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Abstract

Many multiple attribute decision analysis (MADA) problems are characterised by both quantitative and qualitative
attributes with various types of uncertainties. Incompleteness (or ignorance) and vagueness (or fuzziness) are among the
most common uncertainties in decision analysis. The evidential reasoning (ER) approach has been developed in the
1990s and in the recent years to support the solution of MADA problems with ignorance, a kind of probabilistic uncer-
tainty. In this paper, the ER approach is further developed to deal with MADA problems with both probabilistic and
fuzzy uncertainties.
In this newly developed ER approach, precise data, ignorance and fuzziness are all modelled under the unified

framework of a distributed fuzzy belief structure, leading to a fuzzy belief decision matrix. A utility-based grade match
method is proposed to transform both numerical data and qualitative (fuzzy) assessment information of various for-
mats into the fuzzy belief structure. A new fuzzy ER algorithm is developed to aggregate multiple attributes using
the information contained in the fuzzy belief matrix, resulting in an aggregated fuzzy distributed assessment for each
alternative. Different from the existing ER algorithm that is of a recursive nature, the new fuzzy ER algorithm provides
an analytical means for combining all attributes without iteration, thus providing scope and flexibility for sensitivity
analysis and optimisation. A numerical example is provided to illustrate the detailed implementation process of the
new ER approach and its validity and wide applicability.
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1. Introduction

Many real world multiple attribute decision analysis (MADA) problems are characterised with both
quantitative and qualitative attributes. For instance, the design evaluation of an engineering product
may require the simultaneous consideration of several attributes such as cost, quality, safety, reliability,
maintainability and environmental impact; in selection of its suppliers, an organisation needs to take
account of such attributes as quality, technical capability, supply chain management, financial soundness,
environmental, ethical, health and safety standards, and general factors. Most of such attributes are qual-
itative and could only be properly assessed using human judgments, which are subjective in nature and are
inevitably associated with uncertainties caused due to the human being�s inability to provide complete judg-
ments, or the lack of information, or the vagueness of the meanings about attributes and their assessments.
Such uncertainties can be classified into two main classes: ignorance (incompleteness) and fuzziness (vague-
ness). The Dempster–Shafer (D–S) theory of evidence (Dempster, 1967; Shafer, 1976) provides an appro-
priate framework to model ignorance whilst fuzziness can be well treated using fuzzy set theory (Zadeh,
1975, 1978).
Although the D–S theory was not originally proposed in relation to artificial intelligence (AI), it has

found wide applications in AI and expert systems over the past two decades (Yager et al., 1994; Wallery,
1996; Anand et al., 1996; Benferhat et al., 2000; Denoeux, 1997, 2000a; Guan and Bell, 1997; Bryson and
Mobolurin, 1999; Yager, 1999; Hullermeier, 2001; He et al., 2001; Davis and Hall, 2003). In decision anal-
ysis under uncertainty, the D–S theory has been mostly used as an alternative approach to Bayes decision
theory (Yager et al., 1994). It was not until 1994 that the D–S theory was first combined with a distributed
modelling framework to develop the Evidential Reasoning (ER) approach for dealing with MADA prob-
lems with probabilistic uncertainty (Yang and Singh, 1994; Yang and Sen, 1994a,b). In recent years, there
have been several other attempts to use the D–S theory of evidence for MADA from other perspectives
(Chen, 1997; Bauer, 1997; Beynon et al., 2000, 2001).
Different from most conventional MADA methods, the ER approach describes each attribute at an

alternative by a distributed assessment using a belief structure. The main advantage of doing so is that both
precise data and subjective judgments with uncertainty can be consistently modelled under the unified
framework. The ER approach provides a novel procedure for aggregating multiple attributes based on
the distributed assessment framework and the evidence combination rule of the D–S theory. It has since
been applied to MADA problems in engineering design assessment (Yang et al., 1994, 1997, 1998,
2001a,b), system safety analysis and synthesis (Wang et al., 1995, 1996), software safety analysis (Wang,
1997; Wang and Yang, 2001), organisational self-assessment (Yang et al., 2001a,b; Siow et al., 2001), con-
tractor selection (Sonmez et al., 2001, 2002), and so on.
Extensive research dedicated to the ER approach has been conducted in recent years. Firstly, the rule

and utility-based information transformation techniques were proposed within the ER modelling frame-
work (Yang, 2001). This work enables the ER approach to deal with a wide range of MADA problems
having precise data, random numbers and subjective judgments with probabilistic uncertainty in a way that
is rational, transparent, reliable, systematic and consistent. Then, the in-depth research into the ER algo-
rithm has been conducted by treating the unassigned belief degree in two parts, one caused due to the
incompleteness and the other caused due to the fact that each attribute plays only one part in the whole
assessment process because of its relative weight (Yang and Xu, 2002a). This work leads to a rigorous
yet pragmatic ER algorithm that satisfies several common sense rules governing any approximate reasoning
based aggregation procedures. The ER approach has thus been equipped with the desirable capability of
generating the upper and lower bounds of the degree of belief for any incomplete assessment, which are
crucial to measure the degree of ignorance. Thirdly, the decision analysis process of the ER approach
was fully investigated, which reveals the nonlinear features of the ER aggregation process (Yang and
Xu, 2002b). This work provides guidance on conducting sensitivity analysis using the ER approach. Last
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but not least, a window-based and graphically designed intelligent decision system (IDS) has been devel-
oped to implement the ER approach, which provides a flexible and easy to use interface for modelling, anal-
ysis and reporting. The ER approach and the IDS software have already been successfully applied to deal
with a wide range of MADA problems as mentioned earlier.
The current ER approach does not take account of vagueness or fuzzy uncertainty. In many decision

problems with qualitative attributes, however, it may be difficult to define assessment grades as independent
crisp sets. It would be more natural to define assessment grades using subjective and vague linguistic terms,
which may overlap in their meanings. For example, the assessment grades ‘‘good’’ and ‘‘very good’’ are dif-
ficult to be expressed as clearly distinctive crisp sets, but quite natural to be defined as two dependent fuzzy
sets. In other words, the intersection of the two fuzzy sets may not be empty. Fuzzy assessment approaches
have been widely researched and developed for decision analysis under fuzzy uncertainty (Carlsson and
Fuller, 1996; Ribeiro, 1996; Liang, 1999; Yeh et al., 2000; Chen, 2001). Nevertheless, pure fuzzy MADA
approaches are unable to handle probabilistic uncertainties such as ignorance as modelled in the belief
structure. As such, there is a clear need to combine the D–S theory and the fuzzy set theory for handling
both types of uncertainties. Indeed, there have been several attempts to generalize the D–S theory of evi-
dence to fuzzy sets (Ishizuka et al., 1982; Yager, 1982, 1996, 2002; Yen, 1990; Lucas and Araabi, 1999;
Denoeux, 1999, 2000b). However, these efforts were mainly focused on the normalization of fuzzy belief
structures and the other theoretical issues related to the combination of evidence under fuzzy environments.
In fact, none of these efforts was directed to deal with MADA problems with both probabilistic and fuzzy
uncertainties. This research has been conducted to fill the gap.
In this paper, the ER approach will be further developed to take into account fuzzy assessment grades,

resulting in a new ER approach for MADA under both probabilistic and fuzzy uncertainties. In particular,
a distributed fuzzy belief structure will be constructed to model precise data, ignorance and fuzziness under
the unified framework, leading to a fuzzy belief decision matrix. A utility-based grade match method will be
proposed to transform both numerical data and qualitative (fuzzy) assessment information of various for-
mats into the fuzzy belief structure. A new fuzzy ER algorithm will be developed to aggregate multiple
attributes using the information contained in the matrix, resulting in an aggregated fuzzy distributed assess-
ment for each alternative. Different from the existing ER algorithm that is of a recursive nature, the new
fuzzy ER algorithm provides an analytical means for combining all attributes in one go without iteration,
thus providing scope and flexibility for sensitivity analysis and optimisation. A numerical example will be
examined to demonstrate the detailed implementation process of the new ER approach and its validity and
wide applicability.
The paper is organized as follows. Section 2 provides a brief description of the D–S theory and the exist-

ing ER approach. In Section 3, the new ER approach for MADA under both probabilistic and fuzzy uncer-
tainties will be fully investigated, including the development of the fuzzy ER algorithm, the grade match
method for fuzzy information transformation, and the computational formula for generating fuzzy
expected utilities. Section 4 presents the investigation of a car selection problem using fuzzy and complete
assessment information to show the detailed implementation process of the new ER approach and its valid-
ity and wide applicability. The paper is concluded in Section 5. The derivation of the fuzzy ER algorithm
and the other formulae is provided in Appendices A and B.
2. The ER approach for MADA under probabilistic uncertainty

The ER approach is characterised by a distributed modelling framework capable of modelling both pre-
cise data and ignorance, by an evidential reasoning algorithm for aggregating both complete and incom-
plete information and by the interval utility for characterising incomplete assessments and for ranking
alternatives. The current version of the ER approach can be used to deal with MADA problems with
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probabilistic uncertainty, as briefly introduced in this section. Before the introduction, some basic concepts
of the Dempster–Shafer theory of evidence are discussed.
2.1. Basics of the evidence theory

The evidence theory was first developed by Dempster (1967) in the 1960s and later extended and refined
by Shafer (1976) in the 1970s. The evidence theory is related to Bayesian probability theory in the sense that
they both can update subjective beliefs given new evidence. The major difference between the two theories is
that the evidence theory is capable of combining evidence and dealing with ignorance in the evidence com-
bination process. The basic concepts and definitions of the evidence theory relevant to this paper are briefly
described as follows.
Let H = {H1, . . . ,HN} be a collectively exhaustive and mutually exclusive set of hypotheses, called the

frame of discernment. A basic probability assignment (bpa) is a function m : 2H ! [0,1], called a mass func-
tion and satisfying
mðUÞ ¼ 0 and
X
A�H

mðAÞ ¼ 1;
where U is an empty set, A is any subset of H, and 2H is the power set of H, which consists of all the subsets
of H, i.e. 2H = {U, {H1}, . . ., {HN},{H1 [ H2}, . . . , {H1 [ HN}, . . . ,H}. The assigned probability (also called
probability mass) m(A) measures the belief exactly assigned to A and represents how strongly the evidence
supports A. All assigned probabilities sum to unity and there is no belief in the empty set U. The probability
assigned to H, i.e. m(H), is called the degree of ignorance. Each subset A � H such that m(A) > 0 is called a
focal element of m. All the related focal elements are collectively called the body of evidence.
Associated with each bpa are a belief measure (Bel) and a plausibility measure (Pl) which are both func-

tions: 2H ! [0, 1], defined by the following equations, respectively:
BelðAÞ ¼
X
B�A

mðBÞ and PlðAÞ ¼
X

A\B6¼U

mðBÞ;
where A and B are subsets of H. Bel(A) represents the exact support to A, i.e. the belief of the hypothesis A
being true; Pl(A) represents the possible support to A, i.e. the total amount of belief that could be poten-
tially placed in A. [Bel(A),Pl(A)] constitutes the interval of support to A and can be seen as the lower and
upper bounds of the probability to which A is supported. The two functions can be connected by the
equation
PlðAÞ ¼ 1	 BelðAÞ;
where A denotes the complement of A. The difference between the belief and the plausibility of a set A de-
scribes the ignorance of the assessment for the set A (Shafer, 1976).
Since m(A), Bel(A) and Pl(A) are in one-to-one correspondence, they can be seen as three facets of the

same piece of information. There are several other functions such as commonality function, doubt function,
and so on, which can also be used to represent evidence. They all represent the same information and pro-
vide flexibility in a variety of reasoning applications.
The kernel of the evidence theory is the Dempster�s rule of combination by which the evidence from dif-

ferent sources is combined. The rule assumes that the information sources are independent and use the
orthogonal sum to combine multiple belief structures m = m1 
 m2 
 � � � 
 mK, where 
 represents the
operator of combination. With two belief structures m1 and m2, the Dempster�s rule of combination is
defined as follows:
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½m1 
 m2
ðCÞ ¼
0; C ¼ U;P

A\B¼C
m1ðAÞm2ðBÞ

1	
P

A\B¼U
m1ðAÞm2ðBÞ

; C 6¼ U;

8><>:

where A and B are both focal elements and [m1 
 m2](C) itself is a bpa. The denominator,
1	

