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Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following

infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst

COVID-19 disease is most serious in patients with significant co-morbidities, the reason

for healthy individuals succumbing to fulminant infection is largely unexplained. In

this review, we discuss the most recent findings in terms of clinical features and

the host immune response, and suggest candidate immune pathways that may be

compromised in otherwise healthy individuals with fulminating COVID-19. On the basis

of this early knowledge we reason a potential genetic effect on host immune response

pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding

these pathways may help not only in unraveling disease pathogenesis, but also in

suggesting targets for therapy and prophylaxis. Importantly such insight should instruct

efforts to identify those at increased risk in order to institute preventative measures, such

as prophylactic medication and/or vaccination, when such opportunities arise in the later

phases of the current pandemic or during future similar pandemics.

Keywords: SARS-coronavirus 2, host immune defenses, immunopathology, innate immunity, primary

immunodeficiency, whole exome sequencing

INTRODUCTION

In late December 2019, several cases of acute respiratory distress syndrome (ARDS) were
reported across several provinces in China, and by March 2020, the World Health Organization
(WHO) declared the current outbreak a global pandemic (1, 2). Six zoonotic coronaviruses are
known to have the capability to cause respiratory disease in humans. The human coronaviruses
(HCoV) 229E, NL63, OC43, and HKU1 are identified as weakly pathogenic, causing mild
upper respiratory disease (3). However, during the last two decades, public health has been
threatened by two highly pathogenic coronaviruses, including severe acute respiratory syndrome
coronavirus (SARS-CoV) in 2002, and Middle-East respiratory coronavirus, (MERS-CoV) in
2012 (4). The 2019/20 outbreak was rapidly identified to be caused by a new member of the
coronavirus family, namely SARS-CoV-2. This virus spreads by human-to-human transmission
and early observational data has suggested a reproductive number of 2.2 days. Together with
a mean incubation time of 5.2 days, SARS-CoV-2 has the ability to spread widely among
humans (5). As of April 2020, ∼8.9 million cases of coronavirus diseases (COVID-19) and
465,740 deaths have been reported globally according to the WHO. Whilst the majority
of deaths have been of elderly individuals or patients with underlying health conditions,
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a small number of young and healthy people have also succumbed
to fulminant infection. In these rare cases, host genetics may
provide some explanation for failure to control SARS-CoV-
2 infection.

Primary immunodeficiencies (PIDs) are a group of genetically
determined diseases predisposing individuals to severe infection,
immune dysregulation, autoimmunity and malignancy (6, 7).
There is increasing evidence that the extreme variability in the
clinical outcome of infections can often be influenced by the
germ line genetics of the human host (8). Such monogenic
inborn errors of immunity predispose to a narrow or broad range
of viral infections (6, 9, 10). Examples include herpes simplex
virus encephalitis and defects in the TLR3 pathway and RNA
metabolism (9, 11, 12), varicella-zoster virus and defective innate
RNA POL III signaling (13–15), severe influenza and defects
in IRF7 (16), IRF9 (17), TLR3 (18), GATA2 (19), and RIG-
I (20), rhinovirus infection and MDA5 (21), papillomaviruses
and mutations in EVER1/2 (22), EBV lymphoproliferation and
malignancy in the case of defects in SH2D1A (23), CD27,
CD70 (24), XIAP (25), ITK (26), and MAGT1 (27), fatal CMV
infection in NOS2 deficiency (28), and finally disseminated
infection with measles vaccine strain virus in IFNAR and
STAT2 deficiency (29, 30). In this review, we aim to discuss
the most recent findings in terms of the innate and adaptive
immune response to SARS-CoV-2, and draw on knowledge
from the previous SARS-CoV and MERS-CoV outbreaks where
relevant. This knowledge should enable us to speculate and
to suggest essential antiviral pathways that may be defective
in individuals at increased risk of severe COVID-19 and
thus suggest genetic etiologies which may predispose otherwise
healthy individuals without comorbidities to severe SARS-CoV-
2 infection.

CLINICAL PRESENTATIONS OF COVID-19

The severity of COVID-19 is extremely variable, with some
individuals reporting almost no symptoms, whereas others
become critically ill requiring intensive care and respiratory
ventilation (31–33). The frequency of asymptomatic infections
is yet to be determined and the differentiation between those
and pre-symptomatic cases should be considered (34, 35). In
the largest case report of 44,672 confirmed cases of COVID-
19 described by the Chinese CDC, an overall case fatality rate
(CFR) of 2.3% was calculated (36). However, the mortality rates
vary widely between different ages. No deaths were reported
in children <9 years old, but the CFR increases to 14.8%
in the 80+ age group. In critical cases requiring ventilator
support in the ICU, a CFR of 49–61% was reported (36). Whilst
severe disease outcomes have been reported in otherwise healthy
individuals of any age, several risk factors are recognized that
lead to a more critical disease course; these include old age,
hypertension, diabetes, obesity, cardiovascular, pulmonary, and
cerebrovascular disease (37).

