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Abstract 

The ultimate goal of medical computer systems is to help clinicians make good decisions. Such systems must 

be based on sound principles. Decision analysis is a 25-year-old discipline that provides the needed rigorous 

foundation for decision assistance. Decision analysis comprises the philosophy, procedures, and tools that 

can correct the flaws in existing critical care decision-making practice. Intelligent decision systems - 

computer-based systems that automate decision analysis - make it practical to apply decision analysis to 

critical care. Orchestra is a pilot intelligent decision system (now under development) that coordinates the 

efforts of the critical care specialist, the bedside physician, and the bedside nurse in building decision models 

that can provide recommendations and insight for ventilator management decisions. Decision analysis 

delivered by intelligent decision systems has great potential for improving critical care decision-making. 

Decision analysis: A framework for critical care 

decision assistance 

Over the next five years, computer-based systems 

will replace the paper chart in many critical care 

units [1]. Powerful, easy-to-use bedside worksta- 

tions will acquire, store, and display a comprehen- 

sive set of patient data, including the patient's his- 

tory and physical exam, physiological variables, 

laboratory results, and radiographic images. Using 

such a system, the clinician will have vastly better 

access to facts about his or her patients than he now 

has, using the existing manual charting methods. 

However, having ready access to facts leaves the 

clinician with the difficult task of choosing what to 

do. It is natural to expect that the computer should 

provide assistance here, as well. Reed Gardner [2], 

President of Computers in Critical Care and PuP 

monary Medicine has said: 'The ultimate goal of a 

medical computer system is, after all, to assist phyo 

sicians in making medical decisions.' 

Systems that provide clinical decision assistance 

will significantly affect clinical practice. However, 

to be truly useful, these systems will need to be 

based on sound principles. Decision analysis offers 

a rigorous framework for designing and imple- 

menting computer-based systems that offer deci- 

sion assistance. In this paper, we begin by exam- 

ining existing critical care decision-making prac- 

tices. Next, we present the decision analysis ap- 

proach to decision-making, including key decision- 

analytic concepts and techniques. We then 

introduce intelligent decision systems - computer- 

based systems that automate decision analysis. Fol- 

lowing this, we discuss how decision analysis can be 

applied in the critical care environment given this 

environment's special decision-making features. 

Finally, we briefly describe a pilot intelligent deci~ 
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sion system, Orchestra, that we are developing for 

ventilator management. 

Current critical care decision practices 

Let's start by looking at a typical scenario that 

illustrates current critical care decision practices. 

Mr. A is admitted to the surgical intensive care unit 

in shock. The physician decides to institute mon- 

itoring with radial and pulmonary artery lines. Af- 

ter several attempts, the physician determines that 

the radial artery line cannot be placed percutane- 

ously. She considers a percutaneous femoral artery 

line, but assesses the risk of thrombosis as too high. 

Finally, she succeeds at inserting the catheter 

through a radial artery cut-down. 

One hour after admission, approximately 20 

physiological variables are being measured contin- 

ually. The physician studies the bedside flowsheet 

and notes that the patient has a mean arterial pres- 

sure of 125 mmHg and a very high systemic vascular 

resistance. 

The physician decides to use a nitroprusside in- 

fusion to reduce afterload while maintaining pre- 

toad with a crystalloid infusion. Accordingly, be- 

fore leaving, the physician writes the following or- 

ders for the nurses: 

1. Bolus with saline to keep wedge pressure at 

10-15 mmHg. 

2. Titrate nitroprusside to keep mean arterial pres- 

sure at 80-90 mmHg. 

When the physician returns four hours later, she 

notes with satisfaction that the patient's resistance 

has decreased, that the wedge pressure is 

15 mmHg, and that the mean arterial pressure is 

85 mmHg. 

Twelve hours later, however, the patient has re- 

ceived three liters of saline, is nauseated from the 

nitroprusside, and is still in shock. 

At first glance, the patient management illustrated 

in the scenario appears satisfactory and its ineffec- 

tiveness at 12 hours seems surprising. However, 

when we review the case in greater detail, we can 

discover at least four different decision-making de- 

fects that contribute to this ineffectiveness: 1) 

sparse alternatives; 2) information overload; 3) su- 

perficial objectives; and 4) ineffective delegation of 

decision-making. 

Sparse alternatives 

Sparse alternatives lead to missed opportunities. In 

the scenario, the patient is admitted to the inten- 

sive care unit for resuscitation, and the physician is 

unable to place a radial artery line percutaneously. 

At that point, she considers her alternatives: percu- 

taneous femoral artery line versus radial artery line 

placed by cut-down. She decides to perform a cut- 

down. However, has the physician considered all 

the pertinent alternatives? Perhaps no line is a rea- 

sonable alternative, and other monitoring technol- 

ogies could be substituted. F~r example, arterial 

pulse oximetry and end-tidal carbon dioxide mon- 

itoring can reduce the need for arterial blood gases. 

Blood pressure can be measured automatically 

with self-inflating cuffs. Mixed venous oximetry 

can provide corroborating evidence about perfu- 

sion. These alternative technologies can be sub- 

stituted singly or in combination. Critical care deci- 

sion-making suffers when the decision-maker con- 

siders only a narrow range of options. 

Information overload 

Information overload can put the patient in dan- 

ger. In the scenario, the physician must interpret 

the large amount of patient data organized in time- 

oriented fashion on the flowsheet reproduced in 

Table 1. She correctly notes that the mean arterial 

pressure, 125 mmHg, and the systemic vascular re- 

sistance, 4,232 dyne sec cm -5, are quite high. How- 

ever, because of the large array of numbers con- 

fronting her, she fails to note that the pulmonary 

artery occlusion pressure (the wedge pressure), 

which is recorded as 13 mmHg, is 12 mmHg higher 

than the pulmonary artery diastolic pressure, 

which is recorded as 1 mmHg. The physician should 



know that, usually, this situation indicates that the 

wedge pressure value is wrong, but she fails to take 

advantage of this knowledge because she is dis- 

tracted by the large amount of other numbers she 

needs to consider. Thus, she erroneously concludes 

that the patient needs afterload reduction. In fact, 

the patient simply needs volume. Although the 

physician prescribes saline to maintain preload, 

this only compensates for the preload-reducing ef- 

fects of the nitroprusside and the patient remains in 

hypovolemic shock. 

This example illustrates the problem that has 

been well articulated by Roger Bone 'Possibly the 

most serious danger . . ,  is that of drowning a physi- 

cian in a flood of numbers. The presentation of 

more data that can be assimilated can contribute to 

incorrect clinical decisions' [3]. 
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Superficial objectives 

Superficial objectives can lead to misguided action. 

In the scenario, the physician returns after four 

hours to evaluate the patient's response to therapy 

and notes that the patient's resistance has de- 

creased, that the wedge pressure is 15 mmHg, and 

that the mean arterial pressure is 85 mmHg. She 

feels the therapeutic goals are being accomplished.. 