P
A\B¼Um1ðAÞm2ðBÞ is called the normalization factor,

P
A\B¼Um1ðAÞm2ðBÞ is called the degree of con-

flict, which measures the conflict between the pieces of evidence. Several researchers have investigated
the combination of the evidence theory and fuzzy sets. In this paper, the principle investigated by Yen
(1990) is used to develop a new algorithm as discussed in Section 3.
Note that the crude application of the D–S theory and the combination rule can lead to irrational

conclusions in the aggregation of multiple pieces of evidence in conflict (Murphy, 2000). This issue is ad-
dressed in the ER approach introduced in the next section by generating basic probability assignment
through the combination of belief degrees and normalised weights and by normalising the combined prob-
ability masses.
2.2. The ER distributed modelling framework—the belief structure

The evidence theory was first introduced to deal with MADA problem under uncertainty in the early
1990s (Yang and Singh, 1994; Yang and Sen, 1994a,b) by designing a novel belief decision matrix to model
a MADA problem and creating a unique attribute aggregation process based on Dempster�s evidence com-
bination rule. Suppose a MADA problem has M alternatives al (l = 1, . . . ,M), one upper level attribute,
referred to as a general attribute, and L lower level attributes ei (i = 1, . . . ,L), called basic attributes. Sup-
pose the relative weights of the L basic attributes are given and denoted by w = (w1, . . . ,wL), which are nor-
malised to satisfy the following condition:
0 6 wi 6 1 and
XL

i¼1
wi ¼ 1: ð1Þ
In most conventional MADA methods, a score (value or utility) is used to assess an alternative on an
attribute and a MADA problem is modelled by a decision matrix. It is argued that a single score can only
represent the average performance but not the true diverse nature of a subjective assessment. In many deci-
sion situations, however, a human judgement may need to be used but may not be modelled using a precise
number without pre-aggregating various types of information, which often is a complicated process and can
hardly be consistent, reliable or systematic. MADA should be aimed at not only generating average scores
for ranking alternatives but also identifying the strengths and weaknesses of alternatives. A belief structure
as described in this section is therefore designed to capture the performance distribution of a qualitative
assessment. The kernel of the belief structure is the use of focal values or evaluation grades to which an
alternative can be assessed.
Suppose the M alternatives are assessed at the L attributes on the basis of N common crisp evaluation

grades Hn (n = 1, . . . ,N), which are required to be mutually exclusive and collectively exhaustive. If alter-
native al is assessed to a grade Hn on an attribute ei with a degree of belief of bn,i (al), we denote this assess-
ment by S(ei(al)) = {(Hn,bn,i(al)),n = 1, . . . ,N}, which is a distributed assessment and referred to as a belief
structure, where bn,i(al)P0 and

PN
n¼1bn;iðalÞ 6 1. If

PN
n¼1bn;iðalÞ ¼ 1, the assessment is said to be complete;

otherwise, it is incomplete. Note that
PN

n¼1bn;iðalÞ ¼ 0 denotes total ignorance about the assessment of al
on ei. For example, if the quality of an engine is assessed to ‘‘good’’ with a belief degree of 70% and to
‘‘excellent’’ with a degree of belief of 30%, this assessment will be complete; if it is assessed to 50% ‘‘good ’’
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and to 30% ‘‘excellent’’, then the assessment will be incomplete with a degree of incompleteness of 20%. The
individual assessments of all alternatives on each basic attribute are represented by a belief decision matrix,
defined as follows:
Dg ¼ ðSðeiðalÞÞÞL�M : ð2Þ
2.3. The recursive ER algorithm

One simple approach for attribute aggregation is to transform a belief structure into a single score and
then aggregate attributes on the basis of the scores using traditional methods such as the additive utility
function approach. However, such transformation would hide performance diversity shown in a distribu-
tion assessment, leading to the possible failure of identifying strengths and weaknesses of an alternative
on higher level attributes. In the ER approach, attribute aggregation is based on evidential reasoning
rather than directly manipulating (e.g. adding) scores. In other words, the given assessments of alterna-
tives on the individual basic attributes are treated as evidence and which evaluation grades the general
attribute should be assessed to is treated as hypotheses (Yang and Singh, 1994; Yang and Sen,
1994a,b). Dempster�s evidence combination rule is then employed and revised to create a novel process
for such attribute aggregation (Yang, 2001; Yang and Xu, 2002a). The revision of the rule is necessary
due to the need to handle conflicting evidence and follow common sense rules for attribute aggregation
in MADA. The detailed analysis and the rationale on the development of the attribute aggregation proc-
ess can be found in the references (Yang, 2001; Yang and Xu, 2002a). The process is briefly described as
the following steps.
First of all, a degree of belief given to an assessment grade Hn for an alternative al on an attribute ei is

transformed into a basic probability mass by multiplying the given degree of belief by the relative weight of
the attribute using the following equations:
mn;i ¼ miðHnÞ ¼ wibn;iðalÞ; n ¼ 1; . . . ;N ; i ¼ 1; . . . ; L; ð3Þ

mH ;i ¼ miðHÞ ¼ 1	
XN
n¼1

mn;i ¼ 1	 wi

XN
n¼1

bn;iðalÞ; i ¼ 1; . . . ; L; ð4Þ

�mH ;i ¼ �miðHÞ ¼ 1	 wi; i ¼ 1; . . . ; L; ð5Þ

~mH ;i ¼ ~miðHÞ ¼ wið1	
XN
n¼1

bn;iðalÞÞ; i ¼ 1; . . . ;L; ð6Þ
with mH ;i ¼ �mH ;i þ ~mH ;i and
PL

i¼1wi ¼ 1.
Note that the probability mass assigned to the whole set H,mH,i which is currently unassigned to any

individual grades, is split into two parts: �mH ;i and ~mH ;i, where �mH ;i is caused by the relative importance
of the attribute ei and ~mH ;i by the incompleteness of the assessment on ei for al.
The second step is to aggregate the attributes by combining the basic probability masses generated

above, or reasoning based on the given evidence (Yang and Singh, 1994). Due to the assumptions that
the evaluation grades are mutually exclusive and collectively exhaustive and that assessments on a basic
attribute are independent of assessments on other attributes, or utility independence among attributes (Kee-
ney and Raiffa, 1993), the Dempster�s combination rule can be directly applied to combine the basic prob-
ability masses in a recursive fashion. In the belief decision matrix framework, the combination process can
be developed into the following recursive ER algorithm (Yang, 2001; Yang and Xu, 2002a):
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fHng :mn;Iðiþ1Þ ¼ KIðiþ1Þ½mn;IðiÞmn;iþ1 þ mn;IðiÞmH ;iþ1 þ mH ;IðiÞmn;iþ1
; ð7Þ

mH ;IðiÞ ¼ �mH ;IðiÞ þ ~mH ;IðiÞ; n ¼ 1; . . . ;N ;

fHg : ~mH ;Iðiþ1Þ ¼ KIðiþ1Þ½~mH ;IðiÞ ~mH ;iþ1 þ ~mH ;IðiÞ �mH ;iþ1 þ �mH ;IðiÞ ~mH ;iþ1
; ð8Þ

fHg : �mH ;Iðiþ1Þ ¼ KIðiþ1Þ½�mH ;IðiÞ �mH ;iþ1
; ð9Þ

KIðiþ1Þ ¼ 1	
XN
n¼1

XN
t¼1
t 6¼n

mn;IðiÞmt;iþ1

2664
3775

	1

; i ¼ 1; . . . ; L 	 1; ð10Þ

fHng : bn ¼
mn;IðLÞ

1	 �mH ;IðLÞ
; n ¼ 1; . . . ;N ; ð11Þ

fHg : bH ¼ ~mH ;IðLÞ

1	 �mH ;IðLÞ
: ð12Þ
In the above equations, mn,I(i) denotes the combined probability mass generated by aggregating i attributes;
mn,I(i)mn,i+1 measures the relative support to the hypothesis that the general attribute should be assessed to
the grade Hn by both the first i attributes and the (i + 1)th attribute; mn,I(i)mH,i+1 measures the relative sup-
port to the hypothesis by the first i attributes only; mH,I(i)mn,i+1 measures the relative support to the hypoth-
esis by the (i + 1)th attribute only. It is assumed in the above equations that mn,I(1) = mn,1 (n = 1, . . .,N),
mH,I(1) = mH,1, �mH ;Ið1Þ ¼ �mH ;1 and ~mH ;Ið1Þ ¼ ~mH ;1. Note that the aggregation process does not depend on
the order in which attributes are combined.

bn and bH represent the belief degrees of the aggregated assessment, to which the general attribute is as-
sessed to the grades Hn and H, respectively. The combined assessment can be denoted by S(y(al)) = {(Hn,b-
n(al)), n = 1, . . . ,N}. It has been proved that

PN
n¼1bn þ bH ¼ 1 (Yang and Xu, 2002a). Yang and Xu also

put forward four axioms and proved the rationality and validity of the above recursive ER algorithm.
The nonlinear features of the above aggregation process were also investigated in detail (Yang and Xu,
2002b). In the above ER algorithm, Eqs. (7)–(10) are the direct implementation of the Dempster�s evidence
combination rule within the belief decision matrix; the weigh normalisation process shown in Eq. (1), the
assignment of the basic probability masses shown in Eqs. (3)–(6) and the normalisation of the combined
probability masses shown in Eqs. (11) and (12) are developed to ensure that the ER algorithm can process
conflicting evidence rationally and satisfy common sense rules for attribute aggregation in MADA (Yang
and Xu, 2002a).
2.4. The utility interval based ER ranking method

The above ER algorithm allows each attribute to have its own set of evaluation grades. Before the aggre-
gation, however, all different sets of evaluation grades have to be transformed into a unified set of assess-
ment grades using either the rule or utility-based equivalence transformation techniques. The interested
reader may refer to the paper by Yang (2001).
In order to compareM alternatives at the presence of incomplete assessments, maximum, minimum and

average utilities are introduced and used to rank them. Suppose the utility of an evaluation grade Hn is
u(Hn), then the expected utility of the aggregated assessment S(y(al)) is defined as follows:
uðSðyðalÞÞÞ ¼
XN
n¼1

bnðalÞuðHnÞ: ð13Þ
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The belief degree bn(al) stands for the lower bound of the likelihood that al is assessed to Hn, whilst the
corresponding upper bound of the likelihood is given by (bn(al) + bH(al)) (Yang, 2001; Yang and Xu,
2002a), which leads to the establishment of a utility interval if the assessment is incomplete. Without loss
of generality, suppose the least preferred assessment grade having the lowest utility is H1 and the most pre-
ferred assessment grade having the highest utility is HN. Then the maximum, minimum and average utilities
of al can be calculated by
umaxðalÞ ¼
XN	1

n¼1
bnðalÞuðHnÞ þ ðbN ðalÞ þ bHðalÞÞuðHN Þ; ð14Þ

uminðalÞ ¼ ðb1ðalÞ þ bH ðalÞÞuðH 1Þ þ
XN
n¼2

bnðalÞuðHnÞ; ð15Þ

uavgðalÞ ¼
umaxðalÞ þ uminðalÞ

2
: ð16Þ
It is obvious that if u(H1) = 0 then u(S(y(al))) = umin(al); if original assessments S(ei(al)) in the belief deci-
sion matrix are all complete, then bH(al) = 0 and u(S(y(al))) = umin(al) = umax(al) = uavg(al). It has to be
made clear that the above utilities are only used for characterizing a distributed assessment but not for
attribute aggregation. According to the maximum, minimum utilities and the corresponding utility interval,
the ranking of two alternatives can be made as follows. If umin(al)P umax(ak), al is said to be preferred to ak;
if umin(al) = umin(ak) and umax(al) = umax(ak), al is said to be indifferent to ak. In other cases, average utility
may be used to generate an average ranking, but this kind of ranking may be inconclusive and unreliable.
To produce a reliable ranking, the quality of original assessments must be improved by reducing impreci-
sion or incompleteness present in the original information associated with al and ak.
3. The ER approach for MADA under both probabilistic and fuzzy uncertainties

In the ER approach introduced above, the assessment grades are assumed to be crisp and independent of
each other. In many situations, however, an assessment grade may represent a vague or fuzzy concept or
standard and there may be no clear cut between the meanings of two adjacent grades. In this paper, we will
drop the above assumption and allow the grades to be fuzzy and dependent. To simplify the discussion and
without loss of generality, fuzzy sets will be used to characterise such assessment grades and it is assumed
that only two adjacent fuzzy grades have the overlap of meanings. This represents the most common
features of fuzzy uncertainty in decision analysis. Note that the principle of the following method can be
extended to more general cases.

