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Abstract
Since the beginning of the SARS-CoV-2 pandemic, COVID-19 has appeared as a unique disease with
unconventional tissue and systemic immune features. While COVID-19 severe forms share clinical and
laboratory aspects with various pathologies such as hemophagocytic lymphohistiocyto-sis, sepsis or
cytokine release syndrome, their exact nature remains unknown. This is severely imped-ing the ability to
treat patients facing severe stages of the disease. To this aim, we performed an in-depth, single-cell RNA-
seq analysis of more than 150.000 immune cells isolated from matched blood samples and broncho-
alveolar lavage �uids of COVID-19 patients and healthy controls, and integrated it with clinical,
immunological and functional ex vivo data. We unveiled an immune sig-nature of disease severity that
correlated with the accumulation of naïve lymphoid cells in the lung and an expansion and activation of
myeloid cells in the periphery. Moreover, we demonstrated that myeloid-driven immune suppression is a
hallmark of COVID-19 evolution and arginase 1 expression is signi�cantly associated with monocyte
immune regulatory features. Noteworthy, we found mon-ocyte and neutrophil immune suppression loss
associated with fatal clinical outcome in severe pa-tients. Additionally, our analysis discovered that the
strongest association of the patients clinical outcome and immune phenotype is the lung T cell response.
We found that patients with a robust CXCR6+ effector memory T cell response have better outcomes.
This result is line with the rs11385942 COVID-19 risk allel, which is in proximity to the CXCR6 gene and
suggest effector memory T cell are a primary feature in COVID-19 patients. By systemically quantifying
the viral landscape in the lung of severe patients, we indeed identi�ed Herpes-Simplex-Virus 1 (HSV-1) as
a potential opportunistic virus in COVID-19 patients. Lastly, we observed an unexpectedly high SARS-CoV-
2 viral load in an immuno-compromised patient, allowing us to study the SARS-CoV-2 in-vivo life cycle.
The development of myeloid dysfunctions and the impairment of lymphoid arm establish a condition of
immune paralysis that supports secondary bacteria and virus infection and can progress to “immune
silence” in patients facing death.

Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the novel
coronavirus disease (COVID-19) outbreak in Wuhan city (China) [1] that is currently threatening worldwide
health. Italy was the �rst European nation to be severely affected by COVID-19: the �rst death was
reported on 21 of February, 2020 [2]; and as of 21st July 2020 more than 35,000 and 607,781 COVID-19-
related deaths were registered in Italy and worldwide, respectively [3].

Many studies highlight different, stepwise patterns of diseases progression, characterized by mild to
moderate features in most of the patients, with some of them who unfortunately progress to a more
severe disease stage, which can lead to acute respiratory distress syndrome (ARDS), respiratory failure
and eventually death [4, 5]. The contribution of host immune system in establishing the worse prognosis
has been already con�rmed by several clinical observations on SARS-CoV-2 and other SARSs-dependent
diseases. Indeed, lymphopenia and release of pro-in�ammatory cytokines such as CXCL10 (IP10),
interleukin (IL)6, IL8, IL10, tumor necrosis factor (TNF)α and  C-C motif chemokine ligand (CCL)2 are
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enlisted as hallmark of severe SARS-CoV2 infection and correlate with adverse clinical outcome [5-7].
Accordingly, among clinical parameters associated to critical outcome, multicenter analysis on
hospitalized COVID-19 patients, established among clinical parameters associated to critical outcome not
only age, co-morbidities and pre-existing diseases but also immune alterations such as an increased
neutrophil to lymphocyte ratio [8], hinting that pathogenic disease characteristics of the disease are
worsened in sub-optimally e�cient and immune dysfunctional patients.

Whether a dysregulated host immune system characterized by the coexistence between pro-in�ammatory
and anti-in�ammatory mediators represents a key feature of COVID-19 severe progression, a clear frame
of the molecular mechanisms driving this imbalance is not elucidated yet. Indeed, ARDS experienced by
COVID-19 patients has a unique signature that differs from ARDS caused by any other infective or
traumatic insults [9]. More speci�cally, the increase in cytokine release in peripheral blood, often
associated with disease severity [10] and commonly de�ned as “cytokine storm”, is only partially involved
in COVID-19 patients. Indeed, IL6 plasma levels in COVID-19 severe patients are 10 to 40 fold lower than
previously reported ARDS patients, and 1,000 fold lower compared to patients facing cytokine release
syndrome following treatment with chimeric antigen receptor T cells [11, 12]. Thus, it is conceivable that
SARS-CoV-2 infection may hijack host immune system in order to impair anti-viral immunity and trigger a
chronic in�ammation characterized, but not limited, by the accumulation of peculiar in�ammatory
cytokines that participate in acute lung injury in severe COVID-19 patients. Recent literature explored the
ability of CoVs to skew cytokine release by affecting IFN-dependent, anti-viral response towards other
in�ammatory pathways sustaining the activation of in�ammasome [13]. Noteworthy, delayed IFN-I
signaling impairs antigen-speci�c T cell responses and promotes high cytokine secretion in lung by
incoming monocytes, resulting in vascular leakage and fatal disease in SARS-CoV-infected mice [14];
furthermore, type I IFN, T cells, and signal transducer and activator of transcription 1 (STAT1) are required
for virus clearance and disease resolution in a mouse model of SARS-Cov 2 infection [15] and impaired
IFN I activity results in worse outcome in human COVID-19 infected patients [16].

Severe COVID-19 patients display some shared features of sepsis, including secretion of in�ammatory
cytokines, neutrophil hyper-activation, reduced function of natural killer (NK) and dendritic cells (DC),
altered monocyte activation and lymphopenia [7, 17]. Several high dimensional phenotypic and molecular
approaches were deployed in order to dissect the biology of virus-immune system interaction during
COVID-19 pathogenesis [7, 16, 18-22]. These analyses were performed on peripheral blood and peripheral
blood mononuclear cells (PBMCs) isolated from patients with different disease severity. This strategy
streamlines sample accessibility, identi�cation of new peripheral predictive biomarkers, and allows
comparison within different studies with the caveat of not considering the local microenvironment in
which the virus is acting. Taking together, all these studies highlight the presence of an IFN signature in
mild to moderate patients whereas evidence a sustained emergency myelopoiesis associated to an
increase in immature neutrophils and monocytes with immune suppressive features in critically ill
patients. Unfortunately, none of the past studies analyzed the immune regulatory properties of myeloid
cells at functional level. A speci�c genetic locus including immune related genes (such as C-X-C motif
chemokine receptor 6 - CXCR6), was found to be associated with worse prognosis in COVID-19 patients
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[23]. Other studies exclusively performed on broncho-alveolar lavage �uids (BAL), elucidated the
sustained interplay between macrophages releasing in�ammatory cytokines and lung epithelial cells in
more severe COVID-19 disease stages [21], whereas pointed out highly clonally expanded CD8+ T cells in
moderate patients [22]. Here we de�ne a complete atlas of COVID-19 patients’ immune landscape
integrating both local (lung) and systemic (blood) tissues, harmonizing molecular (single cell RNA
sequencing, scRNA-seq), functional and clinical data, in order to dissect the complex interplay established
by SARS-CoV-2 with host immune system. We �nd in severe patients the establishment of innate and
adaptive dysfunctions, including loss of immune-suppression by various blood myeloid cells and the
replacement of lung memory CD8+ T cells by naive T cells, suggesting a state of “immune silence” that
correlates with a severe clinical manifestation and fatal outcome.