COVID-19 initially presents with non-specific signs and
symptoms of upper airway viral infection characterized by fever,
fatigue, cough, and dyspnoea, as well as anorexia, myalgia, and

productive sputum, which can develop to pneumonia (32, 38).
Intriguingly, patients are increasingly reporting anosmia and
dysgeusia, the loss of smell and taste, reflecting some neurological
effect of SARS-CoV-2 (39), which has subsequently been
confirmed by several reports of central and peripheral nervous
system manifestations, with meningitis, encephalitis, myelitis,
andGuillain-Barre syndrome presenting as components of severe
COVID-19 (40, 41). In this context, respiratory failure has been
hypothesized to be partly neurogenic in origin and possibly
resulting from viral invasion of cranial nerve I into brainstem
respiratory centers (41). Gastrointestinal symptoms, particularly
nausea, vomiting, and diarrhea, are commonly described (42).
In the most critical cases, widespread lung inflammation can
lead to acute respiratory distress syndrome (ARDS), which often
necessitates mechanical ventilation or extracorporeal membrane
oxygenation (ECMO) to prevent total respiratory failure (43).
Recent studies have demonstrated an extensive tendency for
coagulopathy, thrombosis, micro-thrombosis, and disseminated
intravascular coagulation during severe COVID-19 (44, 45)
which is reflected in elevated fibrin and D-dimer levels during
disease (46). Furthermore, a significant fraction of deceased ICU
patients have pulmonary thrombosis or deep vein thrombosis as
revealed by autopsy results (47).

Several clinical and immunological studies have suggested
that excessive inflammation and a cytokine storm play a key
role in the immunopathology, responsible for much of the lung
damage, morbidity andmortality in patients with severe COVID-
19 in ICUs (48–50). This concept opens up the possibility
that medical treatments that dampen immune activation may
represent an important strategy in treating this disease and
decreasing the high mortality (51, 52). Finally, there is emerging
evidence that some infants and children have presented with a
clinical picture of auto-inflammation and vasculitis, diagnosed
as atypical Kawasaki’s disease (53), a rare disease entity causing
systemic inflammation, fever, and vasculitis with a risk of
developing aneurisms. This inflammatory condition associated
with a previous SARS-CoV-2 infection has been named Pediatric
Multisystem Inflammatory Syndrome temporally associated with
SARS-CoV-2 (PIMS-TS) (54).

SARS-CoV-2

Coronaviruses are enveloped, positive-sense, single-stranded
viruses that contain the largest genome amongst RNA viruses
(27–32 kb) (55, 56). SARS-CoV-2 belongs to the Betacoronavirus
genera, based on its phylogenetic relationship with other
Betacoronaviruses, such as SARS-CoV and MERS-CoV (57, 58).
Whilst SARS-CoV-2 shares 79% nucleotide sequence identity
with SARS-CoV, Zhou et al. reported the SARS-CoV-2 sequence
to be 96.2% identical to the sequence of the horseshoe bat
coronavirus, RaTG13, suggesting that SARS-CoV-2 originates
from this bat species (58). An intermediate animal host between
horseshoe bats and humans, as well as the transmission route, has
yet to be identified in the SARS-CoV-2 pandemic (59). However,
the most prevalent hypothesis is that the virus acquired one or
several mutations allowing it to cross species barriers and infect
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human cells some time in autumn 2019, a few months before the
beginning of the current pandemic (60).

Like other coronaviruses, the major structural proteins of
SARS-CoV-2 include the envelope (E), membrane (M) and spike
(S) proteins (61). In the earlier SARS-CoV epidemic, the S

protein was shown to facilitate cellular entry by binding to
the angiotensin-converting enzyme 2 (ACE2) receptor present

on target cells (62). In addition, the cellular serine protease

transmembrane protease serine 2 (TMPSS2) is needed for
priming of the S protein and subsequent fusion of SARS-

CoV with the host cell membrane (63, 64). Furthermore,
overexpression of ACE2 enhances disease severity in mice upon

SARS-CoV infection, indicating the importance of this receptor

in facilitating viral entry (65). Several studies have shown that
the S protein of SARS-CoV-2 also uses ACE2 and TMPRSS2 for
cell entry, and that the SARS-CoV-2 S protein is able to bind to
ACE2 with 10- to 20-fold higher affinity than the SARS-CoV
S protein (66–69). Furthermore, ACE2 is highly expressed by
type II alveolar epithelial cells (70, 71) which correlates with the

pulmonary symptoms of COVID-19 (32). However, ACE2 is also
highly expressed by intestinal, heart, kidney and bladder cells
(71, 72). This pattern of cellular ACE2 expression may explain
some of the non-respiratory symptoms and complications that
SARS-CoV-2 patients exhibit, such as diarrhea, kidney failure and
cardiac injury (32, 73).