In fact, the patient remains in shock: cardiac output 

is low, and there is inadequate perfusion to meet 

the patient's oxygen needs. From the point of view 

of survival, the patient has not been adequately 

resuscitated. This illustrates how clinicians often 

choose superficial objectives that do not promote 

ultimate objectives, a problem that William Shoe- 

maker has frequently discussed: 'The traditional 

approach usually assumes that normal values are 

the appropriate therapeutic goals . . .  Therapy 

should restore physiological defects not just to 

their normal values but to their optimal values' [41 . 

Table 1. The flowsheet for the patient in the scenario overwhelms the clinician with a Iarge array of data. Note that the pulmonary artery 

occlusion pressure, the wedge, is greater than the pulmonary artery diastolic pressure - easily overlooked evidence that the wedge is 

inaccurate. 

Variable Time 

7 8 9 10 11 12 13 14 

Temperature 34.5 34.5 34.6 34.6 34,6 34.6 34.6 34.6 

Respiratory Rate 8 8 8 8 8 8 8 8 

Tidal Volume 1200 1200 1200 1200 1200 1200 1200 1200 

PaCO2 33 27 30 28 32 32 32 35 

PaO2 67 62 65 69 62 70 75 71 

pH 7.48 7'.57 7.53 7.55 7.50 7.50 7.49 7.45 

ETCO2 25 18 20 18 22 22 22 21 

SaO2 0.94 0.93 0,93 0.93 0,93 0.93 0.93 0,90 

SvO2 0.45 0.36 0.42 0.55 0.56 0.55 0.53 0.52 

HR 101 102 101 101 102 104 105 103 

Radial Systolic 180 170 150 118 120 117 117 116 

Radial Diastolic 100 68 68 69 70 71 71 71 

Radial Mean 125 101 94 85 86 85 85 85 

Pulmonary Systolic 40 42 43 42 40 42 41 41 

Pulmonary Diastolic 1 2 3 3 4 3 4 4 

Pulmonary Mean 14 15 16 16 16 16 I6 16 

Central Venous 17 18 18 17 18 18 18 18 

Wedge 13 14 15 15 16 15 16 16 

Resistance 4232 3867 3153 2071 2021 2080 2t56 2070 

Cardiac Output 2.1 1.7 1.9 2.6 2.7 2.6 2.5 2,6 
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lneffecfivedelegafion 

Ineffective delegation of decision-making erodes 

the quality of patient care. One compelling feature 

of critical care delivery is that it must be sustained 

24 hours a day, 365 days a year. Therefore, those 

individuals with ultimate responsibility or with val- 

uable expertise simply cannot be continuously pre- 

sent at the patient's bedside. For example, the 

attending surgeon or the pulmonary specialist have 

responsibilities in the clinics, in the operating 

room, in the wards, in the office, and in other 

critical care units. (And health providers also need 

time for their personal lives). While a few critical 

care units now provide in-house intensive coverage 

around the clock, collaborative decision-making- 

particularly between physicians and nurses - is es- 

sential to high-quality care. In a prospective study 

of treatment and outcome in 5,030 patients in in- 

tensive care units at 13 tertiary care hospitals, death 

rates (adjusted for severity of illness) significantly 

diminished when there was improved interaction 

and coordination between the intensive care unit 

staff [5]. 

Currently, two mechanisms exist for accomplish- 

ing this coordination: 1) implicit orders; and 2) 

standing orders. Implicit orders are unwritten 

guides to decision-making. For example, there is 

generally no written rule in critical care units that 

states that if a ventilated patient becomes unstable, 

the fractional inspired oxygen concentration 

should be increased to 100 percent while the patient 

is resuscitated. However, the staff is expected to 

know enough to increase the oxygen concentration 

based on training and experience. Likewise, the 

staff is expected to know that when a surgical pa- 

tient has a urine output that is less than 0.5 cc kg per 

hour, it must manage the possibly poor renal perfu- 

sion by addressing overall perfusion (usually with 

volume, occasionally with inotropes) by calling the 

physician, or by performing both actions. 

When all ICU team members are in constant 

contact and when the team shares a large body of 

patient experience, unwritten orders are effective, 

because all members implicitly know what to do 

and why. However, constant staff turnover and 

shift-work fragment this background of under- 

standing and severely disrupt coordination based 

on group intuition. 

For example, Mr. Jones, a new nurse, may not 

know that Mr. A.'s urine output should be main- 

tained at 50cc per hour. If Ms. Smith, the nurse 

during the preceding eight hours, does not convey 

that fact during report at change of shift (a not-too- 

infrequent occurrence), then Mr. A. may be left 

dangerously oliguric overnight. In short, implicit 

orders are susceptible to breaking down under the 

stress of realistic staffing conditions. 

Standing orders are used to fill the gaps that may 

occur with implicit orders. For example, the physi- 

cian could obviate unreported oliguria in Mr. A. by 

writing the following orders. 

1. Measure urine output every hour. 

2. Call physician for urine output less than 50 cc/ 

hr. 

Standing orders aim to decrease errors of omission, 

but they often promote serious errors of commis- 

sion. Excessive testing is one consequence of stand- 

ing orders. For example, to ensure that anticoag- 

ulation therapy is closely monitored, the physician 

might write the order: 

Send blood to laboratory for partial thrombo- 

plastin time every four hours. 

Such an order will ensure that the laboratory tests 

are sent off regularly, even if the physician is not 

physically present to make the request. Unfortu- 

nately, the lab ordering system does not always 

recognize when these orders become obsolete. Jo- 

seph Civetta studied testing for coagulation in his 

unit and found: '[There was] repetitive testing of 

coagulation parameters in many patients who 

showed no evidence of a coagulation disorder' [6]. 

Civetta advocates eliminating standing orders for 

laboratory tests, but this requires developing a bet- 

ter mechanism for delegating decision-making. 

Another consequence of delegating decision- 

making with standing orders is tail chasing. Tail 

chasing was illustrated in the scenario when the 

physician left her standing orders. 



1. Bolus with saline to keep wedge pressure at 

10-15 mmHg. 

2. Titrate nitroprusside to keep mean arterial pres- 

sure at 80-90 mmHg. 

In following these orders, the nurses gave the pa- 

tient three liters of saline; however, the patient 

remained in shock, despite the fact that the basic 

defect was hypovolemia. Administering nitroprus- 

side decreased both the mean arterial pressure and 

the wedge pressure, which, in turn, caused the 

nurse to infuse a bolus of saline. This action 

brought the wedge pressure back up to the desired 

value, but it also increased the preload and, thus, 

the mean arterial pressure. As a result, the nurse 

increased the nitroprusside dosage, which de- 

creased the wedge pressure, which necessitated 

further saline, and so on. The increased venous 

capacitance caused by the nitroprusside prevented 

the massive saline infusion from correcting the hy- 

povolemic defect. These positive feedback situa- 

tions can be created whenever the management of 

therapies with counteracting effects (e.g., nitro- 

prusside and dopamine, crystalloid infusion and 

diuretics) is ineffectively delegated. 