3.1. The new ER distributed modelling framework the fuzzy belief structure

Suppose a general set of fuzzy assessment grades {Hn} (n = 1, . . . ,N) are dependent on each other, which
may be either triangular or trapezoidal fuzzy sets or their combinations. Assuming that only two adjacent
fuzzy assessment grades may intersect, we denote byHn,n+1 the fuzzy intersection subset of the two adjacent
fuzzy assessment grades Hn and Hn+1 (see Fig. 1).
Since fuzzy assessment grades and belief degrees are used, then S(ei(al)) as defined in Section 2.1 contains

both fuzzy sets (grades) and belief degrees. The former can model fuzziness or vagueness and the latter
incompleteness or ignorance. As such, S(ei(al)) is referred to as fuzzy belief structure in this paper.
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3.2. The new ER algorithm for MADA under both probabilistic and fuzzy uncertainties

In the derivation of Eqs. (7)–(10), it was assumed that the evaluation grades are independent of each
other. Due to the dependency of the adjacent fuzzy assessment grades on each other as shown in Fig. 1,
Eqs. (7)–(10) can no longer be employed without modification to aggregate attributes assessed using such
fuzzy grades. However, the evidence theory provides scope to deal such fuzzy assessments. The ideas similar
to those used to develop the non-fuzzy evidential reasoning algorithm (Yang and Singh, 1994; Yang and
Sen, 1994a,b) are used to deduce the following fuzzy evidential reasoning algorithm. The new challenge
is that the intersection of two adjacent evaluation grades Hn and Hn +1 is Hn,n+1, which is not empty as
shown in Fig. 1. Another difference is that the normalisation has to be conducted after all pieces of evidence
have been combined in order to preserve the property that the generated belief and plausibility functions
still represent the lower and upper bounds of the combined degrees of belief (Yen, 1990).
In this subsection, a fuzzy ER algorithm will be developed using the similar technique used in Yang and

Singh (1994). Following the assumptions on the fuzzy assessment grades made in the previous subsection,
based on the belief decision matrix as shown in Eq. (2) and the basic probability masses generated using
Eqs. (3)–(6), it is proven in Appendix A that the following analytical (non-recursive) fuzzy ER algorithm
can be used to aggregate the L basic attributes for alternative al (l = 1, . . . ,M):
fHng : mðHnÞ ¼ k
YL
i¼1

½miðHnÞ þ miðHÞ
 	
YL
i¼1

miðHÞ
( )

; n ¼ 1; . . . ;N ; ð17Þ

fHn;nþ1g : mðHn;nþ1Þ ¼ klmaxHn;nþ1

YL
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
YL
i¼1

½miðHnÞ þ miðHÞ

(

	
YL
i¼1

½miðHnþ1Þ þ miðHÞ
 þ
YL
i¼1

miðHÞ
)
; n ¼ 1; . . . ;N 	 1; ð18Þ

fHg : ~mðHÞ ¼ k
YL
i¼1

miðHÞ 	
YL
i¼1

�miðHÞ
( )

; ð19Þ

fHg : �mðHÞ ¼ k
YL
i¼1

�miðHÞ
" #

;

k ¼
XN	1

n¼1
1	 lmaxHn;nþ1

� � YL
i¼1

½miðHnÞ þ miðHÞ
 	
YL
i¼1

miðHÞ
 !(

þ
XN	1

n¼1
lmaxHn;nþ1

YL
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
YL
i¼1

½miðHnþ1Þ þ miðHÞ

 !

þ
YL
i¼1

½miðHN Þ þ miðHÞ

)	1

; ð20Þ

fHng : bn ¼
mðHnÞ
1	 �mðHÞ ; n ¼ 1; . . . ;N ; ð21Þ

fHn;nþ1g : bn;nþ1 ¼
mðHn;nþ1Þ
1	 �mðHÞ ; n ¼ 1; . . . ;N 	 1; ð22Þ

fHg : bH ¼ ~mðHÞ
1	 �mðHÞ ; ð23Þ
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where Hn;nþ1 is a normalized fuzzy subset for the fuzzy intersection subset Hn,n+1 whose maximum degree of
membership is represented by lmaxHn;nþ1

and is usually less than one, as shown in Fig. 2.
Hn,n+1 is normalised to Hn;nþ1 as shown in Eq. (18) so that Hn,n+1 can be measured as a formal fuzzy set

with the maximum membership degree being one, therefore assessed in the same scale as the other defined
fuzzy evaluation grades such as Hn (Fig. 1). The normalisation of Hn,n+1 seems logical because the proba-
bility mass mðHn;nþ1Þ assigned to the fuzzy intersection subset is directly related to the height of Hn,n+1. In
other words, how Hn and Hn+1 are interrelated is thus taken into account in the calculation of the belief as-
signed to their intersection. Without the normalisation, mðHn;nþ1Þ would remain constant as long as Hn and
Hn+1 intersect, however small or large the intersection might be. Since Hn;nþ1 (or Hn,n+1) is not an originally
defined fuzzy evaluation grade, however, its degree of belief (or bn,n+ 1) should eventually be reassigned toHn
and Hn+1. The detailed assignment approach will be discussed in the late part of Section 3.4.

3.3. Fuzzy grade utility

Utility is one of the most important concepts in decision analysis. It reflects a decision maker (DM)�s
preferences for various values of a variable and measures the relative strength of desirability that the
DM has for those values. A function that reflects the DM�s preferences is referred to as a utility function.
For different decision problems, the same DM may have different preferences and utilities as well as utility
functions. For the same decision problem, different DMs may have different preferences, utilities and utility
functions in different circumstances.
In crisp MADA, utilities corresponding to crisp assessment grades can be represented by singleton

numerical values. In fuzzy MADA, however, utilities corresponding to fuzzy assessment grades can no
longer be represented by singleton numerical values because the evaluation grades are fuzzy sets. In this
paper, we define utilities corresponding to fuzzy assessment grades by fuzzy grade utilities or fuzzy utilities
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for short. If a fuzzy assessment grade is a triangular fuzzy number, its corresponding fuzzy grade utility
should also be a triangular fuzzy number. If a fuzzy assessment grade is a trapezoidal fuzzy number, its
corresponding fuzzy utility will also be a trapezoidal fuzzy number. If fuzzy assessment grades are the com-
binations of triangular and trapezoidal fuzzy numbers, their corresponding grade utilities will be trapezo-
idal fuzzy numbers. In other words, a fuzzy grade utility should have the same form as its corresponding
fuzzy assessment grade. The fuzzy grade utilities corresponding to the fuzzy assessment grades in Fig. 1 are
shown in Fig. 3. Fuzzy grade utilities will be used as a basis for fuzzy grade transformation as discussed
later. Note that the definition of fuzzy sets and the estimation of utilities are problem specific (Liu et al.,
2004).

3.4. The grade match method for transforming fuzzy assessment grades

The fuzzy ER algorithm proposed in Section 3.2 is based on the assumption that the L basic attributes
employ the same set of fuzzy assessment grades as the general attribute. In practice, however, to facilitate
data collection and assessment, each basic attribute may be assessed using a specific set of fuzzy assessment
grades different from those for other attributes. In such cases, before the above fuzzy ER algorithm can be
applied, it is necessary to transform the belief decision matrix described in forms of different sets of
fuzzy assessment grades into one expressed in the same set of fuzzy assessment grades. This mirrors the nor-
malisation process in traditional MADA methods to transform attributes to the same space to facilitate
trade-off analysis among attributes. In the development of the non-fuzzy evidential reasoning approach,
an information transformation process was proposed (Yang, 2001). In this section, a similar information
transformation technique is proposed to transform various sets of fuzzy evaluation grades into a unified
set of grades on the basis of the fuzzy grade utilities.
Suppose the basic attribute ei employs its own set of fuzzy assessment grades eHni ðni ¼ 1; . . . ;NiÞ, based

on which the following distributed assessments are provided: eSðeiðalÞÞ ¼ fð eHni ;
~bni ;iðalÞÞ; ni ¼ 1; . . . ;Nig

with ~bni;iðalÞ P 0 and
PNi

ni¼1
~bni;iðalÞ 6 1. The question is how to find the relations between the two different

sets of fuzzy assessment grades Hn (n = 1, . . . ,N) and eHni ðni ¼ 1; . . . ;NiÞ, so that the latter can be equiv-
alently represented by the former in some sense. One of such transformation techniques is to compare their
fuzzy grade utilities and relative position relations. Fig. 4 shows the typical relative position relations
between one basic fuzzy assessment grade eHni and two general assessment grades Hn and Hn+1.
From Fig. 4 one can see that eHni lies completely between Hn and Hn+1, and has no intersection with any

other general fuzzy assessment grades. Therefore, it is sufficient to use only Hn and Hn+1 to represent eHni .
Suppose eH ni intersects Hn with an area of (Sn + Sn,n+ 1) and Hn+1 with an area of (Sn,n+1 + Sn+1), where
Sn,n+1 is the common area of eHni intersecting both Hn and Hn+1. The minimum distance between the peaks
of eHni and Hn is denoted by dn and that between the peaks of eH ni and Hn+1 by dn+1. The representation ofeHni by Hn and Hn+1 must at least follow the following three axioms.



(U)µ

1 nH
inH

~
n+1H

Sn Sn+1

Sn,n+1

Utility
dn dn+1

Fig. 4. The relations between different fuzzy assessment grades.

320 J.B. Yang et al. / European Journal of Operational Research 171 (2006) 309–343
Axiom 1. If eHni is entirely included within a fuzzy assessment grade Hn, then it should completely belong
to Hn.

Axiom 2. If eH ni only intersects a fuzzy assessment grade Hn and has no non-empty intersection subset with
any other grade, then it should also completely belong to Hn, no matter whether it is entirely included in Hn

or not.

Axiom 3. If eH ni intersects several fuzzy assessment grades at the same time but it is not entirely included in
any one of them, then it should belong to each of them to certain extents.

It seems logical that the belief degree of eH ni belonging to an assessment grade, say Hn, is related to
Sn,Sn+1,Sn,n+1,dn and dn+1. Intuitively, a large Sn and a small Sn+1 together with a small dn and a large
dn+1 should imply a high degree of belief to which eHni belongs toHn. Special care must be taken in handling
Sn,n+1. Axiom 1 requires that the allocation of Sn,n+1 be related to the distances dn and dn+1 as well as the
areas Sn and Sn+1. In particular, if dn and Sn+1 are both zero, then Sn,n+1 should be completely allocated to
Hn; if dn+1 and Sn are both zero, then Sn,n+1 should be completely allocated to Hn+1. As such, the following
two allocation factors AFn and AFn+1 are introduced:
AF n ¼
1

2
1	 dn

dn þ dnþ1

� �
þ Sn

Sn þ Snþ1

� �
; ð24Þ

AF nþ1 ¼
1

2
1	 dnþ1

dn þ dnþ1

� �
þ Snþ1

Sn þ Snþ1

� �
: ð25Þ
It is obvious that AFn + AFn+1 = 1. Also, if dn and Sn+1 are both zero, then AFn = 1 and AFn+1 = 0; if
dn+1 and Sn are both zero, then AFn = 0 and AFn+1 = 1. The allocation factors are used to assign the belief
degrees to which eHni is allocated to Hn and Hn+1 as follows:
Belð eH ni � HnÞ ¼
Sn þ AF n � Sn;nþ1

Sn þ Sn;nþ1 þ Snþ1
; ð26Þ

Belð eH ni � Hnþ1Þ ¼
Snþ1 þ AF nþ1 � Sn;nþ1

Sn þ Sn;nþ1 þ Snþ1
: ð27Þ
It can be shown that the above assignments of the belief degrees satisfy the three axioms. The concept of
assigning belief degrees through introducing allocation factors can be further extended to general cases
where a basic fuzzy assessment grade eH ni intersects more than two general fuzzy assessment grades. Fig.
5 shows the case of eHni intersecting Hn, Hn+1 and Hn+2.
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Based on similar considerations as for defining AFn and AFn+1 and from Fig. 5, the allocation factors for
distributing Sn,n+1 between the fuzzy assessment grades Hn and Hn+1 and for distributing Sn+1,n+2 between
the fuzzy assessment grades Hn +1 and Hn+2 are given as follows:
AF nðSn;nþ1Þ ¼
1