INNATE IMMUNE RESPONSES TO
SARS-CoV-2

The innate immune response is the first line of defense against a
wide range of pathogens, particularly viruses. Importantly, viral
infection induces type I interferons (IFN) (IFNα/β) and type
III IFNs (IFN-λ), which activate hundreds of antiviral proteins
as well as mediate priming the adaptive immune response
(Figure 1). Coronaviruses, and their nucleic acid genome and
replication intermediates in particular, are recognized primarily
by two groups of pattern recognition receptors, namely the
Toll-like receptors (TLRs) and the retinoic acid inducible

FIGURE 1 | Induction of interferons (IFN) and signaling by the type I and III IFN receptors. The presence of microbial or self nucleic acid in the cytosol or within the

endosomal compartment activates pattern recognition receptors (PRR)s. RNA activates retinoic acid-inducible receptor (RIG)-I in the cytosol and Toll-like receptor

(TLR)3 and TLR7 in the endosomal compartment. These events trigger signaling pathways through the adaptor molecules mitochondrial antiviral signaling protein

(MAVS), TIR-domain-containing adapter-inducing interferon-β (TRIF), and Myeloid differentiation primary response (MyD)88 leading to phosphorylation and activation

of the TANK binding kinase (TBK)1, which in turn phosphorylates the transcription factors IFN regulatory factor (IRF)3 and IRF7. Whereas IRF3 is constitutively present,

IRF7 is only expressed at low levels but may be secondarily induced by Type I IFN. Phosphorylation of IRF3 and IRF7 leads to homodimerization, nuclear

translocation, and expression of Type I IFNs (IFNα and IFNβ) and type III IFNs (IFNλ) acting on neighboring cells with type I and III IFN receptors, respectively. Type I IFN

binds to IFNα/β receptor composed of IRFNAR1 and IFNAR2, whereas type III IFN binds to the IFNλ receptor composed of IFNLR1 and IL10Rβ. These events

activate the downstream receptor-associated Janus-associated kinase (JAK)1 and tyrosine kinase (TYK)2 and subsequent tyrosine phosphorylation of STAT1 and

STAT2. These activated transcription factors together with IRF9 form the heterotrimeric transcription factor IFN-stimulated gene factor (ISGF)3 complex which binds to

IFN-stimulated regulatory elements (ISRE) in DNA. In addition, STAT1 homodimers form the IFN-γ-activated factor (GAF) complex which binds to γ-activated (GAS)

sequences. Altogether, these transcription factors induce a broad spectrum of IFN-stimulated genes (ISG)s that mediate the complex “antiviral state” of IFNs.
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gene I (RIG-I)-like receptors (RLRs). These receptors recognize
several viral components, which induce downstream signaling
and result in production of antiviral type I and III IFNs as
well as proinflammatory cytokines through activation of the
transcription factors interferon regulatory factor (IRF)3, IRF7
and nuclear factor(NF)-κB (74) (Figure 1).

The TLRs which have so far been implicated in the response
to SARS-CoV, are TLR3, -4 and -7 (Figure 2). TLR3 recognizes
double-stranded RNA (dsRNA), and the coronavirus-derived
ligand is likely a double-stranded replication intermediate.
The ligand for TLR4 remains obscure, as TLR4 usually
recognizes lipopolysaccharide from gram negative bacteria.
Finally, special GU-rich sequences in the SARS-CoV genome
activate TLR7 (75). TLR3 and TLR4 activate the adaptor
TIR-domain-containing adapter-inducing interferon-β (TRIF),
whereas myeloid differentiation primary response 88 (MyD88)
is the adaptor used by all other TLRs (76) (Figure 2). Insights
from mouse knock-out studies may provide some knowledge

as to which signaling pathways are important in SARS-CoV-
2 recognition, and where we might expect to identify genetic
variants, which predispose to more severe COVID-19 disease.

Several studies have demonstrated that infection of Tlr3−/−,
Tlr4−/−, Trif−/−, Tram−/−, and Myd88−/− mice with SARS-
CoV causes increased viral replication, enhanced pathology
in the lungs, and increased morbidity (77–79). The most
severe phenotypes and mortality are generally seen in mice
lacking the downstream adaptors TRIF and MyD88 (77,
78). Interestingly, following SARS-CoV infection of Trif−/−

mice, the aberrant proinflammatory cytokine and chemokine
responses were similar to those seen in human patients with
poor disease outcome during SARS-CoV infection (80) or
MERS-CoV infection (81). This may suggest that the initial
impaired control of viral replication could lead to exaggerated
immune responses and enhanced immunopathology later during
infection. However, MyD88 and IRAK4 seem to be largely
redundant in antiviral immunity in humans, since previous

FIGURE 2 | Innate immune signaling pathways that are known to be activated during viral infection and replication. Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infects human cells through the angiotensin-converting enzyme 2 (ACE2 receptor) and the cellular serine protease TMPRSS2 for viral S protein priming.

