head chemo-

sensory appendages, with SCRB5 and SCRB6 highly

enriched in maxillary palps (TPM = 923 and TPM = 40,

respectively), similarly to Ae. aegypti [71]. The exact role

of these proteins in head organs is unknown, however,

they are well conserved among most insect species and

may also have non-chemosensory roles [34].

Thermosensation

Several members of the TRP gene family, composed by

13 genes belonging to 7 subfamilies, are involved in

temperature perception and other aspects of insect be-

haviour, including avoidance of noxious heat/odorants/

tastants [46]. Noxious heat perception is most likely car-

ried out by antennae as reported in Ae. aegypti [108]

and An. gambiae [48]. TRPA1 is a heat-activated channel

expressed in thermosensitive sensilla of An. gambiae fe-

male antennae [48]. We have identified TRPA1 ortholog

in Ae. albopictus and several contigs with high level of

similarity to other Ae. aegypti TRP family members.

Painless (another TRPA family member) also associated

with avoidance of dry climates and mechanosensory

stimuli was shown to be expressed in Ae. albopictus an-

tennae and palps. Finally, we have identified the putative

homolog of Ae. aegypti TRPA family gene pyrexia in Ae.

albopictus transcriptome albeit with low level of abun-

dance in sensory organs.

Members of rhodopsin family of GPCRs (G protein–

coupled receptors) are known to play a central role in pho-

toreception (vision) [6], however, they may be also involved

in the perception of temperature, since an overlap between

genes involved in light detection and in temperature dis-

crimination is known in insects [109]. Most of the Ae.

albopictus GPROP family members are highly abundant in

male heads, as expected with their main role in vision.

GPROP1 and GPROP2 are also highly abundant in female

antennae and palps (Additional file 23: Table S5), whereas

only basal levels were observed for other members of the

family (GPROP3, GPROP5, GPROP8 and GPROP9). The

arrestin family is a small group of genes involved in the

termination and desensitization of GPCR-based transduc-

tion as well as a range of downstream cellular signalling

pathways [110]. We identified Ae. albopictus arrestin1 and

arrestin2 genes, that, as expected, were overexpressed in

male heads, which likely reflects their role in the omma-

tidia of insects where they have been shown to quench the

photo response by directly interacting with photo-

activated rhodopsin GPCRs [111, 112]. Arrestin1 and

arrestin2 have also been characterized in olfactory tissues

of both Drosophila and An. gambiae [113], and are not

surprisingly detected also in the maxillary palps of Ae.

aegypti mosquitoes [69], providing a rationale for our

detection of the Ae. albopictus ortholog for arrestin1

expression in female palps and antennae.

Mechanosensation

Transduction of mechanical stimuli plays an essential

role in many aspects of mosquito life cycle that include

hearing, touch and pain sensitivity [6]. Ae. albopictus

piezo, an evolutionarily conserved transmembrane pro-

tein involved in mechanosensory transduction in Dros-

ophila [51] is relatively abundant in antennae (Fig. 8 and

Additional file 23: Table S5). In Ae. albopictus, tran-

scripts encoding for both piezo and the TRP channel

painless are indeed abundant not only in antennae but

also in female bodies, suggesting that they are also part

of sensory neurons located in mosquito antennae. Other

genes that have been implicated in mild touch detection

appear to be specific both of female antennae, such as

nompC, and of male sensory appendages of the head,

such as Nmdar1. In our study, Narrow abdomen appears

enhanced presumably in the antennae of both sexes,

while Cicb is ubiquitous. Sound detection in D. melano-

gaster requires the TRPV channels encoded by Nan-

chung (Nan), inactive (Iav) and nompC [114] that are

abundantly expressed in many head appendages [46].

Similarly to abundance profiles in Ae. aegypti [69, 71],

we observed robust abundance of these genes in Ae.

albopictus female antennae but not in maxillary palps, a

pattern only partially overlapping with data from An.

gambiae, where Nanchung and inactive are believed to

play a role in the capacity of male antennae to detect fe-

male wing beats during mating swarms [83, 115].

qPCR validation

To validate the transcriptome profiles obtained by RNA-

seq analysis, we have selected 11 genes belonging to the

four main chemosensory families for analysis by quanti-

tative real time PCR. The study was performed using in-

dependent, duplicate RNA samples extracted from
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female antennae and maxillary palps. Targets were

chosen so as to include those with high, medium or low

abundance levels in the different tissues based on our col-

lective RNA-seq analysis. Four OBPs (AalbOBP36, Aal-

bOBP47 and AalbOBP83, all of them highly enriched in

the antennae, and AalbOBP27, expressed at the same high

level – TPM> 500 – in both tissues), two ORs (AalbOR8

and AalbOR84, showing a slight enhancement of expres-

sion in palps and antennae, respectively), the ubiquitously

abundant ORCO, two GRs (the palps-specific AalbGR3

and AalbGR58, that shows a weak – TPM< 10 – but spe-

cific expression in the antennae) and finally, two ubiqui-

tous IRs, the abundant AalbIR25a and the weakly

expressed AalbNMDAR1. Correlation studies indicate sta-

tistically significant (P < 0.01) linear relationships between

datasets obtained from the two methods for both anten-

nae and palps samples (Fig. 9). Several parameters might

influence both methods, determining discrepancies and

variability among abundance profiles. Even though the

correlation between the two techniques is strong, a few

differences can be highlighted and could provide valuable

new information. In particular, it is worth mentioning

AalbGR58 expression in antennae, detected at low level by

RNA-seq (TPM< 10) while revealed abundant and

specific by qPCR (Additional file 3: Figure S11).

Conclusions
We present the RNA-seq generated transcriptome

profiles of the main sensory appendages of the tiger

mosquito Ae. albopictus. This study provides a tissue-

specific survey of transcript abundance in adult Ae. albo-

pictus sensory organs, providing the community with a

first catalogue of annotated chemosensory genes. We

have analyzed antennae and maxillary palps of female

mosquitoes, male heads and whole female bodies as

reference samples for differential expression studies.

Around 350 putative proteins were classified in several

functional families involved in mosquito olfaction and

more generally in the perception of the surrounding en-

vironment. Our analysis also provided an important con-

tribution for the improvement of genome annotation

since most of the transcripts/proteins were manually an-

notated to describe molecular features and gene clusters

were verified on released genomic scaffolds. In addition,

Ae. albopictus chemosensory genes belonging to OBP,

OR, IR and GR gene families were compared to homolo-

gous groups of genes identified in other mosquito spe-

cies such as the malaria mosquito An. gambiae, the

southern house mosquito C. quinquefasciatus and, in

particular, the dengue and yellow fever mosquito Ae.

aegypti. The comparison allowed identifying bona fide

orthologs, pointing out differences in sequence and gene

abundance as well as highlighting cases of gene gain/

loss. Indeed, variation in abundance of olfactory/sensory

genes between Ae. aegypti and Ae. albopictus may pro-

vide a first starting point to study and better understand

physiological and behavioral differences between these

two mosquito species.
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