Establishment of BAL and blood-derived immune cell atlas obtained from COVID-19 patients

To gain insights into the immune deviation induced by SARS-CoV-2 virus in COVID-19 patients, we
performed scRNA-seq analysis on BAL and matched peripheral blood samples obtained from 21 severe,
COVID-19 patients admitted to Intensive Care Units (ICU) and on peripheral blood of 6 mild SARS-CoV-2
positive patients and 5 healthy donors (Figure 1a). Immunological features were assessed on the same
cohorts, integrating 4 more mild SARS-CoV-2 patients, by multiplex ELISA, multiparametric �ow cytometry
and functional assay (see Methods). All the patients were hospitalized at the University Hospital
Integrated Trust of Verona. The clinical characteristics of enrolled patients and healthy controls are
summarized in table 1.

Following strict quality controls (Figure S1a-c), cells were analyzed using the Pagoda2 pipeline [24] and
clustered using Leiden community detection method [25]. The number of analyzed high quality cells was
comparable between groups (Figure S1d). Fourteen signi�cant cell clusters (more than 1% of the cells)
were identi�ed, and gathered into four major cellular subsets based on their mean expression pro�les
(Figure 1b and C, Figure S1e): epithelial cells, lymphocytes, monocytes/macrophages and neutrophils.
The epithelial cell compartment contained only one cell cluster, which was characterized by the
expression of WFDC2, SPLI and keratin genes, like KRT8 and KRT19. 5. Different lymphocyte clusters
were identi�ed, namely B cells (CD79A, CD74), NK cells (CD247, GZMB, GNLY), CD8+ T cells (GZMA,
CD8A), CD4+ T cells (LTB) and gamma-delta (γδ)-T cells (GZMH). Only three clusters of the
monocyte/macrophage compartment were depicted in our dataset, monocytes (LYZ, VCAN, FCN1), M1-
like (CTSB, CTSL) and M2-like macrophages (MRC1, ACP5, FBP1). Lastly, signi�cant diversity of the
neutrophil compartment was observed with 5 uncovered clusters. Those clusters could be differentiated
based on their expression of key markers such as CD16B (FCGR3B) mostly expressed in neutrophil
clusters (1), (2) and (3), interferon response genes (IFITM3 and IFIT3) in cluster (1), S100 calcium binding
proteins (S100A8, S100A9 and S100A12) in clusters (3) and (5), CXCL8 in cluster (4) and in�ammatory
response genes (NFKBIA, IL1RN and SOD2) in cluster (5).
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We observed a strong tissue speci�city in the cell clusters distribution (Figure 1c and d). For instance,
neutrophil clusters (4) and (5) were BAL speci�c, while clusters (2) and (3) were blood speci�c and cluster
(1) could be found in both tissues. As expected, M1-like and M2-like macrophages could only be identi�ed
in BAL samples while monocytes were blood speci�c. Epithelial cells were limited to the BAL samples
with low representation of the total cell population (1.1% of total cells).

We next looked for possible associations between the proportion of cell clusters and the clinical status of
the patient. We observed that severe patients exhibited a signi�cantly higher proportion of neutrophils in
their blood samples compared to mild patients and healthy controls (Figure 1e, left panel). In contrast, the
lymphocyte proportion was decreased in severe patients compared to mild patients and healthy controls
(Figure 1e, middle panel) while the monocyte/macrophage compartment was not affected by disease
severity (Figure 1e, right panel). As scRNA-seq is prone to biases for population proportion estimation, we
validated our �ndings by performing blood cell counting and systemically looking for differences
between the 3 groups of patients. Consistently with our scRNA-seq analysis, we observed signi�cant
differences in the neutrophil and lymphocyte population, but also a decreased erythrocyte number in
severe patients (Figure S1f and g). No other cell population was signi�cantly affected by the disease
(Figure S1f).

COVID-19 is characterized by an excessive in�ammatory response that is sometimes referred to “cytokine
storm” and is deemed to drive the disease pathogenesis. As in�ammatory macrophages are suspected to
be the main producer of in�ammatory cytokines such as IL6 and IL1β, we looked for possible enrichment
of M1 macrophages in the BAL from patients who died due to COVID-19. While this cluster was indeed a
signi�cant producer of in�ammatory cytokines such as osteopontin (SSP1, Figure 1f left panel), it was
surprisingly associated with the survival of the patients (Figure 1f right panel), suggesting it as a
predictive biomarker for better prognosis. Lastly, we investigated the concentration of cytokines in the
plasma and systemically looked for differential concentration between the classes of patients. Following
multiple testing correction, we observed that only three cytokines were signi�cantly affected by the
patient status: Vascular Endothelium Growth Factor - alpha (VEGF-A), IL6 and Interleukin -1 receptor
Antagonist (IL1RA, encoded by the IL1RN gene). All three exhibited higher concentrations in severe and
mild patients’ plasma compared to healthy control, whose levels were close to detection limit (Figure S1h
to i).

Altogether, we comprehensively pro�led more than 150.000 immune cells from blood and BAL sampled
from COVID-19 patients. Coarse-grained clustering allowed us to detect a severity associated neutrophilia
and lymphopenia, but also a SPP1+ M1-like macrophage population associated with severe patients’
survival. Interestingly, only the concentration of these three cytokines was associated with disease
severity, suggesting that massive cytokine release in blood is not present in COVID-19 patients. However,
the restricted size of our cohort signi�cantly limits the statistical power of our analysis and might hinder
the detection of disease-associated variables.

Resting neutrophils are replaced by multiple SARS-Cov2 associated neutrophil types
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Neutrophils are the most common white blood cells and are the �rst cells to migrate to the site of
infection. Our dataset contains 42.238 high quality blood neutrophils, therefore allowing an in-depth
analysis. We performed a re�ned clustering of neutrophils, which identi�ed 10 different clusters (Figure
2a and b), including a strongly distinct and rare subtype of CD66b (CEACAM8) and antibacterial peptide
(LTF, DEFA3) expressing neutrophils, probably corresponding to low density neutrophils (LDNs) and were
therefore de�ned as LDN-like cells. Among the other clusters, we observed both a resting neutrophil
cluster (ICAM1, CXCL8) and an array of activated neutrophil clusters. Among them we identi�ed an
Interferon Stimulated Genes (ISGs; RSAD2, OAS2, IFIT1), a serine protease inhibitor (PI3 and SLPI), and a
chemokine (CCL4, CCL3L3) expressing clusters, suggesting a strong heterogeneity of the neutrophil
polarization across patients.

To identify any trend in the neutrophil compartment composition in an un-supervised fashion, we used
the correspondence analysis (CA), a method similar to Principal Component Analysis but adapted to
categorical data (see Methods). CA second component was able to stratify healthy controls, mild and
severe patients (Figure 2c, S2a and S2b). By computing the correlation between CA dimension 2 and the
proportion of each neutrophil cluster we observed that severe, and to a lesser extent mild patients, were
associated to a replacement of resting neutrophils by multiple clusters including the ISGs, CD177 and PI3
expressing neutrophils (Figure 2d, S2c). Interestingly, LDN-like cells were only detected in both mild and
severe patients, albeit at a low level (less than 5% of neutrophils) except in four severe patients (Figure 2D
right panel). We systemically computed Pearson’s correlation between CA dimension 2 and each
measured biological and clinical variable and identi�ed IL6 and IL1RA concentration as the most
positively correlated variables, with erythrocyte and partial CO2 concentration (pCO2) negatively
correlating with CA dimension 2 (Figure S2d). Altogether, our re�ned analysis of blood neutrophils
revealed that resting neutrophils are replaced by various neutrophil clusters in both mild and severe
patients.