Following cellular entry, the virus RNA genome may be recognized by pattern recognition receptors (PRR)s, including endosomal Toll-like receptor (TLR)3 and TLR7

recognizing double-stranded and single-stranded RNA, respectively. In the cytosol the virus may be recognized by the retinoic acid inducible receptor (RIG)-I or the

melanoma differentiation-associated protein (MDA)5. Following viral recognition by PRRs, this triggers signaling through IFN regulatory factor (IRF)3 and NF-κB to

induce IFNs and pro-inflammatory cytokines. Similar responses may be activated by extracellular virus through TLR4.
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studies have failed to report increased susceptibility to severe
viral infection in patients deficient in these molecules (82). This
underlines the value of studying the spectrum of infections
in patients with well-defined immunodeficiencies in natura,
revealing important lessons on protective immunity in humans
(10, 83).

Coronaviruses are, in addition to being recognition by TLRs,
also recognized by RLRs. The RLRs are cytosolic RNA sensors,
where RIG-I recognizes short dsRNA with 5’ triphosphate,
and melanoma differentiation-associated protein 5 (MDA5)
recognizes long dsRNA. MDA5 is clearly protective in mice
infected with the murine coronavirus mouse hepatitis virus
(MHV) (84), whereas there are only limited reports indicating
that the other RLRs are important in SARS-CoV infection. This
is, however, not due to the virus failing to be recognized by
the receptors, but rather because SARS-CoV, as well as other
coronaviruses, employs several strategies to avoid recognition
and immune activation. For example, deletion of the SARS-CoV
nsp16 gene, an enzyme which catalyzes ribose 2’-O-methylation
to generate caps on the coronavirus RNA (85), attenuates the
pathogenicity of the virus (86, 87). However, in the absence of
MDA5 or Interferon Induced Protein With Tetratricopeptide
Repeats 1 (IFIT1), the SARS-CoV nsp16 deletion mutant reached
similar levels of viral replication and virulence as wild type SARS-
CoV (86, 87), indicating that MDA5 recognizes partly uncapped
SARS-CoV RNA. The recognition of SARS-CoV by RIG-I has
not yet been described, probably due to the fact that RIG-I
has a preference for short dsRNA and also because the initial
steps of capping impairs RIG-I recognition by removing the
5’triphosphate (85).

Investigations into the role of lung inflammation during
respiratory infection identified a potential role for excessive
inflammasome activation. Mice in which the inflammasome
pathway had been deleted by CASP1/11 knock-out displayed
less mortality upon influenza infection compared to wild-type
mice (88). Furthermore, inflammation was shown to be driven
by excessive neutrophil activation. Given that neutrophilia is a
paraclinical indication of COVID-19 disease severity, we might
predict that inhibiting this response may improve outcomes in
SARS-CoV-2 infection. These studies are supported by other
data demonstrating that the NACHT, LRR and PYD domains-
containing protein 3 (NLRP3) inflammasome activation by
the SARS-CoV viral proteins, E, ORF-8b and viroporin 3a
(89–91). Importantly, coronaviruses can induce pyroptosis via
NLRP3 in a process involving insertion of Gasdermin D in the
cellular membrane (92). Furthermore, several publications have
implicated neutrophils and neutrophil extracellular traps (NET)
in organ damage, pulmonary pathology, micro-thrombosis, and
mortality in COVID-19 (93, 94). NETs consist of extracellular
webs of chromatin, microbicidal proteins and oxidant enzymes
that are released by neutrophils to contain microbial infections
but also have the potential to propagate inflammation and
immunopathology (94).

IFNs are the most prominent antiviral effectors of the innate
immune system, and SARS-CoV infection is highly susceptible
to this potent antiviral substance, as shown by the efficient
inhibition of viral replication upon administration of exogenous

IFN both in vitro and in vivo (95–100). However, only very
limited amounts of IFNs are actually produced during SARS-
CoV and MERS-CoV infections (101), and the response seems
to be delayed relative to the production of proinflammatory
cytokines (102). However, it is worth noting that these anti-
viral responses are most likely cell-type specific. A recent study
demonstrated that SARS-CoV-2 also induces significantly less
alveolar cell IFN and ISG expression compared to influenza
A and respiratory syncytial virus in vitro (103). In support
of these data, a comparative study reported more efficient
viral replication and a reduced type I IFN response in SARS-
CoV-2 infection of ex-vivo human lung cultures compared to
SARS-CoV (104). To achieve this very low IFN production,
the coronaviruses are known to employ numerous strategies
to counteract the innate immune signaling pathways of the
host, which have been reviewed elsewhere (101, 105–107).
However, the exact mechanisms by which SARS-CoV-2 appears
to more efficiently prevent IFN production, and if this is
partly responsible for increased pathogenicity in the current
outbreak, remains elusive. Collectively, future identification of
the molecules and signaling pathways targeted by SARS-CoV-
2 will provide essential information on key antiviral modalities,
which may also be those defective in patients with genetic
predisposition to severe disseminated COVID-19.