2
1	 dn

dn þ dnþ1

� �
þ Sn

Sn þ Snþ1 þ Snþ1;nþ2

� �
; ð28Þ

AF nþ1ðSn;nþ1Þ ¼
1

2
1	 dnþ1

dn þ dnþ1

� �
þ Snþ1 þ Snþ1;nþ2

Sn þ Snþ1 þ Snþ1;nþ2

� �
; ð29Þ

AF nþ1ðSnþ1;nþ2Þ ¼
1

2
1	 dnþ1

dnþ1 þ dnþ2

� �
þ Snþ1 þ Sn;nþ1

Snþ1 þ Sn;nþ1 þ Snþ2

� �
; ð30Þ

AF nþ2ðSnþ1;nþ2Þ ¼
1

2
1	 dnþ2

dnþ1 þ dnþ2

� �
þ Snþ2

Snþ1 þ Sn;nþ1 þ Snþ2

� �
: ð31Þ
Based on the above allocation factors, the belief degrees to which eH ni is assigned to Hn,Hn+1 and Hn+2
are calculated as follows:
Belð eH ni � HnÞ ¼
Sn þ AF nðSn;nþ1Þ � Sn;nþ1

Sn þ Sn;nþ1 þ Snþ1 þ Snþ1;nþ2 þ Snþ2
; ð32Þ

Belð eH ni � Hnþ1Þ ¼
Snþ1 þ AF nþ1ðSn;nþ1Þ � Sn;nþ1 þ AF nþ1ðSnþ1;nþ2Þ � Snþ1;nþ2

Sn þ Sn;nþ1 þ Snþ1 þ Snþ1;nþ2 þ Snþ2
; ð33Þ

Belð eH ni � Hnþ2Þ ¼
Snþ2 þ AF nþ2ðSnþ1;nþ2Þ � Snþ1;nþ2

Sn þ Sn;nþ1 þ Snþ1 þ Snþ1;nþ2 þ Snþ2
ð34Þ
with
PN

n¼1Belð eH ni � HnÞ ¼ 1. It can be shown that the above assignments of the belief degrees also satisfy
the three axioms. This information transformation technique is referred to as the grade match technique
based on the fuzzy utilities or the grade match technique for short. Using this technique, eHni can be rep-
resented as fðHn;Belð eHni � HnÞÞ; n ¼ 1; . . . ;Ng. Thus, the general set of fuzzy assessment grades Hn
(n = 1, . . . ,N) can be used to represent the basic set of fuzzy assessment grades eHni ðni ¼ 1; . . . ;NiÞ. A dis-

tributed assessment based on the basic set of fuzzy assessment grades eSðeiðalÞÞ ¼ fð eH ni ;
~bni;iðalÞÞ;

ni ¼ 1; . . . ;Nig can then be expressed as S(ei(al)) = {(Hn,bn,i(al)), n = 1, . . . ,N} using the general set of fuzzy

assessment grades, where bn;iðalÞ ¼
PNi

ni¼1
~bni;iðalÞBelð eHni � HnÞ.
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Now we can solve the problem of reassigning the belief degree of the fuzzy intersection subset Hn;nþ1.
Since Hn;nþ1 intersects Hn and Hn+1 only (Fig. 6), the degree of belief assigned to Hn;nþ1 should only be reas-
signed to the two fuzzy grades Hn and Hn+1. From Fig. 6, we have
AF n ¼
1

2
1	 dn

dn þ dnþ1

� �
þ Sn

Sn þ Snþ1

� �
; ð35Þ

AF nþ1 ¼
1

2
1	 dnþ1

dn þ dnþ1

� �
þ Snþ1

Sn þ Snþ1

� �
; ð36Þ

BelðHn;nþ1 � HnÞ ¼
Sn þ AF n � Sn;nþ1

Sn þ Sn;nþ1 þ Snþ1
; ð37Þ

BelðHn;nþ1 � Hnþ1Þ ¼
Snþ1 þ AF nþ1 � Sn;nþ1

Sn þ Sn;nþ1 þ Snþ1
: ð38Þ
Thus, the belief degree bn,n+1 can be divided into two parts: bn;nþ1BelðHn;nþ1 � HnÞ and
bn;nþ1BelðHn;nþ1 � Hnþ1Þ. The former should be added to bn and the latter to bn+1. It is easy to prove that
if lUðHnÞ þ lUðHnþ1Þ � 1 at any utility value, where lUðHnÞ is the membership degree of a utility value belong-
ing to the fuzzy set Hn and lUðHnþ1Þ is the membership degree of the same utility value belonging to the fuzzy
setHn+1, then BelðHn;nþ1 � HnÞ ¼ BelðHn;nþ1 � Hnþ1Þ � 0:5. Therefore, the final belief degree that supports
the fuzzy assessment grade Hn should include three parts: bn þ bn;nþ1BelðHn;nþ1 � HnÞ þ bn	1;nBelðHn	1;n �
HnÞ for n = 2, . . . ,N 	 1. The belief degree for H1 is given by b1 þ b1;2BelðH 1;2 � H 1Þ and
bN þ bN	1;NBelðHN	1;N � HN Þ for HN. The belief degree which supports the whole set H = {H1, . . . ,HN}
is still bH. For convenience, we denote the above final belief degrees by b1F,b2F, . . . ,bNF and bH. Therefore,
the final aggregated assessment can be expressed as S(y(al)) = {(Hn,bnF(al)), n = 1, . . . ,N}.
3.5. The expression of exact data using fuzzy assessment grades

Quantitative attributes are normally measured by numerical data. To use the ER approach to conduct
decision analysis using quantitative attributes together with qualitative attributes having fuzzy assessment
grades, all numerical data need be transformed into distributed assessments. This is logical as the assess-
ment of a quantitative attribute can also be properly characterised by fuzzy assessment grades. Take a price
attribute for example. We may say that any prices between P1 and P2 are ‘‘good’’ which is a vague or fuzzy
concept, but their degrees of being ‘‘good’’ are different. Thus, we may use a fuzzy number to describe an
assessment grade ‘‘good’’ for the price attribute.
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Suppose a basic attribute ej is a quantitative attribute, which has its own set of fuzzy assessment gradeseHnj ðnj ¼ 1; . . . ;NjÞ. For an exact numerical value ej(al), we define its degrees of belief to the assessment
grades by normalising its membership degrees to these grades. It can be seen from Fig. 7 that a numerical
value ej(al) belongs to two different fuzzy assessment grades eHnj and eH njþ1 with membership degrees of l ~Hnj

and l ~Hnjþ1
, respectively.

To obtain the distributed assessment of an alternative al on the basic attribute ej, these two membership
degrees are normalised to generate its degrees of belief as follows:
~bnj;jðalÞ ¼
l ~Hnj

l ~Hnj
þ l ~Hnjþ1

; ð39Þ

~bnjþ1;jðalÞ ¼
l ~Hnjþ1

l ~Hnj
þ l ~Hnjþ1

: ð40Þ
Thus, we have the distributed assessment eSðejðalÞÞ ¼ fð eHnj ;
~bnj;jðalÞÞ; ð eH njþ1;

~bnjþ1;jðalÞÞg. After all numer-
ical data are transformed into distributed assessments, if their evaluation grades are different from the gen-
eral set of fuzzy assessment grades, the grade match technique can be used to transform the former into the
latter, as discussed in Section 3.3.

3.6. Fuzzy expected utilities for characterising alternatives

Different from the fuzzy grade utilities, fuzzy expected utilities are calculated for alternatives. They are
employed to compare and rank alternatives. The fuzzy expected utility of an aggregated assessment S(y(al))
for alternative al is defined as follows:
uðSðyðalÞÞÞ ¼
XN
n¼1

bnF ðalÞuðHnÞ; ð41Þ
where u(Hn) is the fuzzy grade utility of the assessment grade Hn. Accordingly, the fuzzy expected utility
u(S(y(al))) is also a fuzzy number. However, the existence of the upper and lower bounds of the degrees
of belief may lead to the maximum and minimum fuzzy expected utilities. Without loss of generality, sup-
pose H1 is the least preferred fuzzy assessment grade, which has the lowest fuzzy grade utility, andHN is the
most preferred fuzzy assessment grade, which has the highest fuzzy grade utility. Then the maximum and
the minimum fuzzy expected utilities of alternative al are calculated by
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umaxðalÞ ¼
XN	1

n¼1
bnF ðalÞuðHnÞ þ ðbNF ðalÞ þ bHðalÞÞuðHN Þ; ð42Þ

uminðalÞ ¼ ðb1F ðalÞ þ bH ðalÞÞuðH 1Þ þ
XN
n¼2

bnF ðalÞuðHnÞ; ð43Þ
which are both fuzzy numbers. They will be different if there exist incomplete assessments. In the case of all
original assessments S(ei(al)) being complete, then there is bH(al) = 0 and therefore we have u(S(y(al))) =
umin(al) = umax(al). Based on the concept of fuzzy expected utilities, the comparison of alternatives reduces
to the comparison of the maximum and the minimum fuzzy expected utilities of alternatives.
4. Use fuzzy grades and complete information to assess cars

In this section, a numerical example is examined to demonstrate the implementation process of the new
ER approach to deal with MADA problems with both probabilistic and fuzzy uncertainties.

4.1. Problem description of a car evaluation problem with fuzzy assessment grades

Consider a performance assessment problem of executive cars on seven basic performance attributes,
four of which are quantitative with the others being qualitative. The quantitative attributes are Acceleration
(seconds from 0mph to 60mph), Braking (feet from 60mph to 0mph), Horsepower (hp) and Fuel economy
(mpg), while the qualitative attributes are Handling, Ride quality and Powertrain. For convenience, we
denote them by e1,e2,e4,e7,e3,e5,e6, respectively, of which e1 and e2 are for minimisation and the others
for maximisation. The data are shown in Table 1 (Yang, 2001). The relative weight of the ith attribute
is denoted by wi (i = 1, . . ., 7).
Suppose the performance of a car is classified into six categories (grades), which are Top (T), Excellent

(E), Good (G), Average (A), Poor (P) and Worst (W). They consist of the general set of assessment grades:
H ¼ fHj; j ¼ 1; . . . ; 6g ¼ fWorst; Poor;Average;Good;Excellent; Topg:

In this paper, different from Yang (2001) it is assumed that all the six assessment grades are either tri-

angular or trapzoidal fuzzy numbers, as shown in Fig. 8 and also defined in Table 2. The corresponding
fuzzy grade utilities are also assumed as shown in Fig. 9 and also defined in Table 2. Note that these
assumptions are made to demonstrate the implementation process of the new ER approach, though other
types of fuzzy numbers can also be used, depending upon specific circumstances. Note that in practice the
fuzzy sets and their utilities need to be assigned or estimated by analysts and decision makers concerned and
in general sensitivity analysis can be conducted to examine the impact of defined utilities on the final
assessments.
1
al performance assessment of executive cars

mance Car 1 Car 2 Car 3 Car 4 Car 5 Car 6

ration (e1) 8.8 8.0 7.7 8.4 8.0 7.9
g (e2) 128 124 127 134 135 126
ing (e3) B A B B	 B+ A

power (e4) 196 152 182 183 138 171
uality (e5) A	 B	 B B+ B+ A	
train (e6) B B+ A B A	 A

conomy (e7) 20 20 21 20 19 20
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Fig. 8. The general set of fuzzy assessment grades for car evaluation.

Table 2
Membership functions of the fuzzy assessment grades and their fuzzy utilities

Linguistic term Worst (W) Poor (P) Average (A) Good (G) Excellent (E) Top (T)

Membership
functions of
fuzzy assessment
grades

(1, 1, 3) (1, 3, 5) (3, 5, 6) (5, 6, 7, 8) (7, 8, 9) (8, 9, 9)

Membership
functions of fuzzy
grade utilities

(0, 0, 0.2) (0, 0.2, 0.4) (0.2, 0.4, 0.6) (0.4, 0.6, 0.7, 0.85) (0.7, 0.85, 1) (0.85, 1, 1)
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Fig. 9. Fuzzy utilities of the general set of fuzzy assessment grades.
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For simplicity, suppose all qualitative attributes are assessed with reference to this general set of fuzzy
assessment grades. The assessment results are presented in Table 1, where
C	 () fðWorst; 1:0Þg; C () fðWorst; 0:6Þ; ðPoor; 0:4Þg; Cþ () fðPoor; 0:6Þ; ðAverage; 0:4Þg;
B	 () fðAverage; 1:0Þg; B () fðAverage; 0:4Þ; ðGood; 0:6Þg; Bþ () fðGood; 1:0Þg;
A	 () fðGood; 0:6Þ; ðExcellent; 0:4Þg; A () fðExcellent; 0:6Þ; ðTop; 0:4Þg; Aþ () fðTop; 1:0Þg:
The symbol ‘‘() ’’ means ‘‘is equivalent to’’.