The four defects revealed in the scenalio- sparse 

alternatives, information overload, superficial ob- 

jectives, and ineffective delegation - are symptom- 

atic of a single underlying defect: faulty decision- 

making. Each of these problems may be viewed as 

the result of the critical care staff committing to an 

action that is inconsistent with either what they can 

do, what they know, or what they really want. 

Decision analysis provides a framework for avoid- 

ing these inconsistencies and for thereby improving 

the quality of critical care decision-making. 

Decision analysis approach to decision-making 

Decision analysis comprises the philosophy, meth- 

odology, and professional discipline for ensuring 

high-quality decision-making. While Professor Ro- 

nald A. Howard of Stanford University coined the 

term 'Decision Analysis' in 1964 [7], the roots of 

decision analysis date back to the work of two great 

mathematicians, P.S. Laplace [8] and D. Bernoulli 
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[9]. However, it was the 1960s computer revolution 

that made the professional application of decision 

analysis possible, and since 1965, decision analysis 

has been regularly taught at the graduate level at 

Stanford University and at many other universities. 

Decision analysis is now a growing professional 

field, with a two-decade success record. 

Science is a descriptive discipline: it studies what 

is by describing it. And engineering is aprescriptive 

discipline: it creates what should be by designing it. 

Decision analysis is a normative discipline: it is a 

prescriptive discipline guided by a set of norms - 

that is, principles of right action. 

Decision analysis focuses on bringing clarity of 

action to difficult decisions. By an action, we mean 

the irrevocable allocation of valuable resources. By 

a decision, we mean the commitment to irrevocably 

allocate valuable resources. Decision analysis can 

address a wide range of decisions, but it is partic- 

ularly well suited for decisions involving complex- 

ity, dynamics, and uncertainty. 

Because of its cost (typically tens or hundreds of 

thousands of dollars) and the long time necessary 

to carry out an analysis (around one hundred per- 

son-hours), professional decision analysis has been 

almost exclusively applied within business and in- 

dustry. However, in an academic setting, decision 

analysis has also been successfully applied to many 

medical decisions [10]. Later in this paper, we will 

discuss how (through the use of intelligent decision 

systems) professional-level decision analysis can be 

made much less costly and faster for use in a clinical 

setting. 

Using decision analysis effectively requires un- 

derstanding its philosophy, procedures, and tools. 

The decision analysis philosophy fundamentally 

defines high-quality decision-making in the form of 

key concepts and distinctions. The procedures of 

decision analysis constitute an extensive array of 

techniques to capture and reason about all aspects 

of a decision. The tools of decision analysis greatly 

facilitate the decision-analytic process and make it 

efficient and easy to use. 

In decision analysis, decision theory provides the 

general and sound framework for recommending a 

course of action - given a decision model. Decision 

theory takes as an input a mathematical model of a 
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Fig. 1. Decision theory is a conditional statement. 
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Fig. 2. Formally capturing real decision situations and interpret- 

ing formal recommendations are major tasks in decision analy- 

sis. 

decision problem and provides as an output a pre- 

scription for action. Decision theory can therefore 

be viewed as a conditional statement, as shown in 

Fig. 1. 

Decision analysis is based on decision theory 

much like medicine is based on biology. Just as 

physicians must devote considerable time and ef- 

fort to formulating a medical problem in biological 

terms and to interpreting any biological conclu- 

sions in terms that are meaningful for patient care, 

so decision analysts must devote the time and effort 

to formally capture the decision as a decision model 

and then to interpret the formal recommendations 

resulting from applying decision theory to the mod- 

el. 

Given this situation, we can thus view the practi- 

cal use of decision theory as a three-stage process 

(Fig. 2) whose three stages are formulation (i.e., 

developing the formal decision model), evaluation 

(i.e., computing a recommendation from the mod- 

el), and appraisal (i.e., interpreting the formal rec- 

ommendation). 

However, this strictly sequential approach to us- 

ing formal decision methods has a major short- 

coming-it does not account for the likely disagree- 

ment between the decision-maker and the meth- 

od's recommendation. In fact, such disagreement 

is almost certain to occur. Given that the decision- 

maker requires assistance to gain new insight into 

his problem, we can assume he is having difficulty 

dealing with his decision. Therefore, formally ana- 

Fig. 3. By producing a sequence of increasingly refined decision 

models, decision analysis generates the insight necessary for 

action. 

lyzing the decision will probably expose many of 

the inconsistencies and lack of focus that made the 

decision difficult in the first place. Moreover, such 

disagreement is very beneficial, because it exposes 

important flaws in either the decision-maker's un- 

derstanding of his decision (i.e., how he preceives 

and interprets it) or his logic. 

A simple way to deal with the possible unaccept- 

ability of a formally obtained recommendation - in 

fact to take advantage of it - is to extend the se- 

quential process by explicitly adding a feedback 

path, as shown in Fig. 3. Such a closed-loop deci- 

sion process allows the decision-maker to react to 

any surprising element of the formal prescription 

by reevaluating and possibly modifying his formu- 

lation. Alternatively, if after developing enough 

insight he agrees with the suggested strategy or if he 

determines that his disagreement results solely 

from logical error, he may choose to follow the 

formal recommendation. Hence, by producing a 

sequence of increasingly refined decision models, 

we can help the decision-maker develop the insight 

necessary for action. 

The closed-loop decision process described in 

Fig. 3 can be viewed as a blueprint for a conversa- 

tion, which is illustrated in Fig. 4. It involves two 

key participants; the decision-maker and a decision 

analyst. During the formulation stage of the pro- 

cess, the decision-maker teaches the details of the 

decision at hand to the decision analyst, who learns 

by building an appropriate decision model. These 

activities are reserved during the appraisal stage, 

where the decision analyst teaches the decision- 

maker the implications of the formal recommenda- 

tion for action obtained during the evaluation 

stage. Most of the insight developed in the closed- 

loop decision process shown in Fig. 4 results from 
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Fig. 4. Decision analysis is a carefully engineered conversation 

that develops insight by focusing attention on the key aspects of 

the decision at hand. 

this interchange of information and new know- 

ledge between the decision-maker and the decision 

analyst. Moreover, the formal machinery embod- 

ied in the evaluation stage guides and focuses this 

interchange. This attention-focusing effect assits 

the decision participants in producing an increas- 

ingly simple, yet representative, model of the deci- 

sion as the process progresses. 

Key decision analysis concepts 

As the above discussion makes clear, the decision- 

maker plays a central role in decision analysis. The 

decision-maker either owns the resources to be 

allocated or is acting in the best interests of their 

owner. An expert is a source of information and 

alternatives, but he is not a source of recommenda- 

tions. And a decision analyst is an expert on process 

- not content -  who guides the conversation toward 

clarity of action. 

We must also be precise about our use of deci- 

sion terms in medicine. Diagnosing consists of 

thinking about the patient's condition. Decision- 

making consists of thinking about what to do, given 

a possibly uncertain and incomplete diagnosis. 