Functional analysis of blood myeloid compartment reveals that immuno-suppression is a major predictor
of COVID-19 patients’ survival

Blood neutrophil compartment is widely affected in COVID-19, as highlighted by our scRNA-seq analysis.
However, these cells are naturally over-represented in blood and most severe COVID-19 patients suffer
from neutrophilia, therefore limiting the number of cells other than neutrophils sequenced in our blood
samples and our ability to study them by scRNA-seq. Recent evidence suggested the presence of
monocyte alteration in SARS-CoV-2 infected patients, mostly associated with the expansion and
accumulation of immunosuppressive monocytes [26]. Due to the low number of blood monocytes
sequenced in our dataset (9103 cells, corresponding to less than 300 cells per patient) and the limited
ability of scRNA-seq to provide functional information, we puri�ed circulating CD14+ monocytes from
fresh blood of some study subjects and used them to perform T-cell immuno-suppression assays. Both
cellular and supernatant-associated immune-suppressions were assessed. In addition, immuno-
suppressive activities of both normal density neutrophils (NDN) and LDN supernatants were also
measured.
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All samples caused some degree of T cell suppression, with monocytes and monocyte supernatants
exhibiting similar activity, while LDN and NDN exhibited the highest and lowest suppression activity,
respectively (Figure S2e). Suppression rate by monocytes was signi�cantly lower in healthy controls
compared to both mild and severe patients but severe patients displayed a higher variance than mild
patients, with the suppression rate ranging from 10% to nearly 80% (Figure 2e left panel). Surprisingly,
this heterogeneity could be partly explained by the clinical outcome of the severe patients: while severe
patients who survived displayed a high T-cell immuno-suppression by monocytes, monocytes of
deceased patients were unable to dampen T-cell proliferation (Figure 2e, right panel). This inverse
association between immuno-suppression and patient survival was not limited to monocytes as it could
be observed, albeit less signi�cantly, with both monocyte and LDN supernatants (Figure S2f).

Myeloid cells suppress T-cell activation through multiple strategies including anti-in�ammatory cytokine
secretion, nutrient depletion or immune checkpoint engagement [27]. To gain further insight in COVID-19
immune landscape, we pro�led monocyte expression of PD-L1, ARG1 and HLA-DR by �ow cytometry
(Figure S2g). We observed a clear relation between mean ARG1 expression by monocytes and monocyte
immunosuppressive function (Spearman ρ = 0.95; Figure 2f), which could be �tted using a modi�ed Hill
function (see Methods), revealing an extremely strong Hill coe�cient (n=40.2). HLA-DR expression was
also associated to immune suppression, but in a different manner compared to ARG1 (Figure 2g). HLA-
DR mean expression and immune suppressive activity clustered three groups of patients: healthy controls
with a high HLA-DR expression and low immunosuppression; mild patients and severe patients who
survived with both high suppression and high HLA-DR expression; a third group of severe patients with
low suppression and HLA-DR expression. As more than half (7/12) of the patients from the last groups
died, we hypothesize that this cluster corresponds to patients suffering from terminal immune
dysfunctions and therefore at higher risk of fatal outcome. Lastly, we observed a limited association
between PD-L1 and immuno-suppression (Spearman ρ= 0.57) (Figure S2h). Furthermore, the
concentration of 20 different cytokines, including both pro-in�ammatory (IL6, TNFα) and anti-
in�ammatory ones (IL10) was assessed in monocyte supernatant; however, no cytokine highly correlated
with immune suppression (absolute Spearman ρ lower than 0.4; Figure S2i). In summary, the immuno-
suppressive activity of monocytes and other blood myeloid cells is a strong predictor of severe patient
survival and is primarily associated with ARG1 expression, and to a lesser extent with PD-L1 but not with
any speci�c cytokine secretion.

COVID-19 affects blood and lung lymphocyte compartments in a severity-dependent manner

The lymphocyte compartment is extremely heterogeneous and dynamic, since it contains various cell
types with properties and functions that can evolve upon in�ammation and infection. By re-clustering
cells identi�ed as lymphocytes, we were able to obtain a �ner picture of their heterogeneity. We identi�ed
14 clusters, including several effector and memory T cells, naïve T cells and activated γδ-T cells (Figure
3a and S3a). Interestingly we were able to identify a cluster of B cells expressing high level of TCF4 that
was speci�c to the blood of patient 8, a patient suffering from Chronic Lymphocytic Leukemia (CLL). We
assumed that those cells were neoplastic and were thus removed from the analysis. As expected,
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signi�cant differences could be observed between blood and BAL lymphocytes, with memory, effector
and dividing T cells mostly found in the BAL and NK cells in the blood (Figure 3a, right panel).

To identify trends in the lymphoid compartment composition in an un-supervised manner, we used the
CA, as described above. The �rst CA dimension of the lymphoid population perfectly separated the blood
and BAL samples (Figure 3b and S3b) and seemed to capture a major trend in the BAL lymphocyte
population. We therefore computed the correlation between this dimension and the various clinical
features measured and noticed a striking negative correlation with the Sequential Organ Failure
Assessment (SOFA) score (Figure 3c) but not with other variables (Figure S3c). In opposition, a parallel
analysis performed on the blood of severe patients identi�ed no clinical parameters associated with CA
dimension 2 (Figure S3d), strengthening the importance to analyze the main district affected by the
disease. Among the six major BAL lymphocytes clusters (>5% of total BAL lymphoid cells clusters) CD8+

T resident memory (CD8+ Trm, expressing ZNF683 and ITGA1) had the strongest positive correlation with
CA dimension 1 (R=0.79), followed by CD4+ T resident memory (CD4+ Trm) (R=0.17). Interestingly, CD4+

Trm expressed several immune checkpoints such as CTLA4 and PD-1 (encoded by PDCD1), suggesting
that they can participate to the immune suppressive landscape (Figure 3d). The naïve T-cell cluster (IL7R,
LEF1) had the strongest negative correlation with the CA dimension 1, and therefore the strongest
positive association with the SOFA score (R=-0.66). Three other clusters were negatively associated with
CA dimension 1: effector CD8+ T cells (R=-0.30, LAG3 and CD27), dividing T cells (R=-0.16, MCM10, E2F8)
and activated γδ-T cells (R=-0.13, XCL1/2 and TRDC).

To test whether CA was also able to capture meaningful variations in blood lymphocyte population, we
analyzed potential association between patient status and CA dimension 2 as it seemed to capture an
important trend in blood samples (Figure 3b).  Interestingly, CA dimension 2 was signi�cantly associated
with patient clinical status with a higher value being speci�c for severe patients (Figure 3e, left panel).
This dimension was associated with two populations of NK cells and two populations of γδ-T cells
(Figure 3e and 3g), i.e. resting/activated NK cells, and resting/activated γδ-T cells. Both activated NK and
γδ-T cells were associated with severe COVID-19 patients while resting cells were found in healthy
controls and mild patients only (Figure 3e and S3e). Activated NK and γδ-T cells were associated with an
increased expression of cytotoxicity genes and activation markers such as PRF1, NKG7, KLRG1 and
CD247 (Figure 3g) while resting NK cells were featured by a higher expression of the inhibitory KIR
receptors KIR2DL1 and KIR3DL2 and resting γδ-T cells by a higher expression of TNFα and DUSP8
(Figure 3g). Consistently with our initial analysis of the cytokine and blood cell count data, we found that
CA dimension 2 was positively associated with IL1RA plasma concentration and neutrophil counts and
negatively associated with erythrocyte count and hemoglobin concentration (Figure 3f). Taken together,
our analysis of the lymphoid compartment revealed that the presence of a naïve T-cell population in the
BAL is associated with high clinical severity, while the blood of severe COVID-19 is characterized by the
activation of NK and γδ-T cells.

