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Abstract

In this paper it is shown that the principal eigenvector is a necessary representation of the priorities derived from a

positive reciprocal pairwise comparison judgment matrix A ¼ ðaijÞ when A is a small perturbation of a consistent
matrix. When providing numerical judgments, an individual attempts to estimate sequentially an underlying ratio scale

and its equivalent consistent matrix of ratios. Near consistent matrices are essential because when dealing with in-

tangibles, human judgment is of necessity inconsistent, and if with new information one is able to improve inconsistency

to near consistency, then that could improve the validity of the priorities of a decision. In addition, judgment is much

more sensitive and responsive to large rather than to small perturbations, and hence once near consistency is attained, it

becomes uncertain which coefficients should be perturbed by small amounts to transform a near consistent matrix to a

consistent one. If such perturbations were forced, they could be arbitrary and thus distort the validity of the derived

priority vector in representing the underlying decision.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the field of decision-making, the concept of

priority is quintessential and how priorities are

derived influences the choices one makes. Priorities

should be unique and not one of many possibili-

ties, they must also capture the dominance of the

order expressed in the judgments of the pairwise
comparison matrix. The idea of a priority vector

has much less validity for an arbitrary positive

reciprocal matrix A ¼ ðaijÞ than for a consistent
and a near consistent matrix. A positive n by n

matrix is reciprocal if aji ¼ 1=aij. It is consistent if
aijajk ¼ aik; i; j; k ¼ 1; . . . ; n. From aij ¼ aik=ajk we
have aji ¼ ajk=aik ¼ a�1ij and a consistent matrix is

reciprocal. A matrix is said to be near consistent if

it is a small perturbation of a consistent matrix.
The custom is to look for a vector w ¼ ðw1; . . . ;wnÞ
such that the matrix W ¼ ðwi=wjÞ is ‘‘close’’ to
A ¼ ðaijÞ by minimizing a metric. Metric closeness
to the numerical values of the aij by itself says little
about the numerical precision with which one

element dominates another directly as in the
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matrix itself and indirectly through other elements

as represented by the powers of the matrix. In this

paper we show that with dominance order, the

principal eigenvector, known to be unique to within

a positive multiplicative constant (thus defining a

ratio scale), and made unique through normaliza-
tion, is the only plausible candidate for representing

priorities derived from a positive reciprocal near

consistent pairwise comparison matrix.

The Analytic Hierarchy Process (AHP) allows

for inconsistency because in making judgments

people are more likely to be cardinally inconsistent

than cardinally consistent because they cannot

estimate precisely measurement values even from a
known scale and worse when they deal with in-

tangibles (a is preferred to b twice and b to c three

times, but a is preferred to c only five times) and

ordinally intransitive (a is preferred to b and b to c

but c is preferred to a). One reason for filling out

an entire matrix is to improve the validity of the

judgments in the real world. When we deal with

tangibles, a pairwise comparison judgment matrix
may be perfectly consistent but irrelevant and far

off the mark of the true values. For several reasons

a modicum of inconsistency may be considered as

a good thing and forced consistency without

knowledge of the precise values as an undesirable

compulsion. If one insists on consistency, people

would be required to be like robots unable to

change their minds with new evidence and unable
to look within for judgments that represent their

thoughts, feelings and preferences.

The AHP also uses a principle of hierarchic

composition to derive composite priorities of al-

ternatives with respect to multiple criteria from

their priorities with respect to each criterion. It

consists of multiplying each priority of an alter-

native by the priority of its corresponding criterion
and adding over all the criteria to obtain the

overall priority of that alternative. This is perhaps

the simplest way for composing priorities. The

additive approach is also crucial in doing compo-

sition using the limiting powers of a priority rather

than a judgment matrix when dependence and

feedback are considered in decision-making. Dif-

ferent methods for deriving priorities within the
same hierarchy can lead to different final values for

the alternatives [7].

2. What is a priority vector?

Now we ask the question, what is priority or

more generally what meaning should we attach to a

priority vector of a set of alternatives?We can think
of two meanings. The first is a numerical ranking of

the alternatives that indicates an order of prefer-

ence among them. The other is that the ordering

should also reflect intensity or cardinal preference

as indicated by the ratios of the numerical values

and is thus unique to within a positive multiplica-

tive constant (a similarity transformation). It is the

latter that interests us here as it relates to the
principle of hierarchic composition under a single

criterion. Given the priorities of the alternatives

and given the matrix of preferences for each alter-

native over every other alternative, what meaning

do we attach to the vector obtained by weighting

the preferences by the corresponding priorities of

the alternatives and adding? It is another priority

vector for the alternatives. We can use it again to
derive another priority vector ad infinitum. Even