Treating consists of action - of doing something to 

the patient whether that action is diagnostic, ther- 

apeutic, or both. Given these definitions, it would 

thus be incorrect to say: 'I have decided that the 

patient has appendicitis.' One can decide on 'ap- 

pendectomy,' but one diagnoses 'appendicitis.' 

Decision-making has three fundamental compo- 

nents: alternatives (what you can do), preferences 
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(what you want), and information (what you 

know). Key concepts related to each are now con- 

sidered in turn. 

Alternatives 

Alternatives should encompass a wide range of 

possible action, generally both inside and outside 

strictly medical dimensions. For example, changes 

in a patient's personal lifestyle and work activities 

are an important component of radiation therapy 

and must be part of the definition of that alterna- 

tive. Alternatives must also account for the pa- 

tient's specific circumstances. For example, the pa- 

tient's economic situation, the presence or absence 

of a living will, and the presence or absence of 

relatives willing to donate organs are all special 

constraints that may expand or restrict the set of 

possible options. 

Decisions are often difficult to make because 

there is no dominating alternative. A dominating 

alternative is an alternative that would be recom- 

mended to the vast majority of the patients with a 

particular set of findings or diagnosis. For example, 

appendectomy is the dominating alternative for 

appendicitis. In contrast, there is no dominating 

alternative for infertility due to blockage of the 

fallopian tubes. Celiotomy, in-vitro fertilization, 

and doing nothing are all reasonable options. In 

such cases, doctors must know more about the 

problem - principally about the patient's prefer- 

ences - before they can identify the best alternative 

[15]. 

Preferences 

Preferences directly represent the desires of the 

decision-maker, who (as noted earlier) either owns 

or acts on behalf of the owner of the recources to be 

allocated. In medicine, preferences almost always 

concern the patient's length of life (lifetime), per- 

sonal and work life (lifestyle), overall well-being 

(comfort), and financial and other economic re- 

sources such as health maintenance contracts 

(wealth). Achieving clarity of action requires expli- 
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citly quantifying the trade-offs that the patient 

wants made among these fundamental attributes. 

Measuring preferences is particularly challeng- 

ing in making medical decisions, because possible 

outcomes are often unfamiliar to those who will 

bear them. For example, the patient undergoing 

radiation therapy for the first time probably has 

little experience that can allow him or her to trans- 

late descriptions of the possible complications into 

personal terms. Implicit guardianship is often an- 

other complicating factor. When the patient cannot 

make choices for himself or herself, whose prefer- 

ences should be used? We believe that the prefer- 

ences used should be those of the patient - the 

person whose resources are at stake - or, if these 

are unavailable, those of someone (i.e., a guardi- 

an) who understands the patient well enough to act 

on his or her behalf with his or her best interests in 

mind. In many circumstances - b u t  not always-this 

individual would be the bedside physician. Fre- 

quently, however, there are multiple stakeholders: 

the patient, family members, physicians, nurses, 

and governmental agencies. And even when the 

source of the preferences is clear, ethical concerns 

may still make trade-offs difficult. Because of these 

challenges, decision-analytic methods are the most 

robust and humane way to deal with difficult pref- 

erences, because these methods are explicit, com- 

prehensive, and incisive. 

It is important not to confuse direct (primary) 

preferences with indirect (secondary) preferences. 

For example, while a patient has an indirect prefer- 

ence on his or her mean arterial pressure, he or she 

has a direct preference on survival. In medicine - as 

in most human endeavors - indirect preferences 

are a useful means of delegation. However, making 

decisions requires being aware of primary prefer- 

ences to avoid pursuing objectives that have be- 

come obsolete. For example, keeping the mean 

arterial pressure normal may be desirable, but it is 

secondary to keeping the patient alive. 

Information 

Information- knowledge about the possible conse- 

quences of pertinent actions - is essential to deci- 

sion-making. In decision analysis, information, 

both certain and uncertain, is treated explicitly. 

This information can take one of two forms: Struc- 

tural and Parametric. Structural information spec- 

ifies relations among decision elements. For exam- 

ple, the relationship between FIO2 and PIO2 given 

by the alveolar gas equation is structural. Paramet- 

ric information specifies dec!sion elements individ- 

ually. For example, the value of the cardiac output 

is parametric. 

Decision analysis treats uncertainty explicitly. 

Consequently, decision-analytic recommendations 

effectively reflect the decision-maker's uncertain 

situation. In particular, decision analysis can yield 

optimal recommendations that would be discarded 

if uncertainty were ignored. These recommenda- 

tions are often referred to as 'hedging' alternatives. 

For example, consider a patient who has just suf- 

fered a myocardial infarction and is demonstrating 

second-degree atrio-ventricular block. If we know 

for sure the patient will develop fixed, complete 

heart block, then we should put in a permanent 

pacemaker. And if we know the patient will not 

develop complete heart block, then no pacemaker 

is indicated. In fact, however, we have only in- 

complete knowledge about whether the patient 

will develop fixed, complete heart block, so we 

hedge by placing a transvenous pacemaker. This 

alternative is inferior to the permanent pacemaker 

if heart block is present and inferior to no pacemak- 

er if heart block is absent. However, the hedging 

alternative is preferable to both if heart block is 

uncertain. 

In capturing uncertain information, decision 

analysis uses the rigorous methods of probability. 

Specifically, decision analysis views probability 

from the perspective of its inventors (e.g., P.S. 

Laplace and D. Bernoulli): probability is a state of 

information, not a state of nature. For example, 

imagine a 35-year-old man who presents to the 

emergency department with mild chest pain. An 

EKG is performed and blood work is drawn. You 

are the physician called to the emergency depart- 

ment to evaluate the patient. What is your prob- 

ability that the patient has had a myocardial in- 

farction? Based on what you know - mild chest 

pain, young pat ient-  you would presumably assess 



this probability to be quite low. However, suppose 

you discover during your interview with the patient 

that his father and grandfather both died suddenly 

at age 35. Now your index of suspicion has in- 

creased, and you assess a higher probability. Next, 

the technician hands you your copy of the EKG, 

which shows only nonspecific ST-T wave changes. 

Perhaps now your suspicions are lessened and you 

decrease your probability of a myocardial infarc- 

tion. Finally, the laboratory work is returned - the 

CPK is quite high with a significantly elevated MB 

fraction. Now your probability has significantly in- 

creased and myocardial infarction has become your 

diagnosis. Throughout all this diagnostic effort, the 

patient - the state of nature - has, of course, not 

changed. What has changed is your state of in- 

formation. You revise your probability assessment 

to accommodate the changes in your state of in- 

formation.. In other words, there is no single 'cor- 

rect' probability - it depends on what you know. 

Because uncertainty is involved in most impor- 

tant decisions, we must distinguish the quality of 

decisions from the quality of outcomes. An exam- 

ple illustrates the point. Suppose you were offered 

the opportunity to buy a ticket to a lottery for $1 

that offered a 1-in-l,000 chance of winning $100 

million (tax free). While this investment would be 

outstanding for most individuals, it involves a 99,9 

percent chance of a bad outcome! Suppose you 

invested and lost, would purchasing the ticket have 

been a good or bad decision? Would you invest 

again in an identical deal? The point is that because 

the consequences of actions may be uncertain, it is 

possible to make a good decision and get a bad 

outcome. (All other combinations of good/bad de- 

cision and good/bad outcome are, of course, also 

possible - including making a bad decision and 

getting a good outcome.) 