4.2. Characterising quantitative data using fuzzy assessment grades

The four quantitative attributes may use either different sets of fuzzy assessment grades or the same set of
grades as the general attribute, depending on the need of real assessments. For illustration purpose, a dif-
ferent set of fuzzy assessment grades is employed in this paper, similar to the general set of grades in words
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but not the same in meanings. The set of fuzzy assessment grades for the quantitative attributes is also
called Top (eT ), Excellent (eE), Good (eG), Average (eA), Poor (eP ) and Worst ( eW ). They form the basic set
of fuzzy assessment grades for quantitative attributes:
eH ¼ f eH j; j ¼ 1; . . . ; 6g ¼ fWorst ð eW Þ; Poor ðeP Þ;Average ðeAÞ;Good ðeGÞ;Excellent ðeEÞ; Top ðeT Þg:

For different quantitative attributes, although the words of the assessment grades are the same, the def-

initions of their membership functions are different, which are shown in Figs. 10–13 and also defined in
Table 3. The corresponding fuzzy grade utilities are shown in Fig. 14 and defined in Table 4.
Given the fuzzy assessment grades and the corresponding membership functions, the data shown in

Table 1 for quantitative attributes can easily be transformed into distributed assessments using formulas
(39) and (40). Take the acceleration time of car 1 for example. The acceleration time of car 1 is 8.8 seconds,
which is between the fuzzy assessment grades Poor (eP ) and Average (eA) (see Fig. 10). As far as acceleration
time is concerned, the membership degrees of car 1 belonging to the assessment grades Poor (eP ) and
Average (eA) can be calculated as follows:
l~P ¼ 8:8	 8:7

9:2	 8:7
¼ 0:2; l~A ¼ 9:2	 8:8

9:2	 8:7
¼ 0:8:
µ
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0 Acceleration time
7.4 7.8 8.2 8.7 9.2 10

Fig. 10. Membership functions of fuzzy assessment grades for acceleration time.
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Fig. 11. Membership functions of fuzzy assessment grades for horsepower.
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Fig. 12. Membership functions of fuzzy assessment grades for braking.
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Fig. 13. Membership functions of fuzzy assessment grades for fuel economy.

Table 3
Membership functions of fuzzy assessment grades for quantitative attributes

Linguistic term Worst ( eW ) Poor (eP ) Average (eA) Good (eG) Excellent (eE) Top (eT )
Acceleration time (9.2, 10, 10) (8.7, 9.2, 10) (8.2, 8.7, 9.2) (7.8, 8.2, 8.7) (7.4, 7.8, 8.2) (7.4, 7.4, 7.8)
Horsepower (130, 130, 145) (130, 145, 160) (145,160,175) (160,175,188) (175,188,200) (188,200,200)
Braking (135,140,140) (131,135,140) (128, 131, 135) (126, 128, 131) (123, 126, 128) (123, 123, 126)
Fuel economy (17, 17, 18) (17, 18, 19) (18, 19, 20) (19, 20, 21) (20, 21, 22) (21, 22, 22)
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Fig. 14. Fuzzy utilities of the basic set of fuzzy assessment grades.

Table 4
Membership functions of fuzzy grade utilities

Linguistic term Worst Poor Average Good Excellent Top

Membership function (0, 0, 0.2) (0, 0.2, 0.4) (0.2, 0.4, 0.65) (0.4, 0.65, 0.85) (0.65, 0.85, 1) (0.85, 1, 1)
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The belief degrees of car 1 belonging to Poor (eP ) and Average (eA) are therefore determined by

~b~P ¼ 0:2

0:8þ 0:2
¼ 0:2; ~b~A ¼ 0:8

0:8þ 0:2
¼ 0:8:
Accordingly, we get the distributed assessment eSðe1ðCar 1ÞÞ ¼ fðeP ; 0:2Þ; ðeA; 0:8Þg. All the other quanti-
tative data can be transformed in the same way, leading to the distributed assessments as shown in Table 5.

4.3. Transformation of original information using the grade match method

Because the basic set of fuzzy assessment grades eH is different from the general set of fuzzy assessment
grades H, in order to use the fuzzy ER algorithm to aggregate attributes, it is necessary to transform the
former into the latter. The transformation must be based on fuzzy grade utilities. Take the transformation
of the fuzzy assessment grade Average (eA) for example. The relationships between eA and the fuzzy assess-
ment grades P,A and G are shown in Fig. 15. Because the area of eA intersecting P only is zero and the dis-
tance between the peaks of eA and A is also zero, the area SPA should not be assigned to the fuzzy assessment



Table 5
Distributed assessments of executive cars with seven attributes

Performance Car 1 Car 2 Car 3 Car 4 Car 5 Car 6

Acceleration fðeP ; 0:2Þ; ðeA; 0:8Þg fðeG; 0:5Þ;
ðeE; 0:5Þg fðeE; 0:75Þ;

ðeT ; 0:25Þg fðeA; 0:4Þ;
ðeG; 0:6Þg

fðeG; 0:5Þ;
ðeE; 0:5Þg fðeG; 0:25Þ;

ðeE; 0:75Þg
Braking fðeG; 1:0Þg fðeE; 0:3333Þ;

ðeT ; 0:6667Þg fðeG; 0:5Þ;
ðeE; 0:5Þg fðeP ; 0:75Þ;

ðeA; 0:25Þg fðeP ; 1:0Þg fðeE; 1:0Þg
Handling {(A, 0.4),

(G,0.6)}
{(E,0.6), (T, 0.4)} {(A, 0.4),

(G, 0.6)}
((A,1.0)} {(G, 1.0)} {(E, 0.6), (T, 0.4)}

Horsepower fðeE; 0:3333Þ;
ðeT ; 0:6667Þg fðeP ; 0:5333Þ;

ðeA; 0:4667Þg fðeG; 0:4615Þ;
ðeE; 0:5385Þg fðeG; 0:3846Þ;

ðeE; 0:6154Þg fð eW ; 0:4667Þ;
ðeP ; 0:5333Þg fðeA; 0:2667Þ;

ðeG; 0:7333Þg

Ride quality {(G,0.6), (E,0.4)} {(A,1.0)} {(A, 0.4),
(G, 0.6)}

{(G, 1.0)} {(G, 1.0)} {(G,0.6), (E, 0.4)}

Powertrain {(A, 0.4), (G, 0.6)} {(G, 1.0)} {(E, 0.6),
(T,0.4)}

{(A, 0.4),
(G, 0.6)}

{(G, 0.6), (E, 0.4)} {(E, 0.6), (T,0.4)}

Fuel economy fðeG; 1:0Þg fðeG; 1:0Þg fðeE; 1:0Þg fðeG; 1:0Þg fðeA; 1:0Þg fðeG; 1:0Þg

(U)µ

1 P A
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Utility
0 0.2 0.4 0.6 0.65 0.7 0.85
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Fig. 15. The relationships between the fuzzy assessment grades.
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grade P. Therefore, SPA is entirely allocated to the fuzzy assessment grade A. The area SAG, however,
should be assigned between the fuzzy assessment grades A and G because there is a separate area betweeneA and either A or G. The computational process of the areas is given below (see Appendix B for formulae):
SPA ¼ 1

2
� ð0:4	 0:2Þ � 0:4	 0:2

ð0:4þ 0:4Þ 	 ð0:2þ 0:2Þ ¼
1

2
� 0:2� 1

2
¼ 0:05;

SAG ¼ 1

2
� ð0:6	 0:4Þ � 0:6	 0:4

ð0:6þ 0:6Þ 	 ð0:4þ 0:4Þ ¼
1

2
� 0:2� 1

2
¼ 0:05;

SA ¼ 1

2
� ð0:6	 0:2Þ � 1	 SPA 	 SAG ¼ 0:2	 0:05	 0:05 ¼ 0:1;

SG ¼ 1

2
� ð0:65	 0:4Þ � 0:65	 0:4

ð0:65þ 0:6Þ 	 ð0:4þ 0:4Þ 	 SAG

¼ 1

2
� 0:25� 0:25

0:45
	 0:05 ¼ 0:01944:
The distances between the peaks of eA and P,A and G are determined by d ~AP ¼ 0:4	 0:2 ¼ 0:2; d ~AA ¼ 0,
and d ~AG ¼ 0:6	 0:4 ¼ 0:2. The allocation factors for the common areas are calculated by using formulas
(28)–(31) as follows:
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AF P ðSPAÞ ¼
1

2
1	 d ~AP

d ~AP þ d ~AA

� �
þ 0

0þ SA þ SAG

� �
¼ 0;

AF AðSPAÞ ¼
1

2
1	 d ~AA

d ~AP þ d ~AA

� �
þ SA þ SAG

0þ SA þ SAG

� �
¼ 1;

AF AðSAGÞ ¼
1

2
1	 d ~AA

d ~AA þ d ~AG

� �
þ SPA þ SA

SPA þ SA þ SG

� �
¼ 1

2
1þ 0:05þ 0:1

0:05þ 0:1þ 0:01944

� �
¼ 0:9426;

AF GðSAGÞ ¼
1

2
1	 d ~AG

d ~AA þ d ~AG

� �
þ SG

SPA þ SA þ SG

� �
¼ 1

2
0þ 0:01944

0:05þ 0:1þ 0:01944

� �
¼ 0:0574:
Having obtained the above allocation factors, we have the following assignments of the belief degrees:
BelP ¼ AF P ðSPAÞ � SPA

SPA þ SA þ SAG þ SG
¼ 0;

BelA ¼ AF AðSPAÞ � SPA þ SA þ AF AðSAGÞ � SAG

SPA þ SA þ SAG þ SG

¼ 1� 0:05þ 0:1þ 0:9426� 0:05

0:05þ 0:1þ 0:05þ 0:01944
¼ 0:8983;

BelG ¼ AF GðSAGÞ � SAG þ SG

SPA þ SA þ SAG þ SG
¼ 0:0574� 0:05þ 0:01944

0:05þ 0:1þ 0:05þ 0:01944
¼ 0:1017:
Therefore, we get the rule of grade match between eA and P,A and G based on fuzzy utilities
eA () fðA; 0:8983Þ; ðG; 0:1017Þ:g

Similarly, the relations between the fuzzy assessment grades ‘‘Excellent (eE)’’ and ‘‘Good (G)’’, ‘‘Excellent

(E)’’ and ‘‘Top (T)’’ are shown in Fig. 16. Because there is no separate area between eE and T except for the
common area SET and the peaks of eE and E overlap, the common area SET should not be allocated to the
fuzzy assessment grade T. However, the common area SGE should be allocated between the fuzzy assess-
ment grades G and E. Accordingly, we have the following results:
(U)µ

1 G E T

E
~

SE

SGE

SG SET

0 0.4 0.6 0.65 0.7 0.85 1 
Utility

Fig. 16. The relations between the fuzzy assessment grades.
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SGE ¼ 1

2
� ð0:85	 0:7Þ � 0:85	 0:7

ð0:85þ 0:85Þ 	 ð0:7þ 0:7Þ ¼
1

2
� 0:15� 1

2
¼ 0:0375;

SET ¼ 1

2
� ð1	 0:85Þ � 1	 0:85

ð1þ 1Þ 	 ð0:85þ 0:85Þ ¼
1

2
� 0:15� 1

2
¼ 0:0375;

SG ¼ 1

2
� ð0:85	 0:65Þ � 0:85	 0:65

ð0:85þ 0:85Þ 	 ð0:7þ 0:65Þ 	 SGE

¼ 1

2
� 0:2� 0:2

0:35
	 0:0375 ¼ 0:01964;

SE ¼ 1

2
� ð1	 0:7Þ � 1	 SGE 	 SET ¼ 0:15	 0:0375	 0:0375 ¼ 0:075;

d ~EG ¼ 0:85	 0:7 ¼ 0:15; d ~EE ¼ 0; and d ~ET ¼ 1	 0:85 ¼ 0:15;

AF GðSGEÞ ¼
1

2
1	 d ~EG

d ~EG þ d ~EE

� �
þ SG

SG þ SE þ SET

� �
¼ 1

2
0þ 0:01964

0:01964þ 0:075þ 0:0375

� �
¼ 0:0743;

AF EðSGEÞ ¼
1

2
1	 d ~EE

d ~EG þ d ~EE

� �
þ SE þ SET

SG þ SE þ SET

� �
¼ 1

2
1þ 0:075þ 0:375

0:01964þ 0:075þ 0:0375

� �
¼ 0:9257

AF EðSET Þ ¼
1

2
1	 d ~EE

d ~EE þ d ~ET

� �
þ SGE þ SE

SGE þ SE þ 0

� �
¼ 1;

AF T ðSET Þ ¼
1

2
1	 d ~ET

d ~EE þ d ~ET

� �
þ 0

SGE þ SE þ 0

� �
¼ 0;

BelG ¼ AF GðSGEÞ � SGE þ SG

SG þ SGE þ SE þ SET
¼ 0:0743� 0:0375þ 0:01964

0:01964þ 0:0375þ 0:075þ 0:0375
¼ 0:1322;

BelE ¼ AF EðSGEÞ � SGE þ SE þ AF EðSET Þ � SET

SG þ SGE þ SE þ SET

¼ 0:9257� 0:0375þ 0:075þ 1� 0:0375

0:01964þ 0:0375þ 0:075þ 0:0375
¼ 0:8678;

BelT ¼ AF T ðSET Þ � SET

SG þ SGE þ SE þ SET
¼ 0:
The rule of grade match between eE and G,E and T based on fuzzy utilities is given by
eE () fðG; 0:1322Þ; ðE; 0:8678Þg:

Since the relations between eW andW, eP and P, and eG and G are all inclusion relations, that is, the former is
completely included in the latter, we have the following rules of grade match based on fuzzy utilities:eW () W , eP () P , eG () G, and eT () T . Based on these acquired rules of grade match, Table 5 with
different sets of fuzzy assessment grades can be transformed into Table 6, which has only one unified set of
fuzzy assessment grades.