rs11385942 may act trough the regulation of the memory lymphoid cell migration
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Expression pro�les generated by scRNA-seq can be overlaid with genome-wide association studies
(GWASs) to pinpoint speci�c cell types and identify potential cellular and molecular mechanisms
explaining the described genetic associations [28]. In addition to the ABO group locus, a recent study
found that another genomic locus is associated with the development of severe forms of COVID-19 [23].
However, how this locus contributes to the pathology is unclear. As six different genes were covered by
the peak association (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and XCR1), we looked at their expression
in the four different cellular compartments in both blood and BAL samples. Strikingly, only CXCR6 was
expressed at a detectable level (Figure 3h left panel, S3f) and speci�cally in BAL lymphocytes. When
analyzing the expression pattern among BAL lymphocytes, it appeared to be expressed mostly by effector
and memory T cells and not by the naïve T cell cluster (Figure 3h, right panel). As the risk allele is
associated with a decreased expression of CXCR6 and that CXCR6 is expressed by key protective
populations, we advance the hypothesis that patients with the risk allele have a lower amount of the
protective T cell populations in the lung, therefore increasing the risk of developing severe COVID-19
forms.

Viral landscape of COVID-19 patients affects their immune pro�le

At the time of ICU admission, most COVID-19 patients exhibited a low viral load in the lung, suggesting
that the virus had been mostly eliminated and that at this time the pathology was mainly driven by an
inappropriate immune response rather than by viral replication. To validate this hypothesis, we applied
our recently published tool, Viral-Track [18] on the BAL sequencing data in order to quantify the SARS-
CoV-2 viral load and detect possible secondary viral infections.

Quanti�cation of SARS-CoV-2 viral reads revealed that in most of severe patients (17/21), no SARS-CoV-2
reads could be found (Figure 4a). Out of the 4 SARS-CoV-2 positive patients, three had low levels of viral
reads (few hundreds to few thousands reads) while patient 8 displayed more than 300,000 SARS-CoV-2
reads. Consistently with our previous scRNA-seq study of SARS-CoV-2, we observed that most reads were
located in the very 3’ end of the viral genome (Figure 4b), probably due to the 3’ bias of our scRNA-seq
method and to nested replication process of the virus [29]. Surprisingly, we also found that two patients
had a signi�cant amount of Herpex Simplex Virus 1 (HSV-1) reads (NCBI reference number: NC_001806)
with respectively 265.392 and 46.229 viral reads in patients 4 and 25, respectively (Figure 4c). Coverage
analysis revealed dozens of peaks that corresponds to viral genes, suggesting an active transcription of
the viral genes, and likely an active viral replication (Figure 4d). We validated this �nding by performing a
multiplex PCR test for four different Herpesviridae, HSV-1, HSV-2, Human Cytomegalovirus (HCMV) and
Varicella-Zoster Virus (VZV) on samples from patients 8 (CLL patient, negative control), 13 (negative
control) and patient 25 (Figure S4a). None of the viruses was detected in samples from patient 8 and 13
but HSV-1 was speci�cally detected in BAL samples of patient 25 that were collected at two different time
points during ICU permanence.

We then looked for a possible explanation about the un-expectedly high SARS-CoV-2 viral load of patient
8. As mentioned before, it appeared that patient 8 suffered from CLL, a B cell malignancy characterized
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by the accumulation of small, mature-appearing lymphocytes in the blood, the bone marrow and in the
lymphatic systems [30]. CLL patients often suffer from immune de�ciency, and more precisely, from
hypogammaglobulinaemia, i.e a reduction in maturated and high-a�nity antibodies. We therefore
quanti�ed the amount of IgG produced toward the RBD region of the viral spike protein (Figure 4E): while
healthy controls and most of the mild patients lacked any RBD-targeting IgG, all severe patients but
patient 8 had high levels of these immunoglobulins. Therefore, the lack of an e�cient antibody response
might have prevented the complete clearance of the virus from the lung in this patient. We tried to look
which BAL cells from patient 8 were infected by SARS-CoV-2. We observed that a reduced number of cells
exhibit an extremely high number of viral UMIs (several hundreds to several thousands), but interestingly
those cells were mostly apoptotic cells (high levels of mitochondrial reads), neutrophils or in some rare
case, cells that expressed extremely low amount of human reads (Figure 4f, S4b-c). Lastly, we looked for
the possible effects of high-viral loads on the immune system state: for this purpose, we performed a
correspondence analysis on all blood cell populations. We observed that the �rst dimension was
associated with the high viral load, as patients 4 and 8 had the highest score among all patients.
Furthermore, this CA dimension correlated with a subset of blood neutrophils that speci�cally expressed
Interferon Stimulated Genes (ISGs) such as IFIT1, RSAD2 and OAS3 (Figure 4h) but also PD-L1 (CD274),
suggesting that a high viral load in the lung can signi�cantly in�uence the blood immune landscape in
COVID-19 patients.

Discussion
The real boundaries between sepsis induced by either SARS-CoV-2 or bacteria are still ill de�ned and need
to be further demarcated. Indeed, hyper-in�ammation associated with immune suppressive state are
clinical characteristics shared among these pathologic conditions, which underscore a susceptibility state
de�ned as sepsis-induced immunoparalysis [31]. In this disease phase, innate and adaptive dysfunctions
cooperate for the ineffective clearance of the pathogen, vulnerability to secondary infections and
reactivation of latent viruses [32].

Immunoparalysis is likely the ground for the HSV-1 superinfection observed in some ICU patients in our
study. Recently, scRNA-seq unveiled a cluster of immature CD14+ monocytes, with low HLA-DR and
expressing MPO, PLAC8 and IL1R2, in the blood of COVID- 19 patients and similar cells were reported in
sepsis [20, 33]. These �ndings shed light on the practice to measure the levels of HLA-DR in monocytes
as marker for sepsis, preconized but never de�nitively proven as mortality biomarker for severe sepsis,
especially in ICU patients [34, 35]. Considering the emerging cell heterogeneity, HLA-DR levels are
insu�cient to reach a predictive value for patient mortality, if not associated with functional analyses.
Indeed, our study shows that HLA-DR reduction in monocytes, hallmark of many COVID-19 patients, can
predict patient outcome only when is associated with an impairment of their immune regulatory
properties (Figure 2G). More importantly, we found that loss of function in myeloid cells mirrors an
immune pathological status progressing from immune paralysis to “immune silence” associated with
higher susceptibility to death event (Figure 2e, Figure S2f). CD14+HLA-DRlow monocytes and
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ARG1+MPO+BPI+, low density pre-neutrophils are expanded in severe COVID-19 patients, a likely
consequence of the pervasive emergency myelopoiesis triggered by SARS-Cov2 infection [33]. Based on
gene expression pro�les, these cell subsets were deemed to have immune suppressive features, which
were not functionally addressed in the study. To the best of our knowledge, we show for the �rst time that
immune suppression is a hallmark of COVID-19 evolution (Figure 2e) and could be the basis for gradual
loss of effector/memory in favor of naïve T-cells (Figure 3d). Moreover, we de�ned a correlation between
ARG1 presence and the immunosuppressive activity of monocytes (Figure 2f), with a minor contribution
of PD-L1 (Figure S2g). Of note, CD14+ARG1+ immune suppressive monocytes were originally de�ned in
patients with pancreatic cancer who also share increased levels in some in�ammatory cytokines [36, 37].