The clinical approach to appendicitis provides a 

medical example that illustrates the difference be- 

tween the quality of outcomes and the quality of 

decisions. For example, a 20-year-old man presents 

with nausea, epigastric pain localizing in the right 

lower quadrant, and point tenderness at McBur- 

ney's point. There is fever and leukocytosis. As a 

result, the patient undergoes an appendectomy. 

Most surgeons would consider this a good decision. 
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However, suppose the appendix is found to be 

normal during the operation. Was it still a good 

decision to operate? From a decision-analytic per- 

spective, performing the appendectomy would be 

considered a good decision, because it was consis- 

tent with the decision-maker's alternatives, prefer- 

ences, and knowledge at the time the decision was 

made. 

A logical consequence of this distinction is that 

we should focus on high-quality decision-making, 

not on high-quality outcomes. Decision analysis 

shows us that the quality of decisions and the qual- 

ity of outcomes should be measured separately. 

However, most individuals' performance is mea- 

sured in terms of their outcomes, not their deci- 

sions. Unfortunately the price of rewarding out- 

comes and not decisions is bad decisions. Defensive 

medicine illustrates this effect. For example, a thir- 

ty-year-old man is admitted for hernia repair. A 

detailed history and physical examination is unre- 

markable except for the hernia. Intraoperativety, 

the patient has a massive myocardial infarction and 

dies. The surgeon is sued for not obtaining a pre- 

operative electrocardiogram. Now the surgeon ob- 

tains a pre-operative electrocardiogram for all his 

patients - regardless of indications. Having been 

sued because of a bad outcome that resulted from 

an extremely rare event, the surgeon thus makes 

bad decision-making a routine part of his practice. 

Decision models in decision analysis 

A decision model is a formal representation of a 

decision problem. A good decision model captures 

the decision at hand explicitly, succinctly, and un- 

ambiguously. Because it is explicit, all important 

aspects of the decision are available for review. 

Because it is succinct, only important aspects are 

represented. Because it is unambiguous, all model 

elements are clearly defined. 

Influence diagrams are the foremost way of rep- 

resenting decision models in modern decision anal- 

ysis [11]. Influence diagrams are easy to under- 

stand, mathematically well defined, very general, 

and compact. In general, influence diagrams have 

significant theoretical and practical advantages 
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Fig. 5. Influence diagrams can represent FIO2 adjustment deci- 

sions. The choices for FIO2 (ranging from 21 percent to t00 

percent) are represented by the rectangular decision node. The 

physiological and clinical variables that mediate the effect of 

FIO2 on survival are represented by the oval chance nodes 

(which may be uncertain, e.g., toxicity; or deterministic, e.g., 

DO2). The patient's preference for survival is represented by the 

value node. (Abbreviations: FIOz, fractional inspired oxygen 

concentration; CaO2 oxygen content arterial blood; C.O., car- 

diac output; DO2, oxygen delivery.) 

over another commonly used decision representa- 

tion language-decision trees. In addition to repre- 

senting probabilistic independence effectively, en- 

forcing a clear distinction between informational 

and probabilistic relationships, and preventing loss 

of information from asymmetries, influence dia- 

grams grow linearly (as opposed to exponentially) 

with the size of the problem they represent and, 

thus, can be used to model much larger decisions 

than trees can model. These technical advantages 

are enhanced by the fact that the mathematical 

concept of influence, conditional as well as infor- 

mational, is very close to its intuitive counterpart. 

As defined by Howard and Matheson [12], an 

influence diagram is a singly connected, acyclic, 

directed graph with two types of nodes - decision 

and chance - two types of arrows or arcs - condi- 

tioning and informational - and typically a single 

sink node of type chance (Fig. 5). The acyclic, 

singly connected nature of influence diagrams im- 

plies that sets such as predecessors and successors 

of a node are defined in the usual manner. 

Decision nodes are usually represented by a rect- 

angle or a square and denote variables under the 

decision-maker's control. Chance nodes - usually 

represented by an oval or a circle - denote prob- 

abilistic variables. A special form of a chance node 

is a deterministic node, which is usually represent- 

ed by a double-ringed oval or circle. The value of a 

deterministic node is known exactly if the value(s) 

of its predecessor node(s) are specified. Condition- 

ing arrows are always directed toward a chance 

node and denote probabilistic dependence. Infor- 

mational arrows are always directed toward a deci- 

sion node and denote available information. An 

influence diagram usually (although not neccessa- 

rily) has a single chance node with no successors 

(i.e., a sink node), which is called the value node 

and which represents the decision-maker's direct 

preferences. Chance nodes without direct chance 

predecessors (i.e., chance source nodes) are called 

border nodes. 

Figure 5 shows a simple influence diagram that 

represents the FIOz adjustment decision. The pos- 

sible choices for the FIO2 (e.g., 21 percent to 100 

percent) are represented by the square decision 

node. The fractional inspired oxygen concentra- 

tion affects the oxygen content of arterial blood 

(CaO2) and the potential for oxygen toxicity. These 

are treated as probabilistic relationships and repre- 

sented as chance nodes with conditioning arcs aris- 

ing from the FIO2 decision node. Cardiac output 

(C.O.) is represented as a chance border node. 

Oxygen delivery (DO2) is represented as a determi- 

nistic node, because it is known for certain given 

CaO2 and cardiac output - in other words, it is the 

product of the values of these predecessors of DO2. 

Survival depends probabilistically on oxygen toxic- 

ity and oxygen delivery. Finally, we declare surviv- 

al to be the only significant attribute of the possible 

outcomes by attaching the value node to survival 

alone. 

Figure 5 shows the structure of the FIO2 ad- 

justment decision and in particular highlights the 

trade-offs and the key relationships. An influence 

diagram, however, can represent a decision com- 

pletely, not just in terms of its structure. A full 

description of a decision problem requires that the 

diagram contain at least one decision node directly 

or indirectly influencing a value node and that con- 

sistent, detailed specifications exist for each node 

in the diagram. For decision nodes, the set of pos- 

sible outcomes corresponds to the set of decision 

alternatives; for chance nodes, this set of outcomes 

corresponds to the sample space of the variable 

being represented. Furthermore, for chance 



nodes, a detailed description should also include a 

probability measure over the set of possible out- 

comes. An important, yet subtle, fact about prob- 

abilistic specifications of chance nodes is that they 

must be consistent with the set of direct prede- 

cessors of the node and their respective outcomes. 

A structurally complete influence diagram 

whose nodes and relations have not been specified 

in detail is said to be defined at the level of struc- 

ture. A diagram developed in all the necessary 

detail is defined in terms of both its structure and its 

parameters. An influence diagram is well-formed 

when it has been consistently defined both structur- 

ally and parametrically. Algorithms exist for com- 

puting the optimal policy from a well-formed influ- 

ence diagram representing a decision [13, 14] and 

for deducing other important inferential results 

(e.g., value-of-information, value-of-control, and 

other sensitivity measurements). 