then what is the limit priority and what is the real

priority vector to be associated with the alterna-

tives? It all comes down to this: What condition

must a priority vector satisfy to remain invariant

under the hierarchic composition principle? A pri-

ority vector must reproduce itself on a ratio scale

because it is ratios that preserve the strength of
preferences. Thus a necessary condition that the

priority vector should satisfy is not only that it

should belong to a ratio scale, which means that it

should remain invariant under multiplication by a

positive constant c, but also that it should be in-

variant under hierarchic composition for its own

judgment matrix so that one does not keep getting

new priority vectors from that matrix. In sum, a
priority vector x must satisfy the relation Ax ¼ cx,
c > 0. We will show that as a result of the need for
invariance to produce a unique priority vector, x

must be the principal right eigenvector of A and c is

its corresponding principal eigenvalue. Our prob-

lem for positive reciprocal matrices and their pri-

orities is a special case of the following:

Theorem. For a given positive matrix A, the only
positive vector x and only positive constant c that
satisfy Ax ¼ cx, is a vector x that is a positive
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multiple of the Perron vector (principal eigenvector)
of A, and the only such c is the Perron value (prin-
cipal eigenvalue) of A.

Proof.We know that the (right) Perron vector and
Perron value satisfy our requirements. We also

know that the algebraic multiplicity of the Perron

value is one, and that there is a positive left ei-

genvector of A (call it z) corresponding to the
Perron value. Suppose there is a positive vector y
and a (necessarily positive) scalar d such that

Ay ¼ dy. If d and c are not equal, then by bior-
thogonality [2] y is orthogonal to z, which is im-
possible since both vectors are positive. If d and
care equal, then y and x are dependent since c has
algebraic multiplicity one, and y is a positive

multiple of x.
It is also true that if one starts with any priority

vector and transforms it through multiplication by

A any number of times, in the limit, the product
converges to the Perron vector of A. Significantly
and interestingly, for our purpose to derive prior-

ities for a special type of positive matrices, the

foregoing theorem can also be shown to hold for a

class of positive reciprocal matrices that are con-

sistent and near consistent without the use of the

theorem of Perron. We know that the principal

eigenvector is the priority vector of a consistent

matrix. For such a matrix aij ¼ wi=wj, and it
follows from Aw ¼ nw that the vector w ¼
ðw1; . . . ;wnÞ that is also the principal eigenvector
of A is its priority vector with corresponding

principal eigenvalue c ¼ n. We can show by small
and continuous perturbation [3,8] of a consistent

matrix A that the resulting near consistent matrix
(see the next section), has its priority vector as its

principal eigenvector obtained as a perturbation of
the corresponding principal eigenvector of A. Thus
if we assume that a judgment matrix is obtained as

a small perturbation of an underlying consistent

matrix constructed from a ratio scale w ¼
ðw1; . . . ;wnÞ, its priority vector coincides with its
principal eigenvector obtained as a small pertur-

bation of w. For the perturbation proof, which is
fairly long and elaborate, see [4].
That would end our quest if we could also say

what to do about a positive inconsistent matrix

with large inconsistency. We need to improve its

consistency to speak of its priority vector. Using

the Perron vector and Perron root of such a ma-

trix, we show that it can be transformed in steps to

a near consistent matrix whose priority vector we

now know is its principal eigenvector. �

3. Some observations on positive reciprocal matrices

and their perturbation

We have for an n by n consistent matrix

A : Ak ¼ nk�1A; A ¼ ðwi=wjÞ. A near consistent

matrix is a small reciprocal (multiplicative) pertur-

bation of a consistent matrix. It is given by the
Hadamardproduct:A ¼ W � E, whereW ¼ ðwi=wjÞ
and E � ðeijÞ; eji ¼ e�1ij . Small means eij is close to
one. Unlike an additive perturbation of the form

aij þ cij, a reciprocal perturbation aijeij, eji ¼ e�1ij is
multiplicative. It can be transformed to an additive

perturbation of a consistent matrix by writing:

wi

wj
þ cij ¼

wi

wj
eij; eij ¼ 1þ

wj

wi
cij;

eji ¼ e�1ij ¼ wj

wi
þ cji ¼

1

1þ wj

wi
cij

:

Note that with a reciprocal perturbation we ensure

that kmax P n which helps determine the validity of
w as a priority vector of a near consistent matrix.
We haveXn
j¼1

eij ¼
X
j

aijwj=wi ¼ ½Aw	i=wi ¼ kmaxwi=wi

¼ kmax:

The computation

nkmax ¼
Xn
i¼1

Xn
j¼1

eij

 !
¼
Xn
i¼1

eii þ
Xn
i;j¼1
i 6¼j

ðeij þ ejiÞ

¼ nþ
Xn
i;j¼1
i 6¼j

ðeij þ e�1ij ÞP nþ ðn2 � nÞ=2 ¼ n2

reveals that kmax P n. Moreover, since xþ 1=xP 2

for all x > 0, with equality if and only if x ¼ 1, we
see that kmax ¼ n if and only if all eij ¼ 1, which is
equivalent to having all aij ¼ wi=wj. The foregoing

arguments show that a positive reciprocal matrix
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A has kmax P n, with equality if and only if A is

consistent.

4. The general case: How to transform a positive
reciprocal matrix to a near consistent matrix

To improve the validity of the priority vector, we

must transform a given reciprocal judgment matrix

to a near consistent matrix. In practice, the judg-

ments available to make the comparisons may not

be sufficient to bring the matrix to near consistency.

In that case we abandon making a decision based
on the information we have, and must seek addi-

tional knowledge to modify the judgments.

The final question then is how to construct e the
perturbations in a general reciprocal matrix. A

judgment matrix already has some built in con-

sistency; it is not an arbitrary reciprocal matrix.

Among others, inconsistency in a matrix may be

due to an error such as putting aji instead of aij in
the i, j position which if appropriately detected and
changed the matrix may become near consistent or

at least improve the consistency of A. Because the
principal eigenvector is necessary for representing

dominance (and priorities when near consistency is

obtained), we must use an algorithm based on the

eigenvector, whose existence is assured by Perron�s
theory for positive matrices, to improve the con-
sistency of a reciprocal matrix until it is near

consistent. Can we do that?

For a given positive reciprocal matrix A ¼ ½aij	
and a given pair of distinct indices k > l, define
AðtÞ ¼ ½aijðtÞ	by aklðtÞ ¼ akl þ t; alkðtÞ ¼ ðalk þ tÞ�1,

and aijðtÞ ¼ aij for all i > k; j > l, so Að0Þ ¼ A. Let
kmaxðtÞ denote the Perron eigenvalue of A(t) for all
tin a neighborhood of t ¼ 0 that is small enough to

ensure that all entries of the reciprocal matrix A(t)
are positive there. Finally, let v ¼ ½vi	 be the unique
positive eigenvector of the positive matrix AT that is
normalized so that vTw ¼ 1. Then a classical per-
turbation formula [2, Theorem 6.3.12] tells us that

dkmaxðtÞ
dt

����
t¼0

¼ vTA0ð0Þw
vTw

¼ vTA0ð0Þw

¼ vkwl �
1

a2kl
vlwk:

We conclude that

okmax
oaij

¼ viwj � a2jivjwi for all i; j ¼ 1; . . . ; n:

Because we are operating within the set of positive

reciprocal matrices,

okmax
oaji

¼ � okmax
oaij

for all i and j:

Thus, to identify an entry of A whose adjustment
within the class of reciprocal matrices would re-

sult in the largest rate of change in kmax we should
examine the nðn� 1Þ=2 values fviwj � a2jivjwig;
i > j, and select (any) one of largest absolute

value. This is the method proposed for positive

reciprocal matrices by Harker [1].

To illustrate the methods discussed above,

consider an example involving the prioritization of

criteria used to buy a house for a family whose

members cooperated to provide the judgments

(Table 1).

Table 1

A family�s house buying pairwise comparison matrix for the criteria

Size Trans. Nbrhd. Age Yard Modern Cond. Finance w v

Size 1 5 3 7 6 6 1/3 1/4 0.173 0.047

Trans. 1/5 1 1/3 5 3 3 1/5 1/7 0.054 0.117

Nbrhd. 1/3 3 1 6 3 4 6 1/5 0.188 0.052

Age 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8 0.018 0.349

Yard 1/6 1/3 1/3 3 1 1/2 1/5 1/6 0.031 0.190

Modern 1/6 1/3 1/4 4 2 1 1/5 1/6 0.036 0.166

Cond. 3 5 1/6 7 5 5 1 1/2 0.167 0.059

Finance 4 7 5 8 6 6 2 1 0.333 0.020

kmax ¼ 9:669
Consistency ratio (C.R.)¼ 0.17

88 T.L. Saaty / European Journal of Operational Research 145 (2003) 85–91



Table 2 gives the array of partial derivatives for

the matrix of criteria in Table 1.

The (4,8) entry in Table 2 (in bold print) is

largest in absolute value. Thus, the family could be

asked to reconsider their judgment (4,8) of Age vs.