Table 6
Transformed distributed assessment of executive cars

Performance Car 1 Car 2 Car 3 Car 4 Car 5 Car 6

Acceleration {(P, 0.2),
(A, 0.71864),
(G, 0.08136)}

{(G,0.5661),
(E, 0.4339)}

{(G, 0.09915),
(E, 0.65085),
(T ,0.25)}

{(A, 0.35932),
(G, 0.64068)}

{(G,0.5661),
(E, 0.4339)}

{(G, 0.34915),
(E, 0.65085)}

Braking {(G, 1.0)} {(G,0.04406),
(E, 0.28924),
(T, 0.6667)}

{(G, 0.5661),
(E, 0.4339)}

{(P, 0.75),
(A, 0.224575),
(G, 0.025425)}

{(P, 1.0)} {(G, 0.1322),
(E, 0.8678)}

Handling {(A, 0.4), (G, 0.6)} {(E, 0.6),
(T, 0.4)}

{(A, 0.4), (G, 0.6)} {(A, 1.0)} {(G,1.0)} {(E,0.6), (T, 0.4)}

Horsepower {(G, 0.04406),
(E,0.28924),
(T,0.6667)}

{(P, 0.5333),
(A, 0.419237),
(G, 0.047463)}

{(G, 0.53269),
(E, 0.46731)}

{(G, 0.465956),
(E,0.534044)}

{(W,0.4667),
(P, 0.5333)}

{(A, 0.239577),
(G, 0.760423)}

Ride quality {(G, 0.6), (E, 0.4)} {(A,1.0)} {(A, 0.4), (G, 0.6)} {(G, 1.0)} {(G,1.0)} {(G, 0.6), (E,0.4)}

Powertrain {(A, 0.4), (G, 0.6)} {(G,1.0)} {(E, 0.6), (T, 0.4)} {(A, 0.4), (G, 0.6)} {(G,0.6), (E, 0.4)} {(E,0.6), (T, 0.4)}

Fuel economy {(G, 1.0)} {(G,1.0)} {(G, 0.1322),
(E, 0.8678)}

{(G, 1.0)} {(A,0.8983),
(G, 0.1017)}

{(G,1.0)}
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4.4. Aggregation of attributes using the fuzzy ER algorithm

The assessment information shown in Table 6 is represented in the same format. Therefore, they can be
aggregated using the fuzzy ER algorithm. Suppose the seven attributes are of equal importance, that is,
wi = 1 /7 (i = 1, . . ., 7). Before using the ER algorithm to aggregate attributes, we still need to determine
the maximum degree of membership for each fuzzy intersection subset. Table 7 shows the maximum degree
of membership for each fuzzy intersection subset. The assessments of a car on all the seven attributes are
aggregated into an overall assessment using the fuzzy ER algorithm described in Section 3.1, as shown in
Table 8.
Since fuzzy intersection subsets WP ; PA; AG; GE and ET are not the defined fuzzy assessment grades,

the belief degrees assigned to them need to be reassigned to the defined fuzzy assessment grades. The
Table 7
Maximum membership degrees of each fuzzy intersection

Fuzzy intersection subset WP PA AG GE ET

Maximum degree of membership (lmaxHn;nþ1
) 0.5 0.5 0.5 0.5 0.5

Table 8
Overall distribution assessments of executive cars

W WP P PA A AG G GE E ET T H

Car 1 0 0 0.0217 0.0015 0.1782 0.066 0.5526 0.0286 0.0768 0.0024 0.0723 0
Car 2 0 0 0.0630 0.0053 0.1759 0.0447 0.3632 0.0389 0.1676 0.0102 0.1313 0
Car 3 0 0 0 0 0.0893 0.0160 0.3226 0.0864 0.3973 0.0165 0.072 0
Car 4 0 0 0.0803 0.0128 0.2365 0.0849 0.5094 0.0190 0.0571 0 0 0
Car 5 0.0548 0.0046 0.1905 0.0143 0.1055 0.0337 0.4694 0.0261 0.1013 0 0 0
Car 6 0 0 0 0 0.0252 0.0049 0.3563 0.1025 0.4029 0.0211 0.0871 0
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way to transform them is similar to transforming the basic fuzzy assessment grades to the general grades.
Take the transformation of WP for example. Fig. 17 describes the relationships between WP andW and P.
The calculations for the reassignments are as follows:
SWP ¼ 1

2
� ð0:2	 0Þ � 0:2	 0

ð0:2þ 0:2Þ 	 ð0þ 0Þ ¼
1

2
� 0:2� 1

2
¼ 0:05;

SW ¼ 1

2
� ð0:2	 0Þ � 0:2	 0

ð0:2þ 0:1Þ 	 ð0þ 0Þ 	 SWP ¼ 1

2
� 0:2� 0:2

0:3
	 0:05 ¼ 0:0167;

SP ¼ 1

2
� ð0:2	 0Þ � 0:2	 0

ð0:2þ 0:2Þ 	 ð0þ 0:1Þ 	 SWP ¼ 1

2
� 0:2� 0:2

0:3
	 0:05 ¼ 0:0167;

dWPW ¼ 0:1	 0 ¼ 0:1 and dWPP ¼ 0:2	 0:1 ¼ 0:1;

AF W ðSWP Þ ¼
1

2
1	 dWPW

dWPW þ dWPP

� �
þ SW

SW þ SP

� �
¼ 1

2
1	 0:1

0:1þ 0:1

� �
þ 0:0167

0:0167þ 0:0167

� �
¼ 0:5;

AF P ðSWP Þ ¼
1

2
1	 dWPP

dWPW þ dWPP

� �
þ SP

SW þ SP

� �
¼ 1

2
1	 0:1

0:1þ 0:1

� �
þ 0:0167

0:0167þ 0:0167

� �
¼ 0:5;

BelW ¼ AF W ðSWP Þ � SWP þ SW

SW þ SWP þ SP
¼ 0:5� 0:05þ 0:0167

0:0167þ 0:05þ 0:0167
¼ 0:5;

BelP ¼ AF P ðSWP Þ � SWP þ SP

SW þ SWP þ SP
¼ 0:5� 0:05þ 0:0167

0:0167þ 0:05þ 0:0167
¼ 0:5:
Thus, we get the rule of grade match for WP : WP () fðW ; 0:5Þ; ðP ; 0:5Þg. Similarly, we get all the other
rules of grade match for the other four fuzzy subsets: PA () fðP ; 0:5Þ; ðA; 0:5Þg; AG ()
fðA; 0:5Þ; ðG; 0:5Þg; GE () fðG; 0:5Þ; ðE; 0:5Þg, and ET () fðE; 0:5Þ; ðT ; 0:5Þg. These rules of grade
match result in the reassignment of the belief degrees for all the fuzzy intersection subsets back to the
defined general fuzzy assessment grades. The transformed overall distributed assessments are presented
in Table 9.
(U)µ

1 W WP P

0.5 SW SP

SWP

0 0.1 0.2 0.4 Utility

Fig. 17. The transformation of fuzzy intersection subset.



Table 9
Transformed overall distributed assessments of executive cars

W P A G E T H

Car 1 0 0.02242 0.21195 0.59986 0.09229 0.07347 0
Car 2 0 0.06563 0.20092 0.40497 0.19211 0.13637 0
Car 3 0 0 0.09725 0.37375 0.44875 0.08025 0
Car 4 0 0.08666 0.28537 0.56134 0.066664 0 0
Car 5 0.05708 0.19989 0.12944 0.49925 0.11434 0 0
Car 6 0 0 0.02768 0.41 0.46471 0.09761 0
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4.5. Ranking the cars

It can be seen from Table 9 that among six executive cars only car 5 is assessed to ‘‘worst (W)’’ to a
certain degree and also it is to a large extent assessed to the grades not better than good. Therefore, we
have sufficient reason to believe that car 5 should be the worst in performance. Both car 6 and car 3
are assessed to at least ‘‘Average (A)’’, and therefore they should be the best candidates. Furthermore,
the performance of car 6 should be better than car 3 because the degrees of belief for car 6 being assessed
to ‘‘Good (G)’’, ‘‘Excellent (E)’’ and ‘‘Top (T)’’ are all greater than those for car 3. So, car 6 should be
ranked the best and car 3 the second best in performance. Since car 4 is not assessed to ‘‘Top (T)’’ and
at most to ‘‘Excellent (E)’’, its performance should be worse than the performances of the other cars except
for car 5. Comparing the numerical values of the belief degrees of car 1 and car 2, we can find that the
degrees of belief for car 2 being assessed to ‘‘Excellent (E)’’ and ‘‘Top (T)’’ are both greater than those
for car 1. So, we may conclude that the performance of car 2 is better than the performance of car 1. Based
on the above observations we can get the following intuitive ranking order: Car 6 � Car 3 � Car 2 �
Car 1 � Car 4 � Car 5.
More precise ranking order can be obtained by calculating and analysing the fuzzy expected utilities.

Since there is no incomplete information or any degree of ignorance in this example, the maximum and
the minimum fuzzy expected utilities are the same for each executive car. Table 10 shows the fuzzy expected
utilities of the six executive cars, which are all trapezoidal fuzzy numbers. The reason for the fuzzy expected
utilities to be trapezoidal fuzzy numbers is because the utility of the fuzzy assessment grade ‘‘Good (G)’’ is a
trapezoidal fuzzy number. As long as there is one assessment grade that is a trapezoidal fuzzy number, the
fuzzy expected utilities including the maximum and the minimum fuzzy expected utilities are trapezoidal
fuzzy numbers. If the assessment grades are all triangular fuzzy numbers, then the fuzzy expected utilities
will be triangular fuzzy numbers.
Table 10
Fuzzy expected utilities and ranking order of executive cars

Fuzzy expected utility Centroid and distance Rank

Lower bound Most possible value Upper bound �umax �lðumaxÞ D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2max þ �l2ðumaxÞ

p
Car 1 0.40939 0.60110 0.66109 0.81178 0.618309 0.3766 0.7240 4
Car 2 0.45256 0.63614 0.67664 0.81951 0.643494 0.3665 0.7405 3
Car 3 0.55129 0.72484 0.76221 0.90504 0.733772 0.3652 0.8196 2
Car 4 0.32825 0.52492 0.58106 0.74966 0.544184 0.3725 0.6595 5
Car 5 0.30563 0.48849 0.53842 0.70774 0.509188 0.3701 0.6295 6
Car 6 0.57780 0.74969 0.79069 0.92743 0.759086 0.3683 0.8437 1
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The centroid method is used to rank the executive cars. To do so, the centroid points of their fuzzy
expected utilities are first calculated and then used to rank the cars according to the distances from the
centroid points to the origin. The greater the distance, the better the performance. The results are shown
in the last four columns of Table 10. It can be seen that Car 6 � Car 3 � Car 2 � Car 1 � Car 4 � Car 5,
which is identical to the ranking order obtained previously through intuitive analysis. Therefore, there are
sufficient reasons to believe that the ranking order Car 6 � Car 3 � Car 2 � Car 1 � Car 4 � Car 5 is
reliable.
5. Concluding remarks