Intelligent decision systems 

As mentioned earlier, decision analysis is not wide- 

ly used in medicine, because it is too expensive and 

too slow. Professional decision analysis has been 

almost exclusively applied in business and industry. 

By automating the decision analysis process, in- 

telligent decision systems make decision analysis 

inexpensive and fast. Therefore, intelligent deci- 

sion systems open the door for the wider medical 

application of decision analysis. 

A decision system is a system that makes recom- 

mendations for action and is typically implemented 

on a computer. An intelligent decision system is a 

decision system that delivers expert-level decision 

analysis assistance [15]. As part of this assistance, 

the intelligent decision system may provide access 

to a substantial knowledge base in the domain of 

the decision. 

Intelligent decision systems arise from the use of 

artificial intelligence technology to automate the 

formulation and appraisal skills of professional de- 

cision analysts in a well-defined decision arena. 

Intelligent decision systems are made possible by 

our ability to indentify and analyze in advance the 

common aspects of the decisions we face. 
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Fig. 6. A decision context is comprised of both generic and 

unique elements. 

We refer to all the elements that are relevant to a 

decision as the decision context As shown in Fig. 6, 

the decision context can be hierarchically decom- 

posed into its domain and its situation. The domain 

consists of the generic subject matter with respect 

to which the decision is being made. The situation 

consists of the preferences and the circumstances 

pertinent to the decision at hand. Preferences refer 

to a statement of the satisfaction the decision-mak- 

er receives from particular states of the world. Cir- 

cumstances are the information, constraints, and 

alternatives in a decision that are unique to a specif- 

ic decision-maker. 

Expert systems technology makes it possible to 

bring specialized domain knowledge to a decision 

problem. Decision analysis makes it possible to 

incorporate circumstances and preferences into de- 

cision-making. Intelligent decision systems facil- 

itate the incorporation of all elements - domain, 

preferences, and circumstances - into the decision. 

Therefore, intelligent decision systems are ideal for 

making high-quality decision-making assistance 

widely available. In an important sense, expert 

systems increase the quantity of decisions (a useful 

feature when good decision-making relies on the 

knowledge of a few key individuals whose exper- 

tise can thus be made widely available). In con- 

trast, decision analysis increases the quality of deci- 

sions. By combining both technologies, intelligent 

decision systems can make high-quality decisions 

available in quantity. 

Figure 7 shows a plausible architecture for an 

intelligent decision system [15]. This architecture 

consists of four interconnected parts: a general- 

purpose inference engine, a set of data structures, a 

corresponding set of specialized procedures, and 

user interface (or front end). 
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Fig. 7. An architecture for an intelligent decision system. (Ab- 

breviations: KB, knowledge base; ID, influence diagram.) 

The general purpose inference engine (illustrat- 

ed on the top left corner of Fig. 7 -  viewed from the 

side) interprets the knowledge bases throughout 

the system. In technical terms, its function is to 

efficiently implement a useful portion of the first- 

order predicate calculus and associated syllogisms. 

The operation of the system revolves around a 

set of nine data structures. These structures, de- 

picted as double-lined boxes along the left and 

bottom margins of Fig. 7, can be accessed through 

structure-specific editors. Editors allow all interac- 

tions with the data to occur with consistent syntax 

and semantics at a high level, which allows the rest 

of the system to be independent of the physical 

implementation of the data structures and helps 

ensure their reliability and integrity. 

The data structures in this architecture are ma- 

nipulated by a set of specialized procedures. Figure 

8 depicts a set of twelve such procedures, which are 

representative of those that should be part of an 

intelligent decision system. However, a somewhat 

different set may be better suited in any given 

implementation. The leftmost five procedures 

shown deal with decision-model development. In 

particular, the indirect chance node assessor, the 

decision alternative suggester, and the preference 

function elicitor develop the influence diagram 

model both structurally and parametrically. The 

probability distribution encoder and the risk atti- 

tude encoder further develop the model paramet- 

rically. 

An important part of the proposed architecture 

for an intelligent decision system is an interface 

program to interact directly with the user. This 

program facilitates the use of the procedures and 

data structures that constitute the intelligent deci- 

sion system and adapts the system's interaction to 

the indentity and expertise of each individual user. 

Applying decision analysis to critical care 

In applying dec&ion analysis to critical care, we 

must allow for special features of critical care deci- 

sion-making, which include delegated responsibility 
and distributed expertise. Delegated reponsibility 

governs critical care physician and nurse decision- 

making. Fundamentally, the patient is the deci- 

sion-maker, because it is primarily the patient's 

resources - his or her life and limb - that are at 

stake. In the critical care setting, the patient dele- 

gates decision-making responsibility to the physi- 

cian, either explicitly when the patient is well 

enough to communicate or implicitly when the ill- 

ness prevents such communication. The physician 

commits to action by providing a decision strategy. 

For example, the physician may decide that the 

patient should be placed on mechanical ventilation 

and receive hemodynamic life support. The nurse 

interprets and implements the physician's strategy 

into specific actions, such as adjusting the settings 

on the ventilator and the rates of infusion of the 

cardiac drugs. 

Distributed expertise refers to the fact that dif- 

ferent members of the critical care team are experts 

about different things. For example, the critical 

care physician specialist is most likely to be familiar 

with life-support technology and the pathophysiol- 

ogy of critical illness. The patient's attending physi- 

cian is more likely to be familiar with the longitudi- 

nal nature of the patient's illness, having had the 

opportunity to interview the patient pre-operative- 

ly and to follow the patient from admission on the 

ward to the operating room to the intensive care 

unit. The nurse has the best perspective on the 

patient's minute-to-minute circumstances. A nurse 

is physically present at the bedside 24 hours per day 

and is the first to be aware of changes in the pa- 
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Fig. 8. The Oxygenation Life-Support decision context has a 

domain-Respiratory Medicine-and a situation defined by the 

patient's preferences and data. 

Fig. 9. A decision-framing template expresses the common oP. 

ganizing principles underlying life-support decisions. 

tient's condition, as reflected in his or her history, 

physical exam, monitored observations, and lab- 

oratory measurements. 

As noted above, we can distinguish within each 

decision a generic domain and a unique situation. 

The situation is further divided into preferences 

and circumstances. Thus, for example, within the 

context of oxygenation life-support decisions, we 

identify a body of knowledge applicable for all 

patients - Respiratory Medicine (Fig. 8). Every 

oxygenation life-support decision, however, will be 

made for a specific patient, and it is that patient's 

preferences and circumstances that define the sit- 

uation. The patient's preferences may be very easy 

to describe (e.g., survival at all costs), or they may 

be difficult to capture, (e.g., subtle trade-offs be- 

tween a desire to survive and a desire to ,die with 

dignity). The patient's circumstances not only in- 

clude the unique constraints governing what can be 

done for the patient, but also the structural and 

parametric information about the patient, which 

correspond to data and diagnoses now typically 

recorded in the medical chart. 