ADAPTIVE IMMUNE RESPONSES TO
SARS-CoV-2

The cell-mediated immune response plays a critical role in
antiviral immunity, and developing early and robust CD8+ and
in particular, CD4+ T cell responses correlates well with positive
outcomes during SARS-CoV infection (108, 109). Clinical
investigations of severe COVID-19 patients consistently report
neutrophilia and lymphopenia, with significantly depressed
CD4+ T cell counts and decreased IFN-γ expression, as well as
reduced numbers of regulatory and memory T cells (37, 110,
111). In addition, increased levels of plasma pro-inflammatory
cytokines such as Interleukin (IL)-1β, IL-6, IL-8, and tumor
necrosis factor-α (TNF-a) are observed in severe COVID-19
patients, indicative of a cytokine storm and subsequent ARDS
development (32, 73). In support of these data, a study of 522
hospitalized COVID-19 patients reported a negative correlation
between T cell numbers and serum IL-6, IL-10 and TNF-α levels
(112). Furthermore, COVID-19 patients displayed increased
expression of the T cell exhaustion markers, programmed cell
death protein-1 (PD-1) and Tim-3, compared to healthy controls,
suggesting that T cell survival and activation may play a role in
protecting the host from severe SARS-CoV-2 development (112,
113). Studies investigating T cell phenotypes in asymptomatic
or convalescent COVID-19 patients have been more limited.
However, a recent study (114) identified circulating SARS-CoV-
2-specific CD8+ and CD4+ T cells in ∼70% and 100% of
recovered COVID-19 patients, respectively. Importantly, this
study reported the presence of SARS-CoV-2-reactive CD4+ T
cells in healthy donors recruited in 2015–2018 (114). These data
suggest that there is a cross-reactive coronavirus T cell memory
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response, but whether such pre-existing immunity influences
clinical outcomes remains to be determined.

Cytotoxic T cells are important for clearing respiratory viruses
and providing long-term protection; however, the magnitude of
this response must be well-controlled to prevent pathological
consequences (74, 115). Histological examination of a patient
who died from severe SARS-CoV-2 infection identified that
whilst the overall peripheral CD4+ and CD8+ T cell counts
were significantly reduced, alveolar CD8+ T cells harbored
high concentrations of cytotoxic granules, which may have
contributed to severe tissue injury (116). Moreover, lung biopsy
revealed desquamation of pneumocytes, pulmonary oedema, and
hyaline membrane formation, indicative of early-stage ARDS
development (116). On the other hand, a robust CD8+ T cell
response is known to be important in SARS-CoV infection, and
mild cases of COVID-19 have increased clonal expansion of
CD8+ T cells, compared to severe cases (117). The pathological
features of COVID-19 resemble those of SARS and MERS,
both of which are thought to be largely caused by immune
dysregulation rather than direct pathology induced by high viral
load (111, 118), with a similar picture emerging for SARS-CoV-2.

A considerable number of studies have demonstrated that
infection with SARS-CoV-2 initiates an antibody response.
On average, seroconversion is observed between 10 and 14
days post infection, a timeline similar to that observed for
the previous SARS-CoV epidemic (58, 119–123). Serological
investigations of 262 hospitalized COVID-19 patients across the
Chongqing region, China, reported simultaneous or sequential
seroconversion (IgM and IgG) against recombinant antigens
containing the nucleoprotein and a peptide from the spike
protein of SARS-CoV-2 (124). Interestingly, IgG titers were
higher in patients with severe COVID-19, compared to the non-
severe group (124). A number of studies have also reported
earlier or increased antibody titers in critical vs. non-critical
COVID-19 patients, possibly reflecting more severe and invasive
infection and thus making it difficult to determine the specific
nature of the association (124, 125) whereas others report no
correlation between disease severity and serum antibody levels
(126). Such discrepancies between findings may be explained not
only by the relatively small number of individuals investigated
per study, but also due to the fact that different assays are used
in the different studies, likely causing significant sensitivity and
specificity challenges (123). Importantly, however, SARS-CoV-
2 isolated from critically ill patients can be neutralized by sera
from several patients, a finding that gives weight to the rapid
development of therapeutic neutralizing antibodies (NAbs) as a
potential means to control the current pandemic (58).

The possibility of re-infection with SARS-CoV-2 is a key area
of investigation. Individuals who recovered from SARS-CoV or
MERS-CoV infection displayed high tires of antibodies which
waned after 2–3 years (127, 128). However, a small study of
only three SARS-recovered individuals identified SARS-specific
memory T cells 11 years after infection (129). Finally, the efficacy
and longevity of immunity to SARS-CoV-2 is highly dependent
upon the rate by which the virus alters its composition, i.e.,
the mutation rate. So far, studies suggest a relatively low virus
mutation rate with mutations randomly spread throughout the

viral genome, suggesting absence of positive selection toward
increased virulence (60). Moreover, previous studies suggest that
a virus crossing the species barrier is more likely to lose virulence
over time than the opposite (130).