Further studies are necessary to de�ne whether these cells are immature precursors of the
granulocytic/monocytic lineage or a new subset of circulating monocytes, as well as the extent of their
overlap with the immature CD14+ cells described in COVID-19 patients and sepsis [20, 33]. Noteworthy,
our study identi�es, new markers associated with disease severity in the peripheral blood of patients,
such as the proportion of activated/resting γδ-T cells (Figure S3E), which integrate with others already
described and con�rmed in our study (i.e NK cells and neutrophils activation [38, 39]), which might be
responsible for healthy tissue damage [40]. This information has crucial consequences from clinical and
biological point of views and it will support physicians in patient strati�cation. More importantly, the
extensive molecular analysis performed in BAL samples reveals that lymphoid compartment landscape
perfectly mirrors compromised healthy conditions of the patients and identi�es in the increase of naïve T
cells in spite of CD4+ Trm and CD8+ Trm the worst clinical scenario (Figure 3C-D). Naïve T cells unbalance
is not clearly observed in peripheral blood of the same patients suggesting that systemic analysis,
despite many advantages, will not provide a complete landscape of the disease. According to this, we
highlight the importance of CXCR6, which has has been recently associated with less severe COVID-19
stage [23]. CXCR6, highly expressed in Trm cells (Figure 3h), orchestrates Trm cells partitioning within the
lung directing them to the airways [41].

Collectively, the deep molecular, phenotypic, and functional myeloid and lymphoid characterization
performed on peripheral and local districts points out that critically ill patients face a profound immune
dysregulated status, which can support secondary bacteria and virus infection (table 1, Figure 4c, Figure
S4a). Indeed, as sign of immune paralysis, monocytes in septic patients do not respond to LPS
stimulation with the upregulation of NF-κB-dependent genes, including TNFα [33]. Although this was not
investigated in our study, we nonetheless show evidence that monocytes from patients who had a fatal
outcome in ICU were dysfunctional and had lost the immune regulatory properties. It is thus likely that
monocytes in terminally ill patients are �awed in different biological responses, possibly including the
ability to differentiate into M1 macrophages in the lung, as observed in the BAL of these subjects.
Together with the reset of lymphoid arm indicated by the relative abundance of naïve T cells, this
con�gures a state of “immune silence” and supports the deploying of drugs that can “reawaken” host
immune system. “Immune silence" could be related to the extensive immaturity of this cell population, as
consequence of an abnormal and skewed myelopoiesis. Alternatively, it might be a pre-existing disorder
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making this group of patients unable to cope with the hyper-in�ammatory state. Longitudinal studies are
mandatory to dissect between these different disease developments.

Our data set the ground for the administration of drugs that aims at switching off and re-start host
immune system in both adaptive and innate arms, as suggested by the e�cacy of recently adopted
dexamethasone in severe COVID-19 patients [42].  By combining scRNA-seq with functional assays, we
were able to identify features associated with disease severity and clinical outcome of the patients.
However, our study is not �awless and suffers from limitations, including experimental design ones.
Firstly, this is not a longitudinal study. Secondly, the absence of BAL samples from mild patients prevents
us to generalize and validate the observations made on severe ones. Moreover, the absence of BAL
samples from healthy control deprives us of estimating the basal state and composition of the lung
immune system. While it is technically possible to collect such samples, it raises important ethical
question that need to be considered while designing COVID-19 cohorts. The third limiting factor is the
nature of the BAL samples: brie�y, a physiologic solution is introduced into the lower respiratory tract and
then collected. Such method is able to capture in�ltrating immune cells in spite of non-immune cell types
(i.e. epithelial cells), as shown by recent autopsy reports [43].  Lung biopsy represents an interesting
alternative to BAL but is far riskier, especially for patients suffering from ARDS, such as severe COVID-19
patients, and the amount of available material is limited. One may therefore try to collect samples from
deceased patients, however as most patient died after several weeks in ICU, the biological features
observed during the autopsy might either be linked to the disease itself or to the extended stay in ICU. In
the case of lung biopsy, highly multiplexed imaging techniques such SeqFISH [44] or CODEX [45], but also
spatial transcriptomic technologies [46] could be explored. Such approaches would provide gene
expression spatial pattern at a near single-cell resolution and gain essential information concerning
potential cellular interactions. Lastly, we observed that several patients had a signi�cant interferon-
induced polarization of blood neutrophils that could not be solely explained by the virus presence in the
lung. Such polarizations might also be due to secondary infections, but mostly bacterial rather than viral.
Therefore, an extensive metagenomic analysis of the BAL could reveal disease-associated bacterial
landscape and be associated to speci�c immune phenotype.

Overall, our study expands the biological insight on the multifaceted virus-immune system interplay and
provides a solid background to design and test new candidate drugs for severe COVID-19 patients.

Methods
Study subjects and clinical considerations

All 31 patients with COVID-19 and 5 healthy donors in this study were admitted, within the period from
March 12th to April 20th 2020 to the University Hospital of Verona. At sampling, the stage of disease was
categorized as mild (patients not requiring non- invasive/mechanical ventilation and/or admission to
ICU) or severe (patients requiring admission to ICU and/or non-invasive/mechanical ventilation). This
study includes a group of 21 severe COVID-19 patients admitted to ICU, 10 mild SARS-CoV-2 patients and
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5 HDs. The clinical features of the 3 groups of subjects are recapitulated in table 1. The study has been
designed with the purpose of de�ning a complete framework of COVID-19 patients’ immune landscape.
To this aim we collected clinical (i.e. co-morbidities, pulmonary performances, outcome at dismissal from
Verona Hospital) and laboratory (i.e. leukocyte subsets, P-ferritin, P-D-Dimer, C-reactive protein, P-
�brinogen quanti�cation) information and integrated them with molecular (i.e. single cell transcriptomic
analysis) proteomic (cytokines quanti�cation and serology), phenotypic (myeloid characterization in
terms of expression of immune suppression hallmarks) functional (myeloid immune suppressive assay)
data.

Ethics approval statement.

All the patients (and/or initially  their  families)  provided  written  informed consent before sampling and
for the use of their clinical and biological data. This study was approved by the local ethical committee
(Prot. n° 17963, and n° 51095, P.I. Vincenzo Bronte); informed consent was obtained from all the
participants to the study.

Preparation of biological samples

For each patient approximately 20 ml of BAL �uid was obtained, stored at room temperature and
processed within 2 hours in a BSL-3 laboratory. An unprocessed aliquot was used for bacterial culture.
The BAL �uid was �ltered 2 times through a nylon gauze and a 100-µm nylon cell strainer to remove
clumps and debris. The supernatant was then washed with PBS 1x and centrifuged. RBCs were lysed
with 4 mL of 0.2% NaCl solution (3 minutes, RT) and the reaction was blocked by adding 9 mL of 1.2%
NaCl solution. The cells were washed with PBS 1x, re-suspended in RPMI 1640 medium supplemented
with 5% bovine serum albumin and counted. Cell viability was determined by Trypan blue exclusion. BAL
�uids of patients with COVID-19 infection contained a heterogeneous number of cells ranging from 0.83
x106 to 22 x106 of cells. Cells were re-suspended at a concentration of 1 × 106 /ml for single cell analysis.
Peripheral blood (PB) from COVID-19 patients and HDs was collected in EDTA-coated tubes. 2 ml of PB
was washed once with PBS 1x and the RBCs lysis was performed twice adding 15 mL of 0.2% NaCl
solution (3 minutes, RT) and the reaction was blocked by adding 35 mL of 1.2% NaCl solution. The cells
were washed with PBS 1x, re-suspended in RPMI 1640 medium supplemented with 5% bovine serum
albumin, �ltered through a 100-µm nylon cell strainer and counted. Cell viability was determined by
Trypan blue exclusion. Cells were re-suspended at a concentration of 1 × 106 /ml for single cell analysis.