We can use the taxonomy of the decision context 

to accommodate the features of delegated respons- 

ibility and distributed expertise in critical care deci- 

sion-making. Delegating decision-making corre- 

sponds to assigning responsibility for elements of 

the decision context. When the patient delegates to 

the physician, he or she assigns the physician the 

authority to determine each of the elements of the 

decision context. The physician may, in turn, wish 

to assign responsibility for the domain to a consul- 

tant critical care specialist and responsibility for the 

circumstances to the nurse who is continually pre- 

sent at the bedside. And he or she may wish to 

reserve responsibility for delineating the patient's 

preferences based on his or her personal contact 

with the patient. Of course, if the physician be- 

lieves the nurse has a better rapport with the pa- 

tient and family based on their continual contact at 

the bedside, then he or she may delegate responsi- 

bility for delineating the patients preferences to the 

nurse. 

Thus, the taxonomy of the decision context at- 

lows decision-making to be delegated in a con- 

trolled fashion. The fact that different team mem- 

bers have different areas of expertise is gracefully 

handled at the same time by this 'divide and con- 

quer' approach. Once the various elements of the 

decision context have been defined, decision analy- 

sis provides a methodology for logical synthesis 

into recommendations and insight. 

Decisions about adjusting FIOz for a post-oper- 

ative patient dependent on a ventilator illustrate 

how the decision analysis approach can be used. 

We start with the task of encoding respiratory med- 

icine domain knowledge, a task that is assigned to 

the pulmonary specialist physician. We ask the 

physician to represent his or her knowledge so the 

bedside physician and the nurse can easily use it to 

create influence diagrams for specific patients and 

decisions. He or she can do this by creating deci- 

sion-framing templates that express common orga- 

nizing principles of life-support decisions and by 

creating knowledge maps that articulate medical 

facts and details [16]. 

For example, Fig. 9 presents a decision-framing 

template for life-support decisions. We represent 

life-support therapy generically with a decision 

node, a rectangle labeled 'Life-Support Rx.' We 

indicate that life-support therapy has a therapeutic 
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// Complete vers~oR: 

PAO2= 

Pl02- PAC02 {F102+ (t-F[02 ) /R] 

Simplified version: 

PA02= 
Pl02 - PAC02/R 

Fig. 10. A knowledge map graphically represents the alveolar 
gas equation. Note that the simplified version that is commonly 
used clinically differs from the complete version, because it 
removes the conditioning arc from FIO2 to PAO> (Abbrevia- 
tions: see text.) 

effect and a side effect with chance nodes - ovals 

labeled 'Therapeutic Effect' and 'Side Effect ' -  that 

are linked to the decision by conditioning arcs from 

the decision node. The side effect may modulate 

the therapeutic effect. Consequently, there is an 

arrow from 'Side Effect' to 'Therapeutic Effect.' 

The therapeutic effect is directed toward satisfying 

a fundamental patient physiological need. We rep- 

resent this with an arrow from 'Therapeutic Effect' 

to 'Physiological Need.' The patient outcome de- 

pends both on how well the patient's physiological 

need is satisfied and on how great a side effect is 

generated to accomplish that. This is indicated by 

the arrows from 'Physiological Need' and 'Side 

Effect' into 'Outcome.' The patient preferences 

over the outcomes are represented by the value 

node and the arrow from 'Outcome' to 'Value.' 

The value of this template is that it provides a 

ready-made structure for building an influence dia- 

gram for any life-support therapy-  whether it is for 

oxygen therapy, fluid, inotropes, positive end-ex- 

piratory pressure, intra-aortic counterpulsation, or 

transfusion. Of course, for each specific therapy, 

the diagram will need to be further developed with 

the appropriate details for therapeutic effect, side 

effect, physiological need, outcome and value. The 

critical care specialist can provide significant guid- 

ance for this development and greatly enhance its 

efficiency by articulating the relevant medical facts 

and details in the form of knowledge maps. 

For example, the immediate therapeutic effect 

of oxygen therapy is that increasing the inspired 

fraction of oxygen increases the alveolar partial 

pressure of oxygen. This effect is described by the 

% 
Fig. 11. A knowledge map can represent the key side effect of 
FIO> 

alveolar gas equation [17]. Figure 10 is a knowledge 

map of the alveolar gas equation: 

PAO2 = P I O 2 -  PACO2 [FIOz + 

(1- FIO2)/R], 

where: 

PIO2 = 713 x FIO 2. 

PAO2 is partial pressure of alveolar oxygen; 

PIO2, the partial pressure of inspired oxygen; PA- 

CO2, the partial pressure of alveolar carbon diox- 

ide; FlOg, the fractional inspired concentration of 

oxygen; and R, the respiratory quotient. 

We graphically indicate that the fractional in- 

spired oxygen concentration directly affects the 

partial pressure of inspired oxygen. The partial 

pressure of inspired oxygen, together with the par- 

tial pressure of of alveolar carbon dioxide and the 

respiratory quotient, determine the partial pres- 

sure of alveolar oxygen. Note the arrow from 

'FIOz' to 'PAO2'. This direct influence of fractional 

inspired oxygen on the partial pressure of alveolar 

oxygen is deleted in the commonly used approxi- 

mate form of the alveolar gas equation [3]. This 

gives the equation: 

PAO2 = P I O 2 -  PACOJR.  

In a similar fashion, the critical care specialist 

will be responsible for encoding his or her knowl- 

edge about side effects of oxygen therapy and 

about the underlying physiological needs that ox- 

ygen therapy must satisfy. Sample knowledge maps 

for these elements are shown in Fig. 11 and Fig. 12. 

We note that the critical care specialist creates the 

knowledge maps and templates without the time 

pressure of meeting immediate clinical needs. Such 



Fig. 12. A knowledge map can represent the physiological rela- 

tionships related to the need for oxidative metabolism. (Abbre- 

viations: VO2, oxygen consumption; DO2, oxygen delivery.) 

Fig. 13. The bedside physician frames the FIO2 adjustment 

decision by using the knowledge maps created by the critical 

care specialist to expand the decision-framing template. (Ab- 

breviations: PIOa, partial pressure inspired oxygen; PACO2, 

partial pressure alveolar carbon dioxide; R, respiratory quo- 

tient; PAO2, partial pressure alveolar oxygen; ScOz, oxygen 

saturation puhnonary capillary blood; Hgb, hemo~obin con- 

centration; CCO2, oxygen content pulmonary capillary blood; 

Qs/Qt, pulmonary right-to-left shunt; CvOz, oxygen content 

venous blood; CaO2, oxygen content arterial blood; C.O., car- 

diac output; DO2, oxygen delivery; VO2, oxygen consumption.) 

decision engineering requires undistracted reflec- 

tion. As we shall see, the work done by the critical 

care specialist represents an 'off-line' investment 

that expedites the 'on-line' influence diagram- 

building tasks of the bedside physician and nurse. 