HUMAN INBORN ERRORS OF IMMUNITY
PREDISPOSING TO CORONAVIRUS
INFECTION

Several predisposing factors are known to increase the risk
of progression to severe COVID-19 (37). However, there is
currently no explanation as to why younger individuals with
no co-morbidities in rare cases have developed life-threatening
COVID-19. Human inborn errors of immunity can alter the
course of various viral infections (131), but in the case of disease
progression in SARS-CoV-2 infection, little is known regarding
the influence of the host genetic makeup. However, any genetic
variant that results in a dysregulated or exaggerated immune
response may contribute to lung immunopathology leading to
life-threatening clinical manifestations.

It has been proposed that deficient type I IFN production
may undermine the innate immune response during early SARS-
CoV infection, resulting in a more severe disease course (80,
132, 133). Population studies have identified single nucleotide
polymorphisms (SNPs) in the IFN-inducible genes OAS1 and
MX1, associated with susceptibility to SARS-CoV infection
and disease progression (134, 135). Moreover, exogenous
administration of type I IFN has been shown to inhibit SARS-
CoV replication both in vivo (96, 99) and in vitro (95, 97, 100).
Together, these data highlight the importance of an intact type
I IFN pathway in the innate response to SARS-CoV, and it can
be reasoned that any genetic mutations that impair this response
may somehow predispose to COVID-19 disease progression.
Consequently, it is worth considering that clinical outcome may
be influenced by mutations of the PRRs and immune signaling
pathways involved in recognition of SARS-CoV-2, including
RIG-I, MDA5, and TLR3 and downstream IRF3 and IRF7, as well
as molecules involved in effector function of type I and III IFN,
such as IFNAR1/2 or the janus kinase (JAK) - signal transducer
and activator of transcription (STAT) signaling pathways.

Emerging evidence suggests that activation of the complement
system contributes to the pathogenesis of SARS-CoV-2 lung
pathology (136, 137). Inhibition of the terminal complement
pathway by targeting complement protein 5 (C5) has been
proposed as an effective therapeutic intervention in CoV-
mediated disease (138). Mannose-binding lectin (MBL) is
a pattern recognition molecule, which binds to specific
carbohydrate structures on the microbial surface, thereby
activating complement terminal pathways (139). MBL serum
immunodeficiency has been suggested to play a role, although
controversial, in increased susceptibility to a wide range of
viral and bacterial infections, mainly in children (140–142).
A single study has identified that individuals carrying a
low MBL-producing haplotype YB have an increased risk of
acquiring SARS-CoV (143). Collectively, the precise role of the
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complement system as either having a detrimental or protective
role in COVID-19 pathogenesis needs further study.

Within adaptive immunity, the impact of PIDs associated
with antibody deficiencies and combined immunodeficiencies on
SARS-CoV-2 outcomes are not fully clarified. However, some
important information may be retrieved from a description of
severe lung pathology and COVID-19 disease course in patients
with common variable immunodeficiency (CVID) compared to
patients with pure agammaglobulinemia (144). Although the
results were based on few patients, it was noted that patients
with agammaglobulinemia experienced relatively mild disease.
However, patients with similarly low immunoglobulin levels
but immune dysregulation as part of CVID experienced more
severe disease, suggesting a role of immune dysregulation and
abnormal B immune cell phenotype and potentially excessive
IL-6 production in COVID-19 pathogenesis, although T cell
deficiency may also be involved (144). Collectively, results of
studies into COVID-19 disease presentation and progression
in patients with known PIDs are eagerly awaited. Such data
may facilitate understanding of what constitutes an inadequate
immune response toward SARS-CoV-2 and from this knowledge
determine the molecular and cellular correlates of protective
immune responses and immunity in COVID-19.

As to the role of T cells in protection from severe COVID-
19, it would be expected that T cell lymphopenia from any
source might represent an increased risk of severe viral infection.
However, not much evidence suggests that patients with primary
T cell defects nor HIV infection are at a significantly elevated
risk. When large cohort studies of SARS-infected and MERS-
CoV-infected patients from previous epidemics were reviewed,
HIV infection was not identified as an independent risk factor for
infection by these coronaviruses (145, 146). However, evidence
for the role of T cell defects on prevalence and severity of
COVID-19 is scarce, and it is therefore too early to draw any
conclusions (147).

Based on insight into immunopathogenesis and pathology
during COVID-19, potential susceptibility genesmay be involved
in mechanisms of immune dysregulation, auto-inflammation
or autoimmunity, thus involving the gain-of-function or loss
of inhibition of various genes and pathways in cytokine and
TLR signaling cascades, especially those affecting IL-1 and IL-
6 synthesis and production (48–50). Likewise, genetic variants
in endothelial cell biology and regulation may be anticipated to
aggravate coagulopathy and thrombotic events. Specific evidence
on such associations remains to be reported but should be part of
searches in large unbiased whole exome sequencing approaches,
such as the worldwide consortium (148) (covidhge.com).