SARS-CoV-2 detection, bacteria identi�cation and validation of HSV-1 infection

Nucleic acids were extracted from BAL samples by Seegene Nimbus instrument (Seegene; Seoul, South
Korea) and SARS-CoV-2 related genes (E, N and RdRP) were ampli�ed by polymerase chain reaction
(PCR) with the Allplex 2019-nCoV assay kit (Seegene) according to the manufacturer’s instructions. BAL
samples from COVID-19 positive patients were processed for bacterial isolation. Brie�y, samples were
treated with 1% v:v Dithiothreitol (DTT) for 30 minutes at 25 °C Upon treatment, (20 μl of) the samples
were streaked out on petri dishes containing different types of agar (Blood Agar, Chocolate Agar,
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Columbia Nalidix Acid agar, Mannitol Salt Agar, McConkey and Sabouraud Agar). Cultures were
incubated for 24 hours at 37 °C and bacterial growth was evaluated as colony forming unit per ml
(CFU/ml). Bacterial species were identi�ed by MALDI-tof (VITEK-MS, BioMérieux; France) and
antimicrobial susceptibility was tested by VITEK-2, BioMérieux; France) and Kirby-Bauer disk diffusion
assay. Nucleic acids isolated from BAL samples were processed to multiplex PCR procedure for the
simultaneous detection of HSV-1, HSV-2, HCMV and VZV, using an Allplex assay (Seegene) according to
the manufacturer’s instructions.

Detection of cytokines and serology

Cytokines released by patients’ monocytes and neutrophils were quanti�ed by Human ProcartaPlex™
Panel 1 multiplex (ThermoFisher Scienti�c, Waltham, MA, USA). The ELISA assay to detect
Immunoglobulins (Ig) used fragment of the SARS-CoV2 spike glycoprotein (S-protein) as antigens based
on a recently published protocol [47]. The Spike SARS-CoV2 glycoprotein receptor binding domain (RBD)
was expressed in mammalian HEK293 cells at IEO, Milan by Drs. Marina Mapelli and Sebastiano
Pasqualato as glycosylated proteins by transient transfection with pGACCS vectors generated in Dr.
Krammer's laboratory. The constructs were synthesized using the genomic sequence of the isolated virus,
Wuhan-Hi-1 released in January 2020, and contained codons optimized for expression in mammalian
cells. Secreted proteins were puri�ed from the culture medium by a�nity chromatography, quanti�ed and
stored in liquid nitrogen in aliquots. The ELISA tests to detect IgG in patients’ sera used as antigens the
recombinant fragments of the RBD of the Spike SARS-CoV2 glycoprotein. After binding of the proteins to
a Nunc Maxisorp ELISA plate, patients’ sera to be analyzed were applied to the plate to allow antibody
binding, and then revealed with secondary antihuman- IgG (BD) antibody conjugated to HRP. Reaction
was revealed upon addition of TMB (Merck). Optical density at 450 nanometers was measured on a
Glomax (Promega) plate reader. All samples were tested and validated with an ELISA assay, as indicated
in [48].

 

Flow cytometry analysis

Immunophenotype analysis on whole peripheral blood was performed according to standard procedures
in order to characterize monocyte subsets (de�ned as classical, CD14high CD16low/dim; intermediate
CD14int CD16+; non classical CD14low/dim CD16high). Brie�y, peripheral blood was incubated with FcR
Blocking reagent (Miltenyi Biotec, Paris, FR) followed by the addition of: anti-human PE-conjugated CD56
(BD Bioscience, San Jose, CA, USA; clone NCAM16.2), FITC-conjugated-CD16 (Biolegend, San Diego, CA,
USA; clone 3G8), PerCP-Cy5.5-conjugated CD3 (BD Bioscience, San Jose, CA, USA; clone UCHT1), PE.Cy7-
conjugated HLA-DR (eBiosciences, ThermoFisher Scienti�c, Waltham, MA, USA; clone L243), APC.H7-
conjugated CD14 (BD Bioscience, San Jose, CA, USA; clone MφP9), Brilliant Violet 421™-conjugated PD-
L1 (BD Bioscience, San Jose, CA, USA; clone MIH1) and aleza �uor 647-conjugated ARG1 (developed in
our laboratory [36]) antibodies, Aqua LIVE/DEAD dye (ThermoFisher Scienti�c, Waltham, MA, USA). RBCs



Page 16/33

were lysed using Cal-Lyse™ Lysing Solution (ThermoFisher Scienti�c, Waltham, MA, USA) in accordance
with the manufacturer’s instructions. Samples were acquired with FACS Canto II (BD, Franklin Lakes, NJ,
USA) and analyzed with FlowJo software (Tree Star, Inc., Ashland, OR, USA).

Myeloid cell isolation, phenotypic characterization and functional assay

Cells were isolated from EDTA-treated tubes (BD Biosciences, NJ, USA) and freshly separated by Ficoll-
Hypaque (GE Healthcare, Uppsala, Sweden) gradient centrifugation. PBMCs were counted and the
monocyte fraction (CD14+) was further isolated by CD14- microbeads (Miltenyi), following
manufacturer’s instructions. From the CD14- fraction the CD66+ low density gradient neutrophils (LDNs)
were isolated by the sequential addition of CD66b-FITC antibody (BD Biosciences, NJ, USA) and
microbeads anti-FITC (Miltenyi), following manufacturer’s instructions. The normal density neutrophils
(NDNs) CD66b+ were isolated from the RBC layer by dextran density gradient followed by CD66b-
antibody as described for LDNs. The purity of each fraction was evaluated by �ow cytometry analysis.
Samples with a purity greater than 95% were assessed for their suppressive capacity. 0.5x106 cells of
each cell type were plated in 24-well plates for 12 hours in complete RPMI supplemented with 10% FBS.
At the end of the incubation, viability was evaluated by �ow cytometry and Trypan blue assay, and both
the supernatants and the cells were collected and cultured with CellTrace (Thermo Fisher Scienti�c)
labeled PBMCs, stimulated with coated anti-CD3 (clone OKT-3, eBioscience, Thermo Fisher Scienti�c) and
soluble anti-CD28 (clone28.2, eBioscience, Thermo Fisher Scienti�c) for 4 days in 37°C and 8% CO2
incubator (for details refer to [49]. For the cells a ratio of 3:1 (target:effector) was used. At the end of the
culture, cells were stained with anti-CD3-PE/Cy7 (UCHT1, eBioscience, Thermo Fisher Scienti�c) and
CellTrace signal of lymphocytes was analyzed with FlowJo software (Tree Star, Inc. Ashland).

 

Single-cell RNA-sequencing (scRNAseq) 

BAL and peripheral blood cells were isolated and prepared as described above. For each sample, cells
were resuspended in RPMI supplemented with 5% FBS to a �nal concentration of 1000 cells per ml and
processed using the 10x Genomics Chromium Controller and the Chromium NextGEM Single Cell 3′ GEM,
Library & Gel Bead kit v3.1 (Pleasanton, California, United States) following the standard manufacturer’s
instructions. In brief, 10,000 live cells were loaded onto the Chromium controller to recover 4,000 single
cell GEMs per inlet uniquely barcoded. After synthesis of cDNA, sequencing libraries were generated. Final
10X library quality was assessed using the Fragment Analyzer High Sensitivity NGS kit (Agilent
Technologies, Santa Clara, CA, USA) and then sequenced on the Illumina NextSeq500 (Illumina, San
Diego CA, USA) generating 75 base pair paired-end reads (28bp read1 and 91bp read2) at a depth of
50,000 reads/cell.