Most real world multiple attribute decision analysis (MADA) problems involve various types of
uncertainties, which significantly increase the complexity and difficulty in decision analysis. The solu-
tion of such problems requires powerful methods that are capable of dealing with both quantitative
and qualitative attributes with various types of uncertainties in a way that is rational, systematic,
reliable, flexible and transparent. The evidential reasoning (ER) approach developed in this paper pro-
vides a novel, flexible and systematic way to support MADA under both probabilistic and fuzzy
uncertainties.
In particular, the proposed ER modelling framework can consistently accommodate numerical data

and subjective judgments with both probabilistic and fuzzy uncertainties using the fuzzy belief structure,
which allows one to describe incomplete assessment information with fuzziness in an explicit and hybrid
manner. The new fuzzy ER algorithm provides a systematic yet strict procedure for aggregating both
probabilistic and fuzzy information in an analytical fashion. The grade match method provides a novel
and pragmatic way for transforming fuzzy evaluation grades from one form to another. This makes it
possible for different attributes to use their own assessment grades and thus greatly increases the flexi-
bility in decision analysis. A numerical example demonstrated the implementation process of the ER
approach in handling MADA problems with both probabilistic and fuzzy uncertainties. It can be con-
cluded that the new ER approach could be used to deal with a wide range of MADA problems with
various types of uncertainties.
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Appendix A. The derivation of the fuzzy ER algorithm

The fuzzy evidential reasoning algorithm is developed based on the non-fuzzy evidential reasoning algo-
rithm (Yang and Singh, 1994; Yang and Sen, 1994a,b; Yang, 2001; Yang and Xu, 2002a). The main diffi-
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culties in devising the fuzzy ER algorithm include how to treat the dependency of adjacent evaluation
grades and how to conduct normalisation. The first difficulty is overcome by introducing intermediate eval-
uation gradesHn,n+1 as shown in this appendix and in Sections 3.1, 3.2 and 3.4. Since the normalization rule
in the Dempster–Shafer (D–S) theory of evidence can be applied towards the end of the evidence combi-
nation process without changing the combination result (Yen, 1990), we first take no account of the nor-
malization when combining all attributes and then apply the normalization at the end. Such an evidence
combination process, as Yen (1990) claimed for combining fuzzy evidence, can preserve the unique feature
of the D–S theory that the belief and plausibility measures provide the lower and the upper bounds of the
degrees of belief.
First of all, let us combine two attributes. Table 11 shows the combination process of two attributes

without normalization. The combined probability masses generated by aggregating the two attributes
are given as follows. Note that m1	l(Hn) and m1	l(H) denote the belief degree assigned to Hn and H gen-
erated by combining the first l attributes.
m1	2ðHnÞ ¼ m1ðHnÞm2ðHnÞ þ m1ðHnÞ½~m2ðHÞ þ �m2ðHÞ
 þ ½~m1ðHÞ þ �m1ðHÞ
m2ðHnÞ

¼ m1ðHnÞm2ðHnÞ þ m1ðHnÞm2ðHÞ þ m1ðHÞm2ðHnÞ

¼ m1ðHnÞ½m2ðHnÞ þ m2ðHÞ
 þ m1ðHÞ½m2ðHnÞ þ m2ðHÞ
 	 m1ðHÞm2ðHÞ

¼ ½m1ðHnÞ þ m1ðHÞ
½m2ðHnÞ þ m2ðHÞ
 	 m1ðHÞm2ðHÞ

¼
Y2
i¼1

½miðHnÞ þ miðHÞ
 	
Y2
i¼1

miðHÞ; n ¼ 1; . . . ;N ;

~m1	2ðHÞ ¼ ~m1ðHÞ~m2ðHÞ þ ~m1ðHÞ�m2ðHÞ þ �m1ðHÞ~m2ðHÞ
¼ ~m1ðHÞ½~m2ðHÞ þ �m2ðHÞ
 þ �m1ðHÞ½~m2ðHÞ þ �m2ðHÞ
 	 �m1ðHÞ�m2ðHÞ

¼ ½~m1ðHÞ þ �m1ðHÞ
½~m2ðHÞ þ �m2ðHÞ
 	 �m1ðHÞ�m2ðHÞ ¼
Y2
i¼1

miðHÞ 	
Y2
i¼1

�miðHÞ;

�m1	2ðHÞ ¼ �m1ðHÞ�m2ðHÞ ¼
Y2
i¼1

�miðHÞ;

m1	2ðHn;nþ1Þ ¼ m1ðHnÞm2ðHnþ1Þ þ m1ðHnþ1Þm2ðHnÞ

¼ ½m1ðHnÞ þ m1ðHnþ1Þ
½m2ðHnÞ þ m2ðHnþ1Þ
 	 m1ðHnÞm2ðHnÞ 	 m1ðHnþ1Þm2ðHnþ1Þ

¼ ½m1ðHnÞ þ m1ðHnþ1Þ þ m1ðHÞ
½m2ðHnÞ þ m2ðHnþ1Þ þ m2ðHÞ
 	 ½m1ðHnÞ þ m1ðHÞ


� ½m2ðHnÞ þ m2ðHÞ
 	 ½m1ðHnþ1Þ þ m1ðHÞ
½m2ðHnþ1Þ þ m2ðHÞ
 þ m1ðHÞm2ðHÞ

¼
Y2
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
Y2
i¼1

½miðHnÞ þ miðHÞ
 	
Y2
i¼1

½miðHnþ1Þ þ miðHÞ


þ
Y2
i¼1

miðHÞ
; n ¼ 1; . . . ;N 	 1:



Table 11
The combination of two pieces of evidence

m1 
 m2 m1

m1(H1) m1(H2) . . . m1(Hn) . . . m1(HN) m1(H)

~m1ðHÞ �m1ðHÞ
m2 m2(H1) m(H1) =

m1(H1)m2(H1)
m(H1,2) =
m1(H2)m2(H1)

. . . m(U) =
m1(Hn)m2 (H1)

. . . m(U) =
m1(HN)m2(H1)

mðH1Þ ¼
~m1ðHÞm2ðH1Þ

mðH1Þ ¼
�m1ðHÞm2ðH1Þ

m2(H2) m(H1,2) =
m1(H1)m2(H2)

m(H2) =
m1(H2)m2(H2)

. . . m(U) =
m1(Hn)m2 (H2)

. . . m(U) =
m1(HN)m2(H2)

mðH2Þ ¼
~m1ðHÞm2ðH2Þ

mðH2Þ ¼
�m1ðHÞm2ðH2Þ

. . . . . . . . . . . . . . . . . . . . . . . .

m2(Hn) m(U) =
m1(H1)m2(Hn)

m(U) =
m1(H2)m2(Hn)

. . . m(Hn) =
m1(Hn)m2(Hn)

. . . m(U) =
m1(HN)m2(Hn)

mðHnÞ ¼
~m1ðHÞm2ðHnÞ

mðHnÞ ¼
�m1ðHÞm2ðHnÞ

. . . . . . . . . . . . . . . . . . . . . . . .

m2(HN) m(U) =
m1(H1)m2(HN)

m(U) =
m1(H2)m2(HN)

. . . m(U) =
m1(Hn)m2 (HN)

. . . m(HN) =
m1(HN)m2(HN)

mðHN Þ ¼
~m1ðHÞm2ðHN Þ

mðHN Þ ¼
�m1ðHÞm2ðHN Þ

m2(H) ~m2ðHÞ mðH1Þ ¼
m1ðH1Þ~m2ðHÞ

mðH2Þ ¼
m1ðH2Þ~m2ðHÞ

. . . mðHnÞ ¼
m1ðHnÞ~m2ðHÞ

. . . mðHN Þ ¼
m1ðHN Þ~m2ðHÞ

mðHÞ ¼
~m1ðHÞ~m2ðHÞ

mðHÞ ¼
�m1ðHÞ~m2ðHÞ

�m2ðHÞ mðH1Þ ¼
m1ðH1Þ�m2ðHÞ

mðH2Þ ¼
m1ðH2Þ�m2ðHÞ

. . . mðHnÞ ¼
m1ðHnÞ�m2ðHÞ

. . . mðHN Þ ¼
m1ðHN Þ�m2ðHÞ

mðHÞ ¼
~m1ðHÞ�m2ðHÞ

mðHÞ ¼
�m1ðHÞ�m2ðHÞ
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Suppose the following equations are true for combining the first (l 	 1) attributes, where l1 l 	 1:
m1	l1ðHnÞ ¼
Yl	1
i¼1

½miðHnÞ þ miðHÞ
 	
Yl	1
i¼1

miðHÞ; n ¼ 1; . . . ;N ;

~m1	l1ðHÞ ¼
Yl	1
i¼1

miðHÞ 	
Yl	1
i¼1

�miðHÞ;

�m1	l1ðHÞ ¼
Yl	1
i¼1

�miðHÞ;

m1	l1ðHn;nþ1Þ ¼
Yl	1
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
Yl	1
i¼1

½miðHnÞ þ miðHÞ


	
Yl	1

i¼1
½miðHnþ1Þ þ miðHÞ
 þ

Yl	1
i¼1

miðHÞ; n ¼ 1; . . . ;N 	 1:
The above combined probability masses are further aggregated with the lth attribute. The results are
generated using Table 12. The combined probability masses are then given below.
m1	lðHnÞ ¼ m1	l1ðHnÞmlðHnÞ þ ½~m1	l1ðHÞ þ �m1	l1ðHÞ
mlðHnÞ þ m1	l1ðHnÞ½~mlðHÞ þ �mlðHÞ


¼ m1	l1ðHnÞmlðHnÞ þ m1	l1ðHÞmlðHnÞ þ m1	l1ðHnÞmlðHÞ

¼ ½m1	l1ðHnÞ þ m1	l1ðHÞ
mlðHnÞ þ ½m1	l1ðHnÞ þ m1	l1ðHÞ
mlðHÞ 	 m1	l1ðHÞmlðHÞ

¼ ½m1	l1ðHnÞ þ m1	l1ðHÞ
½mlðHnÞ þ mlðHÞ
 	 m1	l1ðHÞmlðHÞ

¼
Yl	1
i¼1

½miðHnÞ þ miðHÞ
½mlðHnÞ þ mlðHÞ
 	
Yl	1
i¼1

miðHÞmlðHÞ

¼
Yl

i¼1
½miðHnÞ þ miðHÞ
 	

Yl

i¼1
miðHÞ; n ¼ 1; . . . ;N ;

~m1	lðHÞ ¼ ~m1	l1ðHÞ~mlðHÞ þ ~m1	l1ðHÞ�mlðHÞ þ �m1	l1ðHÞ~mlðHÞ

¼ ~m1	l1ðHÞ½~mlðHÞ þ �mlðHÞ
 þ �m1	l1ðHÞ½~mlðHÞ þ �mlðHÞ
 	 �m1	l1ðHÞ�mlðHÞ

¼ ½~m1	l1ðHÞ þ �m1	l1ðHÞ
½~mlðHÞ þ �mlðHÞ
 	 �m1	l1ðHÞ�mlðHÞ

¼
Yl	1
i¼1

½~miðHÞ þ �miðHÞ
 	
Yl	1
i¼1

�miðHÞ þ
Yl	1
i¼1

�miðHÞ
 !