Genetic variants in the major histocompatibility complex
antigen loci (HLA) are well-known to influence host
susceptibility to infectious disease (149). So far, only a limited
number of studies have looked for an association between HLA
haplotypes and genetic susceptibility or resistance to SARS
coronavirus infection. However, an impact of HLA haplotypes
may identify some of the unexplained differences in disease
severity and mortality observed across different countries and
different population ethnicities (150–154). Allele typing of 37
probable SARS patients in Taiwan identified an association

between HLA-B∗4601 and SARS-CoV infection (155); however,
this was not confirmed in a study of 90 serologically confirmed
SARS-CoV patients in Hong Kong (156, 157). The latter study
instead identified an association between the HLA-B∗0703 and
HLA-DRB1∗0301 genotypes and the development of SARS
(157). In terms of the current pandemic, we might predict that
genetic variations in the HLA molecules resulting in decreased
binding specificities for SARS-CoV-2 peptides may confer a
more severe COVID-19 disease course (158). Zhao et al. (159)
investigated the relationship between ABO blood group and
COVID-19 susceptibility in 2,173 Chinese patients. Interestingly,
being of blood group A represented a higher risk for developing
COVID-19 disease, whilst having blood group O was associated
with a lower infection risk. A similar risk pattern for ABO
blood groups has also been reported for the 2003 SARS-CoV
outbreak (160); however, the exact mechanism of how blood
group antigens might affect susceptibility remains to be clarified.

Genetic studies have identified polymorphisms in the IL28B
gene which have been linked to hepatitis C virus (HCV) clearance
(161). The product of this gene is type III IFN (IFN-λ). Given
that genetic variants in IFN-λ appear to play an important role
in the natural course of disease and severity during infection
with HCV, it will be interesting to investigate if polymorphisms
in the IL28B gene could also predispose to severe SARS-CoV-
2 infection. Perhaps the most compelling reason to believe that
genetic differences may account for the vast diversity in COVID-
19 symptoms is a recent preprint study by British researchers
who, using a mobile symptom tracker, recorded data from over
2.7 million app users. Analysis of same sex adult twins (n =

2,000+) showed that genetic factors accounted for 50% of the
difference in COVID-19 symptoms (162). Although the results
from the latter studies will need to be verified, these data highlight
how genetic differencesmay explain the great variability in SARS-
CoV-2 infection outcome.

As we start to gain further insight into the pathogenesis
of severe COVID-19 and appreciate the major role played by
inflammation and immunopathology, this raises the question as
to whether there might be an increased risk of developing severe
disease in certain individuals, and whether genes predisposing to
those conditions should be investigated in a genetic approach.
Such genes include NLRP1, NLRP3, CASP1, MEFV, and many
others, which all encode proteins involved in inflammasome
activation (163). Focus should also be on known genetic causes of
hemophagocytic lymphohistiocytosis (HLH), including defects
in the genes PRF1, UNC13D, STX11, STXBP2, LYST, RAB27A
(164) either in the well-recognized homozygous forms, or
possibly in heterozygous forms that may still predispose to HLH
in the presence of a trigger, such as SARS-CoV-2 (165). However,
the precise pathogenesis of macrophage activation syndrome
and Kawasaki-like disease/PIMS in COVID-19 is not fully
understood and may involve autoinflammation, autoimmunity,
and/or immunopathology induced directly by the virus or as a
secondary result of crossreactivity.

At the other end of the disease spectrum, there is the
possibility that some individuals may avoid infection due to
protective tissue types or gene mutations. The most prominent
example to mention is the potential protective role of ACE2
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defects, rendering cells restistant to SARS-CoV-2 infection, in
analogy to protection from HIV infection by Delta32 CCR5
homozygosity (166). Given the important role of host ACE2 in
SARS-CoV-2 infection, we might speculate that ACE2 genetic
polymorphisms may be present in certain individuals, which
could be exploited by SARS-CoV-2 and lead to severe clinical
disease. Equally, ACE2 polymorphisms may even offer some
level of resistance. Indeed, one study has identified multiple
rare genetic variants in ACE2, which are predicted to modify
virus-host interaction and alter susceptibility to SARS-CoV-2
(167). Another study has also reported rare, genetic variants
in TMPRSS2 as possible disease modulators of SARS-CoV-2
infection in Italy (168). Although these findings necessitate
functional validation, it gives weight to the hypothesis that rare,
genetic mutations may explain COVID-19 disease severity.