 

Data analysis and statistics
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Generation of UMI tables. Upstream processing of reads was done using the CellRanger toolkit with
default parameters. SARS-CoV-2 (NCBI reference number: NC_045512.2) and human hg38 genomes were
downloaded from NCBI website. SARS-CoV-2 GTF annotation �le was downloaded from the UCSC and
merged with the human GTF as an additional chromosome. ORF_10 Gene 3' boundary extended by 100
bases to catch all reads that belong to this transcript.

High-level analysis of scRNA-seq expression data. ScRNA-seq expression data analysis were performed
using the R-based Pagoda2 pipeline (https://github.com/hms-dbmi/pagoda2/) (29227469) in addition to
an in-house R script. Brie�y UMI table were loaded using the read.10x.matrices() function. Low quality
cells were removed using the following strategy:  cell with less than 500 UMIs and more than 20% of
mitochondrial genes were removed. Two rounds of analysis were performed: in the �rst one, all �ltered
cells were used to identify the major cell types, then cells from each cellular compartments are analyzed
individually to provide more detailed informations.  For each analysis, the number of Highly Variables
Genes (HVGs) was determined using the adjustVariance() function with the gam parameter set to 10.
HVGs were selected using the following strategy : for each gene, its number of zeros and its mean
expression are computed. A local polynomial model is then used to predict the number of zeros according
to the log mean expression (loess function with degree parameter set to 2). The residuals of this model
(excess of zeros) are then used to ranked the genes and the genes with the highest excess of the zeros
are considered as the most HVGs. PCA reduction is then computed using the calculatePcaReduction()
function. The number of computed PC was changed in each analysis due to variable number of cells and
cellular heterogeneity. A K-nearest neighbor graph was then build with the function makeKnnGraph() with
the K value set to 30 and the distance parameter set to ‘cosine’. In order to get high-quality cell clusters,
we used the Leiden community detection implemented in the R package leiden, a wrapper of the python
package leidenalg. The leiden() function was applied to the KNN graphs with default parameters for each
analysis. Marker genes were identi�ed using the getDifferentialGenes() function. UMAP low dimensional
embedding was computed using the uwot R package, and more precisely the umap() function with the
n_neighbors parameter set to 30, and the metric parameter set to ‘cosine’. In order to group clusters of
cells in the �rst round of analysis, mean gene expression of the most variable genes was computed using
the aggregate() function. Spearman’s correlation matrix was then computed using the cor() function with
the method parameter set to ‘Spearman’. Hierarchical clustering was then performed on this matrix using
Ward’s method and the resulting tree used to aggregate the cell clusters.

Correspondence Analysis of the scRNA-seq data. In order to identify trends in cellular composition across
samples we used a multivariate technique called Correspondance Analysis (CA). CA is conceptually
similar to principal component analysis but applies to categorical rather than continuous data. It is
traditionally applied to contingency tables: CA decomposes the chi-squared statistic associated with this
table into orthogonal factors. Because CA is a descriptive technique, it has the advantage of being
applicable to tables whether or not the chi-squared statistic is appropriate. We used the R implementation
of CA from the package FactoMineR (CA function) with default parameters. To determine the signi�cant
components we looked at the scree plot and selected the eigenvalues/component located before the
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elbow. To improve the quality of our analysis, we removed cell clusters corresponding to red blood cells,
platelets and cancer cells from patient 8.

To detect clinical and biological variables associated with the computed correspondance components we
used the following strategy: for cytokine concentrations, we �rst took the square root of the initial values
to get normally distributed variables and then computed Pearson’s correlation with each component
independently. For the other continuous variables (clinical scores, age, BMI…), Pearson’s correlation was
directly computed. To test the association between CA component or a speci�c cell type proportion and a
categorical variable (i.e. patient clinical status and survival) we either applied a Tukey's range test
(TukeyHSD() function) if the variable is not heavy tailed. If the cell proportions are clearly heavy-tailed, we
applied a Kruskall-Wallis rank test.

Viral-Track analysis. To detect and study viruses in our scRNA-seq samples we used Viral-Track, a
computational tool that screen the raw sequencing �les to �nd viral reads (32479746). As previously
described, processing of the �le was performed using UMI-tool (28100584). First, cell barcodes were
extracted and a putative whitelist computed using the umi_tools whitelist command with the parameters
‘–stdin —bc-pattern = CCCCCCCCCCCCCCCCNNNNNNNNNN –log2stderr’. Following the mapping of the
reads to viral genomes and transcript assembly, the mapped reads were assigned to transcripts using the
R package Rsubread through the function featureCounts() with default parameters. The command
‘umi_tools count’ is then used to compute the �nal expression table with the following parameters:–per-
gene–gene-tag = XT–assigned-status-tag = XS–per-cell.

 In the case of patient 8, cells were not �ltered on total host UMIs and proportion of MT UMIs but only on
total combined host and viral UMIs to avoid removing apoptotic cells containing a high viral load but
expressing few host genes.

Analysis of the serum cytokine, blood cell count and clinical data. Using a Cullen and Frey graph
(descdist() function from the �tdistrplus package)we observed that both serum cytokine and blood cell
count variables could be transformed into gaussian-like variables by applying a simple square root
function and then used for further analysis. Association between blood cell counts or serum cytokine
concentration and patient clinical status was assessed by �tting an ANOVA model to the transformed
variables (aov() and anova() functions). Correction for multiple testing was done using the p.adjust
function with parameter method set to ‘BH’. When correlations with a CA dimension were computed, the
cor() function with default parameters was used. To validate the association between the SOFA score and
the lymphoid CA dimension 1 we �tted a basic linear model with the lm() function and assessed the
signi�cance of the association by performing a Fisher test with the anova() function.

Analysis of the immuno-suppression, �ow cytometry and cytokine secretion data. As both both �ow
cytometry and cytokine secretion data were extremely heavy-tailed we applied a logarithmic
transformation with a pseudo count of 1 (log10(1+x)). Spearman correlations between protein MFI or
cytokine concentration and immune-suppression was computed using the cor() function.
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In order to model the relationship between ARG1 MFI and immune-suppression we used a function
similar to the Hill function used in biochemistry :

Here S corresponds to the immune-suppression, x to the transformed ARG1 MFI, Emin to the basal
immune-suppression, Emax to the maximal suppression that can be induced by ARG1, K to the
transformed ARG1 MFI required to get half of the maximal suppression (Emin+Emax) and n the
cooperation coe�cient. This function was �tted using the nls() function with default parameters.

Quantitative variables indicated in table 1 were expressed as the median and interquartile range (IQR),
qualitative ones as percentages. All statistical analysis were performed using R 3.6.1 on an Ubuntu 18.04
workstation.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to
this paper.