½~mlðHÞ þ �mlðHÞ
 	
Yl	1
i¼1

�miðHÞ�mlðHÞ

¼
Yl

i¼1
½~miðHÞ þ �miðHÞ
 	

Yl

i¼1
�miðHÞ ¼

Yl

i¼1
miðHÞ 	

Yl

i¼1
�miðHÞ;

�m1	lðHÞ ¼ �m1	l1ðHÞ�mlðHÞ ¼
Yl	1
i¼1

�miðHÞ�mlðHÞ ¼
Yl

i¼1
�miðHÞ;



Table 12

The combination of four pieces of evidence

m1	l1 
 ml m1	l1

m1	l1 ðH 1Þ m1	l1 ðH 2Þ . . . m1	l1 ðHnÞ . . . m1	l1 ðHN Þ m1	l1 ðHÞ m1	l1 ðH 1;2Þ . . . m1	l1 ðHn;nþ1Þ . . . m1	l1 ðHN	1;N Þ

~m1	l1 ðHÞ �m1	l1 ðHÞ

ml ml(H1) mðH 1Þ ¼
m1	l1 ðH 1Þ
mlðH 1Þ

mðH1;2Þ ¼
m1	l1 ðH 2Þ
mlðH 1Þ

. . . mðUÞ ¼
m1	l1

ðHnÞml

ðH 1Þ

. . . mðUÞ ¼
m1	l1 ðHN Þ
mlðH 1Þ

mðH 1Þ ¼
~m1	l1 ðHÞ
mlðH 1Þ

mðH 1Þ ¼
�m1	l1 ðHÞ
mlðH 1Þ

mðH 1;2Þ ¼
m1	l1 ðH 1;2Þ
mlðH1Þ

. . . mðUÞ ¼
m1	l1 ðHn;nþ1Þ
mlðH1Þ

. . . mðUÞ ¼
m1	l1 ðHN	1;N Þ
mlðH 1Þ

ml(H2) mðH 1;2Þ ¼
m1	l1 ðH 1Þ
mlðH 2Þ

mðH2Þ ¼
m1	l1 ðH 2Þ
mlðH 2Þ

. . . mðUÞ ¼
m1	l1 ðHnÞ
mlðH2Þ

. . . mðUÞ ¼
m1	l1 ðHN Þ
mlðH 2Þ

mðH 2Þ ¼
~m1	l1 ðHÞ
mlðH 2Þ

mðH 2Þ ¼
�m1	l1 ðHÞ
mlðH 2Þ

mðH 1;2Þ ¼
m1	l1 ðH 1;2Þ
mlðH2Þ

. . . mðUÞ ¼
m1	l1 ðHn;nþ1Þ
mlðH2Þ

. . . mðUÞ ¼
m1	l1 ðHN	1;N Þ
mlðH 2Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ml(Hn) mðUÞ ¼
m1	l1 ðH 1Þ
mlðHnÞ

mðUÞ ¼
m1	l1 ðH 2Þ
mlðHnÞ

. . . mðHnÞ ¼
m1	l1 ðHnÞ
mlðHnÞ

. . . mðUÞ ¼
m1	l1 ðHN Þ
mlðHnÞ

mðHnÞ ¼
~m1	l1 ðHÞ
mlðHnÞ

mðHnÞ ¼
�m1	l1 ðHÞ
mlðHnÞ

mðUÞ ¼
m1	l1 ðH 1;2Þ
mlðHnÞ

. . . mðHn;nþ1Þ ¼
m1	l1 ðHn;nþ1Þ
mlðHnÞ

. . . mðUÞ ¼
m1	l1 ðHN	1;N Þ
mlðHnÞ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ml(HN) mðUÞ ¼
m1	l1 ðH 1Þ
mlðHN Þ

mðUÞ ¼
m1	l1 ðH 2Þ
mlðHN Þ

. . . mðUÞ ¼
m1	l1 ðHnÞ
mlðHN Þ

. . . mðHN Þ ¼
m1	l1 ðHN Þ
mlðHN Þ

mðHN Þ ¼
~m1	l1 ðHÞ
mlðHN Þ

mðHN Þ ¼
�m1	l1 ðHÞml

ðHN Þ

mðUÞ ¼
m1	l1 ðH 1;2Þ
mlðHN Þ

. . . mðUÞ ¼
m1	l1 ðHn;nþ1Þ
mlðHN Þ

. . . mðHN	1;N Þ ¼
m1	l1 ðHN	1;N Þ
mlðHN Þ

ml(H) ~mlðHÞ mðH 1Þ ¼
m1	l1 ðH 1Þ
~mlðHÞ

mðH2Þ ¼
m1	l1 ðH 2Þ
~mlðHÞ

. . . mðHnÞ ¼
m1	l1 ðHnÞ
~mlðHÞ

. . . mðHN Þ ¼
m1	l1 ðHN Þ
~mlðHÞ

mðHÞ ¼
~m1	l1 ðHÞ
~mlðHÞ

mðHÞ ¼
�m1	l1 ðHÞ
~mlðHÞ

mðH 1;2Þ ¼
m1	l1 ðH 1;2Þ
~mlðHÞ

. . . mðHn;nþ1Þ ¼
m1	l1 ðHn;nþ1Þ
~mlðHÞ

. . . mðHN	1;N Þ ¼
m1	l1 ðHN	1;N Þ
~mlðHÞ

�mlðHÞ mðH 1Þ ¼
m1	l1 ðH 1Þ
�mlðHÞ

mðH2Þ ¼
m1	l1 ðH 2Þ
�mlðHÞ

. . . mðHnÞ ¼
m1	l1 ðHnÞ
�mlðHÞ

. . . mðHN Þ ¼
m1	l1 ðHN Þ
�mlðHÞ

mðHÞ ¼
~m1	l1 ðHÞ
�mlðHÞ

mðHÞ ¼
�m1	l1 ðHÞ
�mlðHÞ

mðH 1;2Þ ¼
m1	l1 ðH 1;2Þ
�mlðHÞ

. . . mðHn;nþ1Þ ¼
m1	l1 ðHn;nþ1Þ
�mlðHÞ

. . . mðHN	1;N Þ ¼
m1	l1 ðHN	1;N Þ
�mlðHÞ
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m1	lðHn;nþ1Þ ¼ m1	l1ðHnÞmlðHnþ1Þ þ m1	l1ðHnþ1ÞmlðHnÞ þ m1	l1ðHn;nþ1Þ½mlðHnÞ
þ mlðHnþ1Þ þ ~mlðHÞ þ �mlðHÞ


¼ m1	l1ðHnÞmlðHnþ1Þ þ m1	l1ðHnþ1ÞmlðHnÞ þ m1	l1ðHn;nþ1Þ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ

¼ m1	l1ðHnÞ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ
 	 m1	l1ðHnÞ½mlðHnÞ þ mlðHÞ
 þ m1	l1ðHnþ1Þ
� ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ
 	 m1	l1ðHnþ1Þ½mlðHnþ1Þ þ mlðHÞ
 þ m1	l1ðHÞ½mlðHnÞ
þ mlðHnþ1Þ þ mlðHÞ
 	 m1	l1ðHÞ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ
 þ m1	l1ðHn;nþ1Þ½mlðHnÞ
þ mlðHnþ1Þ þ mlðHÞ
 ¼ ½m1	l1ðHnÞ þ m1	l1ðHnþ1Þ þ m1	l1ðHÞ þ m1	l1ðHn;nþ1Þ
½mlðHnÞ
þ mlðHnþ1Þ þ mlðHÞ
 	 m1	l1ðHnÞ½mlðHnÞ þ mlðHÞ
 	 m1	l1ðHnþ1Þ½mlðHnþ1Þ þ mlðHÞ

	 m1	l1ðHÞ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ


¼
Yl	1
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ
 	 ½m1	l1ðHnÞ

þ m1	l1ðHÞ
½mlðHnÞ þ mlðHÞ
 þ m1	l1ðHÞ½mlðHnÞ þ mlðHÞ
 	 ½m1	l1ðHnþ1Þ
þ m1	l1ðHÞ
½mlðHnþ1Þ þ mlðHÞ
 þ m1	l1ðHÞ½mlðHnþ1Þ þ mlðHÞ


	 m1	l1ðHÞ½mlðHnÞ þ mlðHnþ1Þ þ mlðHÞ
 ¼
Yl

i¼1
½miðHnÞ þ miðHnþ1Þ

þ miðHÞ
 	 ½m1	l1ðHnÞ þ m1	l1ðHÞ
½mlðHnÞ þ mlðHÞ
 	 ½m1	l1ðHnþ1Þ
þ m1	l1ðHÞ
½mlðHnþ1Þ þ mlðHÞ
 þ m1	l1ðHÞmlðHÞ

¼
Yl

i¼1
½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	

Yl

i¼1
½miðHnÞ þ miðHÞ


	
Yl

i¼1
½miðHnþ1Þ þ miðHÞ
 þ

Yl

i¼1
miðHÞ; n ¼ 1; . . . ;N 	 1:
Therefore, the above equations are true for any l 2 {1, . . . ,L}. For l = L, we get the following un-nor-
malized combined probability assignments generated by aggregating the L attributes
m1	LðHnÞ ¼
YL
i¼1

½miðHnÞ þ miðHÞ
 	
YL
i¼1

miðHÞ; n ¼ 1; . . . ;N ;

~m1	LðHÞ ¼
YL
i¼1

miðHÞ 	
YL
i¼1

�miðHÞ; �m1	LðHÞ ¼
YL
i¼1

�miðHÞ;

m1	LðHn;nþ1Þ ¼
YL
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
YL
i¼1

½miðHnÞ þ miðHÞ


	
YL
i¼1

½miðHnþ1Þ þ miðHÞ
 þ
YL
i¼1

miðHÞ; n ¼ 1; . . . ;N 	 1:
Since the fuzzy subset Hn,n+1 is the intersection of the two fuzzy assessment grades Hn and Hn+1, its max-
imum degree of membership is normally not equal to unity. In order to capture the exact probability mass
assigned to Hn,n+1, its membership function needs to be normalized. If this were not done, then probability
mass assigned to Hn,n+1 would have nothing to do with its shape or height. In other words, as long as the
two fuzzy assessment grades Hn and Hn+1 intersect, the probability mass assigned to Hn,n+1 would always
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be the same, no matter how large or small the intersection subset may be. So, it is necessary to normalise the
membership function of Hn,n+1. After normalization, we have
m1	LðHn;nþ1Þ ¼ lmaxHn;nþ1
�
YL
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
YL
i¼1

½miðHnÞ þ miðHÞ

(

	
YL
i¼1

½miðHnþ1Þ þ miðHÞ
 þ
YL
i¼1

miðHÞ
)
; n ¼ 1; . . . ;N 	 1;
where Hn;nþ1 stands for the normalized fuzzy intersection subset for Hn,n+1.
Define by k the normalization constant for the fuzzy evidential combination. Then, we have the normal-

ized combined probability masses as follows:
mðHnÞ ¼ km1	LðHnÞ ¼ k
YL
i¼1

½miðHnÞ þ miðHÞ
 	
YL
i¼1

miðHÞg
( )

; n ¼ 1; . . . ;N ;

~mðHÞ ¼ k ~m1	LðHÞ ¼ k
YL
i¼1

miðHÞ 	
YL
i¼1

�miðHÞ
( )

; �mðHÞ ¼ k �m1	LðHÞ ¼ k
YL
i¼1

�miðHÞ
" #

;

mðHn;nþ1Þ ¼ km1	LðHn;nþ1Þ

¼ klmaxHn;nþ1

YL
i¼1

½miðHnÞ þ miðHnþ1Þ þ miðHÞ
 	
YL
i¼1

½miðHnÞ þ miðHÞ

(

	
YL
i¼1

½miðHnþ1Þ þ miðHÞ
 þ
YL
i¼1

miðHÞ
)
; n ¼ 1; . . . ;N 	 1;
where k can be determined using the following normalization constraint condition:
XN
n¼1

mðHnÞ þ
XN	1

n¼1
mðHn;n	1Þ þ ~mðHÞ þ �mðHÞ ¼ 1
from which we get
k ¼
XN	1

n¼1
ð1	 lmaxHn;nþ1

Þ
YL
i¼1

½miðHnÞ þmiðHÞ
 	
YL
i¼1

miðHÞ
 !(

þ
XN	1

n¼1
lmaxHn;nþ1

YL
i¼1

½miðHnÞ þmiðHnþ1Þ þmiðHÞ
 	
YL
i¼1

½miðHnþ1Þ þmiðHÞ

 !

þ
YL
i¼1

½miðHN Þ þmiðHÞ

)	1

:

Appendix B. The formula for the computation of intersection area

As shown in Fig. 18, at the point of the intersection of the two fuzzy assessment grades A and B with the
maximum degree of membership, their degrees of membership are the same, that is y	a

b	a ¼
d	y
d	c, from which

we derive the coordinates of the point of the intersection as follows:
y ¼ bd 	 ac
ðb þ dÞ 	 ða þ cÞ ;



(x)µ

1 A B

yµ

0 a c y b d x

Fig. 18. The computation of area of fuzzy intersection subset.
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ly ¼
d 	 a

ðb þ dÞ 	 ða þ cÞ :
Accordingly, the area of the fuzzy intersection subset is obtained by
SDalyd ¼ 1

2
ðd 	 aÞ � ly ¼

1

2
� ðd 	 aÞ � d 	 a

ðb þ dÞ 	 ða þ cÞ
which was extensively used in Example 1.
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