THERAPEUTIC DEVELOPMENTS AND
TRIALS

No therapeutics have yet been approved to treat diseases
caused by SARS-CoV-2 or other coronaviruses (169, 170).
By mid March 2020, WHO launched the global “Solidarity”
clinical trial for COVID-19 treatments to assess the effectiveness
of four potential therapeutic options, namely remdesivir,
lopinavir/ritonavir with and without IFN-β , and chloroquine or
hydroxychloroquine (171). Remdesivir, already early suggested
to be the most promising compound (172, 173), is a
pro-drug of an adenosine nucleotide analog, which upon
incorporation in the growing RNA chain potently inhibits RNA-
dependent RNA polymerases inducing synthesis arrest (172,
174). Remdesivir has broad antiviral activity against several
RNA viruses in vitro, including SARS-CoV-2 (174–177), and
in vivo against SARS-CoV and MERS-CoV (176, 178, 179).
Whereas no significant improvement was observed in an initial
trial of 237 patients receiving remdesivir (180), preliminary
results from the larger Adaptive Covid-19 Treatment Trial
(ACTT) showed that remdesivir significantly shortened the
time to recovery in patients with lower airway involvement,
and interestingly, another study found no difference between
treatment with remdesivir for 5 days compared to 10 days
(181, 182). However, importantly, remdesivir did not show
major efficacy in patients with severe COVID-19 in the
ICU (183), possibly because host responses may be major
determinants at that stage, rather than viral replication.
Promising results in controlling SARS-CoV-2 in vitro have also
been demonstrated for the protease inhibitor lopinavir/ritonavir,
licensed for HIV treatment (184, 185), as well as for chloroquine
and hydroxychloroquine presently used in the treatment of
malaria and autoimmune diseases (175, 186, 187). However, a
randomized trial including 199 COVID-19 patients showed no
immediate in vivo benefits of lopinavir/ritonavir (188). Similarly,
clinical trials on chloroquine and hydroxychloroquine have
identified methodological limitations and conflicting results,
even suggesting a negative effect of hydroxychloroquine (189–
195). In May 2020, a multinational analysis reported the
use of hydroxychloroquine or chloroquine, with or without a
macrolide, for treatment of COVID-19 comprising data from

671 hospitals in six continents (196). This study failed to show
any beneficial effect of the two drugs; moreover, concerns
were raised about whether these drugs caused higher in-
hospital mortality (197). Notably, the study was retracted shortly
after publication, whereas the hydroxychloroquine studies
currently continue after evaluation of the safety data by the
WHO (198).

Agents which target the host are also potentially valuable
treatment options. Interestingly, the agent camostat mesylate has
been reported to block the cellular serine protease TMPRSS2,
thereby inhibiting SARS-CoV-2 entry into host cells (67), and
increases survival rates ∼60% in an in vivo SARS-CoV model
(199). Camostat mesylate is widely used in Japan for chronic
pancreatitis and postoperative reflux esophagitis (200, 201), and
currently, a clinical trial in Denmark investigating the impact of
this compound on COVID-19 is in its recruitment stage (202).

The effectiveness of agents blocking either IL-1 or IL-
6, i.e., the receptor-targeted monoclonal antibodies anakinra
and tocilizumab, respectively, in the treatment of patients
with severe COVID-19 in the ICU have received considerable
interest due to the well-established role of these cytokines in
immunopathology and association with poor clinical outcome
(32, 63). Promising results have been reported for individuals
or small groups of COVID-19 patients treated with tocilizumab
(203, 204) and anakinra (205, 206), the latter potentially
also beneficial in treating COVID-19 related HLH (207). The
results of ongoing randomized, controlled clinical trials (50,
208, 209) will ultimately determine whether such strategies to
dampen immune responses will prove beneficial and safe. So
far, no significantly increased tendency to severe COVID-19 was
reported in patients receiving these medications (DMARDs) for
the treatment of rheumatologic conditions (210). On a more
hypothetical basis, the complement system has been suggested as
a target for treatment (211). Finally, numerous ongoing studies
are investigating additional novel therapeutic strategies (212)
and candidate vaccines (213) against SARS-CoV-2. Despite the
rapidly evolving number of publications on potential COVID-
19 therapeutics, thus far only a very limited number of well-
designed clinical trials are available. However, to evaluate the
effectiveness and potential adverse effects of future treatments,
the results of thorough large-scale, randomized, controlled trials
are crucial. Notably, a number of fundamental immunological
and virological questions need to be addressed before a vaccine
candidate is available. These include aspects related to the
mutation rate of the virus, the strength of immunity induced
by SARS-CoV-2 and the relative contributions from humoral
or cellular immunity, and not least the duration of a protective
immune response.

CONCLUDING REMARKS

The current global COVID-19 pandemic is a major challenge
for all involved in studies of the role of human genetics in the
face of a novel infectious disease. Sequencing children and young
or middle-aged individuals with severe COVID-19, who are
otherwise healthy, will identify rare, deleterious mutations that
lead to SARS-CoV-2 infection and severe clinical outcome. This
will offer unique insights on the disease pathogenesis in natura,
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which will undoubtedly offer new therapeutic potentials (148).
Coronaviruses appear at regular intervals, and understanding the
molecular mechanisms of COVID-19 development is imperative
not only to ending the current pandemic, but also for controlling
future potential outbreaks.
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