Data availability

The authors declare that all the other data supporting the �ndings of this study are available within the
article and its supplementary information �les and from the corresponding authors upon reasonable
request. All scripts used for the data analysis are available at
https://github.com/PierreBSC/Verona_COVID19.
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Table 1: Clinical characteristic of enrolled patients and healthy controls.
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CHARACTERISTICS HealthyControlsN=5 MildPatients       N=10 Severe Patients(ICU)        N=21
Anagraphic      Age, yr: Median (IQR) 66 (64-73) 69 (56-80) 67 (58-70)Male, no. (%) 4 (80) 6 (60) 17 (81)       Coexisting disorder, no. (%)      Any 2 (40) 10 (100) 17 (81)Obesity  0 (0) 2 (22) 3 (14)Hypertension 2 (40) 10 (100) 11 (52)Diabetes  0 (0) 3 (30) 7 (33)Chronic obstructive pulmunarydisease   0 (0) 2 (20) 1 (5)
Cardiovascular disease 0 (0) 5 (50) 3 (14)Cronic kidney disease  0 (0) 2 (20) 1 (5)Active malignancies   0 (0) 0 (0) 2 (10)       Median (IQR) interval from syntomsonset (S.O.) and Outcome      
Days  from S.O.     toHospitalization   - 5 (2-6) 6 (4-7)
Days from S.O.  to ICU admission   -  - 7 (6-10)Days from  S.O. to dismission fromICU  -  - 38 (23-45)
Days from  S.O. to dismission fromVerona Hospital   (alive or dead)  - 21 (13-24) 43 (32-66)
Outcome, no. deaths  (%)  - 1 (10) 8 (38)       Clinical features at sampling      APACHE score, Median (IQR)  -  - 23.5 (15-28.5)SOFA score, Median (IQR)  - 2 (0.8-3.3) 6 (4-7)pCO2 [35-40 mmHg], Median (IQR)  - 34 (31-41) 48 (41-52)pO2 [80-100 mmHg], Median (IQR)  - 59 (55-64) 77 (69-97)FiO2 %, Median (IQR)  - 26 (21-31) 60 (50-90)P/F ratio mmHg, Median (IQR)  - 213 (194-267) 146 (71-177)       
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Laboratory findings at sampling,Median (IQR)      
Hemoglobin (135-160 g/L) 151 (145-153) 120 (98-137) 104 (89-112)Leukocytes (4,3-10 109/L) 6.7 (6.2-8.8) 5.6 (5.2-6.4) 12.8 (9.6-15.8)
Neutrophils (1,8-8 109/L) 3.8 (3.4-4.9) 3.8 (3.1-4.6) 10.3 (7.7-13.4)
Lymphocytes (1,2-4 109/L) 2.2 (1.7-2.8) 1.3 (1-1.8) 1.2 (0.7-1.4)
Monocytes (0,2-1 109/L) 0.7 (0.4-0.8) 0.5 (0.4-0.8) 0.7 (0.4-1.1)
Eosinophils (<0,45 109/L) 0.3 (0.3-0.4) 0.1 (0-0.1) 0.2 (0.1-0.4)
Basophils (<0,2 109/L) 0.05 (0.04-0.08) 0.02 (0.01-0.04) 0.04 (0.02-0.07)
Platelets (150-400 109/L) 233 (216-234) 248 (160-311) 285 (217-368)C-reactive protein [inf. a 5 mg/L]  - 24 (22-56) 131 (75-158)P-Ferritin [30 - 300 μg/L]  - 947 (342-1368) 1262 (735-1647)
P-D-Dimer [inf. a 500μg/L]  - 1600 (690-2501) 2250 (1319-3684)
Trombin clotting time (pt) 0,82-1,17INR  - 1.06 (0.98-1.1) 1.14 (1.09-1.25)
P-fibrinogen [2,00 - 4,00 g/L]  - 4.2 (3.3-5) 6.8 (5.4-7.8)       Microbiology analysis on BAL atsampling      
Lung infection (CFU>104), no. (%)  -  - 10 (48)Pseudomonas lung infection(CFU>104), no. (%)  -  - 7 (33)

IQR denotes interquartile range, PCO2 carbon dioxide partial pressure, PO2 oxygen partial pressure, FiO2
fraction of inspired oxygen, P/F PO2/FiO2, CFU denotes colony forming units.

Figures
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Figure 1

Establishment of BAL and blood-derived immune cell atlas obtained from COVID-19 patients. (a)
Description of the cohort. (b) Two-dimensional UMAP embedding of the scRNA-seq data. Dots (cells) are
colored according to their respective metacluster (Epithelial cells, lymphocytes, neutrophils and
monocytes/macrophages). (c) Expression heatmap of the 14 signi�cant clusters detected in our scRNA-
seq dataset. The top 5 best markers were selected for each cluster. (d) Two-dimensional density plot of
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the UMAP embedding of the BAL (upper panel) or the blood (lower panel) cells. (e) Proportion of
neutrophils, lymphocytes and monocytes/macrophages in blood samples across patient status. For each
of the cell types, an ANOVA test was performed and corrected for multiple-testing by Bonferroni
correction. Median and 5%-95% theoretical quantiles are shown. (f) Expression of the SPP1 (osteopontin)
gene across cell types (left panel) and distribution of M1 macrophages among total BAL cells based on
severe patient clinical outcome (right panel). A two-sided Welch’s t-test was performed to compare
proportion between the two groups of patients (t = 2.2 with a degree of freedom equal to 16.5). Median
and 5%-95% theoretical quantiles are shown.
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Figure 2

ScRNA-seq and functional analysis of blood myeloid cells reveal unique features associated to patient
status and outcome. (a) Expression heatmap of the 10 clusters identi�ed among the blood neutrophils.
(b) Two-dimensional UMAP embedding of the blood neutrophil. Cells are colored according to their
cluster. (c) Scatter plot of the Correspondence Analysis of the blood neutrophil populations. (d)
Proportion of resting neutrophils (left panel), ISGs neutrophils (middle panel) and LDN-like (right panel)
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among blood neutrophils according to patient clinical status. A Tukey’s range test was used in the left
panel while Kruskall-Wallis rank test was used in both middle and right panel. Median and 5%-95%
theoretical quantiles are shown. (e) T-cell suppression ability of CD14+ monocytes according to clinical
status (right) or to ICU outcome (severe patients only, right panel). A Tukey’s range test was used in the
left panel while a two-sided Welch’s t-test was performed in the right panel (t = 4.9 with a degree of
freedom equal to 11.8). Median and 5%-95% theoretical quantiles are shown. (f) Association between
CD14+ monocytes ARG1 Mean Fluorescence Intensity (MFI) and immune suppression. The dashed line
corresponds to the �tted Hill-like function. (g) Association between CD14+ monocytes HLA-DR Mean
Fluorescence Intensity (MFI) and immune suppression.
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Figure 3

ScRNA-seq analysis of blood and BAL lymphocytes identify cellular (a) Two-dimensional UMAP
embedding of lymphocytes colored according to their cluster (left panel) or their tissue (right panel). (b)
Correspondence Analysis of blood and BAL lymphocytes. (c) Association between SOFA score and CA
dimension 1 score of BAL samples. (d) Expression heatmap of the BAL lymphocytes belonging to the cell
clusters that are associated with CA dimension 1. The 10 best markers are shown for each cluster. (e)
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Distribution of CA dimension 2 score of blood samples according to clinical status (left panel), and
proportion of resting (middle panel) and activated NK (right panel) according to clinical status. Tukey's
range test was used to compute the shown p-values. Median and 5%-95% theoretical quantiles are
shown. (f) Ranked Pearson correlation between biological features and CA dimension 2. (g) Expression
heatmap of the blood lymphocytes belonging to the cell clusters that are associated with CA dimension
2. The 20 best markers are shown for each cluster. (h) Mean expression of CXCR6 across different
tissues and cell types (left panel) and among the different BAL lymphocytes clusters associated with CA
dimension 1.
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Figure 4

Analysis of severe COVID-19 patients viral landscape. (a) Number of SARS-CoV-2 UMIs in each BAL
sample. (b) Coverage plot of SARS-CoV-2 genome. (c) Viral-Track analysis of patients 4 and 25. (d)
Coverage plot of HSV-1 genome. (e) Quanti�cation of IgG targeting the RBD domain of the SARS-CoV-2’s
spike protein. OD: optical density. (f) Mean number of SARS-CoV-2 UMIs across patient 8 cell clusters. (g)
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CA analysis of total blood cell population. (h) Expression heatmap of cells belonging to resting or ISGs
neutrophils.
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