Finance. One needs to know how much to change
a judgment to improve consistency, and we show

that next. One can then repeat this process with the

goal of bringing the C.R. within the desired range.

If the indicated judgments cannot be changed fully

according to one�s understanding, they can be

changed partially. Failing the attainment of a

consistency level with justifiable judgments, one

needs to learn more before proceeding with the
decision.

Two other methods, presented here in order of

increasing observed efficiency in practice, are con-

ceptually different. They are based on the fact that

nkmax � n ¼
Xn
i;j¼1
i6¼j

ðeij þ e�1ij Þ:

This suggests that we examine the judgment for

which eij is farthest from one, that is, an entry aij
for which aijwj=wi is the largest, and see if this

entry can reasonably be made smaller. We hope

that such a change of aij also results in a new
comparison matrix with that has a smaller Perron

eigenvalue. To demonstrate how improving judg-

ments works, take the house example matrix in
Table 1. To identify an entry ripe for consider-

ation, construct the matrix eij ¼ aijwj=wi (Table 3).

The largest value in Table 3 is 5.32156, which fo-

cuses attention on a37 ¼ 6.
How does one determine the most consistent

entry for the (3,7) position? Harker has shown that

when we compute the new eigenvector w after

changing the (3,7) entry, we want the new (3,7)
entry to be w3=w7 and the new (7,3) to be w7=w3.
On replacing a37 by w3=w7 and a73 by w7=w3 and
multiplying by the vector w one obtains the same
product as one would by replacing a37 and a73 by
zeros and the two corresponding diagonal entries

by two (see Table 4).

We take the Perron vector of the latter matrix

to be our w and use the now-known values of
w3=w7 and w7=w3 to replace a37 and a73 in the
original matrix. The family is now invited to

change their judgment towards this new value of

a37 as much as they can. Here the value was

Table 2

Partial derivatives for the house example

Size Trans. Nbrhd. Age Yard Modern Cond. Finance

Size – 0.001721 0.007814 )0.00041 0.00054 0.000906 )0.08415 )0.03911
Trans. – – )0.00331 0.001291 0.002485 0.003249 )0.06021 )0.01336
Nbrhd. – – – )0.0091 )0.00236 )5.7E-05 0.008376 )0.07561
Age – – – – )0.01913 )0.03372 0.007638 0.094293

Yard – – – – – )0.01366 )0.01409 0.041309

Modern – – – – – – )0.02599 0.029355

Cond. – – – – – – – 0.006487

Finance – – – – – – – –

Table 3

eij ¼ aijwj=wi

1.00000 1.55965 3.26120 0.70829 1.07648 1.25947 0.32138 0.48143

0.64117 1.00000 1.16165 1.62191 1.72551 2.01882 0.61818 0.88194

0.30664 0.86084 1.00000 0.55848 0.49513 0.77239 5.32156 0.35430

1.41185 0.61656 1.79056 1.00000 0.59104 0.51863 1.36123 2.37899

0.92895 0.57954 2.01967 1.69193 1.00000 0.58499 1.07478 1.78893

0.79399 0.49534 1.29467 1.92815 1.70942 1.00000 0.91862 1.52901

3.11156 1.61765 2.25498 0.73463 0.93042 1.08858 1.00000 0.99868

2.07712 1.13386 2.82246 0.42035 0.55899 0.65402 1.00133 1.00000
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a37 ¼ 0:102=0:223 ¼ 1=2:18, approximated by 1/2
from the AHP integer valued scale and we hypo-

thetically changed it to 1/2 to illustrate the proce-

dure (see Table 5). If the family does not wish to

change the original value of a37, one considers the
second most inconsistent judgment and repeats the

process. The procedure just described is used in

the AHP software Expert Choice.
A refinement of this approach is due to W.

Adams. One by one, each reciprocal pair aij and aji
in the matrix is replaced by zero and the corre-

sponding diagonal entries aii and ajj are replaced
by 2, the principal eigenvalue kmax is then com-
puted. The entry with the largest resulting kmax is
identified for change as described above. This

method is in use in the Analytic Network Process

(ANP) software program Superdecisions [5].

5. Conclusions

We have shown that if inconsistency is al-

lowed in a positive reciprocal pairwise compari-

son matrix (which we have shown it must), the
principal eigenvector is necessary for representing

the priorities associated with that matrix,

providing that the inconsistency is less than or

equal to a desired value [6]. We also mentioned

three ways and illustrated two of them, as to

how to improve the consistency of judgments

and transform an inconsistent matrix to a near

consistent one.
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