The bedside physician frames the FIO2 adjust- 

ment decision by using the knowledge maps to 

expand the decision-framing template. Using ox- 

ygen therapy as an example, the physician might 

build a decision framework as illustrated in Fig. 13. 

This structurally complete influence diagram char- 

acterizes what is relevant to decisions about ad- 

justing the FIO2 on a specific patient for an interval 

of time. The diagram explicitly identifies survival 

as the value node. This may not be appropriate for 

all cases; here, the bedside physician is simply iden- 

tifying the appropriate value function for the spe- 
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Fig. 14. The nurse details the FIOz adjustment at 6p.m. by 

linking currently available values for patient data into the physi- 

cian framework. (Abbreviations, see Figure 14, and PaCO2, 

partial pressure arterial carbon dioxide; SvO2, oxygen satura- 

tion mixed-venous blood; R nl, normal respiratory quotient.) 

cific patient situation. Likewise, the remainder of 

the diagram is not meant to be universal - it simply 

represents the physician's synthesis of the various 

knowledge elements into a partial decision model 

appropriate to the particular patient situation for 

an interval of time. 

The physician provides this decision framework 

to the nurse as guidance. Then, based on the chang- 

ing patient circumstances as represented by the 

continually collected data, the nurse parametrical- 

ly completes the influence diagram by assessing the 

values for the 'border' nodes. For example, at 

6p.m., the nurse can enter into the model assess- 

ments for the measure partial pressure of arterial 

carbon dioxide (PACO2), which can serve as an 

approximation for the partial pressure of alveolar 

carbon dioxide (PACO2). Likewise, he or she can 

enter values for the measured hemoglobin. The 

result is presented in Fig. 14. 

Once the nurse has entered the value that de- 

scribe the patient's circumstances, a complete in- 

fluence diagram is obtained. It is important to rec- 

ognize that this diagram not only captures the deci- 

sion structurally, but because of the mathematical 

relationships encoded in its constituent knowledge 

maps and the data provided by the nurse, it also 

captures the specific details of the decision at hand. 

Some of these assessments are shown in Fig. 15. 

Using appropriate algorithms, the fully assessed 

influence diagram can be evaluated to show how 

the value node depends on the different possible 

values of the decision variable. In technical terms. 
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Fig. 17. The graph of FIO2 versus probability of survival shows 

that the optimal FIO2 given the date at 6p.m. is 95 percent. 

Fig. 15. The completed influence diagram is mathematically 

well defined, both structurally and parametrically. 

t'reb~aluy 

Fig. 18. The nurse updates the influence diagram at 9p.m. with 

the recent values for patient data. 

Fig. 16. Using appropriate algorithms, the comprehensive influ- 

ence diagram can be reduced into a simpler diagram that cap- 

tures the essence of the FIO2 decision. The assessment of prob- 

ability of survival conditioned on FIOz is shown in more detail in 

Figure 18. 

the influence diagram of Fig. 15 is transformed to 

the minimal influence diagram in Fig. 16. The mul- 

tiple assessments underlying the full influence dia- 

gram are reduced to the single assessment shown in 

Fig. t6 that summarizes the essence of the decision 

- the relationship between the value node and the 

decision node. The graph in Fig. 17 shows this 

relationship between FIO2 and probability of sur- 

vival in detail for our hypothetical patient given the 

data available at 6 p.m. 

The nurse viewing this graph at 6 p.m. notes that 

an FIO2 of 95 percent provides the highest prob- 

ability of survival- 0.75. The graph also shows that 

probability of survival is very sensitive to the FIO2- 

the probability of survival markedly diminishes for 

FIO2 less than 90 percent. 

Three hours later, however, the nurse may have 

new measurements for hemoglobin and partial 

pressure of the arterial carbon dioxide. Updating 

the decision framework provides a new influence 

diagram appropriate for the patient's circumstanc- 

es at 9 p.m., as presented in Fig. 18. This influence 

diagram can be evaluated to generate the graph 

shown in Fig. 19. 

This graph shows that at 9 p.m. the highest prob- 

ability for survival is obtained with an FIOz of 60 

percent. However, more important than the rec- 

ommendation to decrease the FIO2 from 95 to 60 

percent are the insights the graph provides. Com- 

paring this graph with the earlier graph shows that 

the patient has improved - his probability of surviv- 

al is uniformly higher. Furthermore, survival is no 

longer sensitive to the value of FI02. In addition, 

other insights can be derived from the decision 
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Fig. 19. The new information leads to an updated decision 

model at 9 p.m., which is evaluated to generate a new graph of 

FIO2 versus probability of survival, 

l~robabilily 

. . . . . .  

Fig. 20. A graph of the sensitivity of survival to cardiac output 

suggests that cardiac output is a sensitive variable. 

model. For example, the nurse can use the influen- 

ce diagram to explore the sensitivity of survival to 

other variables, such as cardiac output. This would 

generate the graph shown in Fig. 20. 

This graph shows that probability of survival is 

quite sensitive to cardiac output. While the patient 

presently has a cardiac output (indicated by the 

arrow) consistent with the highest probability of 

survival, any change would lead to a significant 

decrease. Prompted by this discovery, the nurse 

calls the physician to point out the sensitivity of 

patient survival to cardiac output. The physician 

now reassesses the patient and expands the pa- 

tient's life support to include fluid administration 

that will ensure that the cardiac output is main- 

tained at the desired level. He creates a new deci- 

sion framework to guide the nurse, as presented in 

Fig. 21. 

This oxygen therapy example shows how the 

decision analysis approach can be applied in critical 

153 

Fig. 21. To buffer the sensitive variable, cardiac output, the 

physician reframes the problem to include fluid therapy that can 

maintain cardiac output at the desired level. (Abbreviations, see 

Figure 14, and LVEDP, left ventricular end-diastolic pressure; 

LVEDV, left ventricular end-diastolic volume; SV, stroke vol- 

ume; EF, ejection fraction; HR, heart rate; EVLW, pulmonary 

extra-vascular lung water.) 

care. The critical care specialist, the bedside physi- 

cian, and the bedside nurse each contribute their 

special expertise to build an influence diagram that 

captures what can be done, what is known, and 

what is desired. This influence diagram can then be 

evaluated both to generate a recommendation and 

to provide insight. 

This approach goes considerably beyond existing 

critical care decision practice. For example, rather 

than calling the physician when the cardiac output 

is already low and the patient is in trouble, the 

nurse calls much earlier (while there is still time to 

act) to inform the physician that cardiac output is 

an important variable to control and that additional 

therapy should be included to keep this output in 

the desired range. The contrast with standing or- 

ders is also dramatic. The influence diagram pro- 

vides the equivalent of on-demand standing orders 

that are quickly reformulated in response to chang- 

ing circumstances, that are consistent with the phy- 

sicians overall strategy for patient care, and that 

are less brittle or ephemeral. Furthermore, the 

decision analysis approach provides the tools to 

appraise the decision recommendation within its 

appropriate context. Clinicians not only receive 

recommendations, but also insight. They not only 

know what to do, but whvo 
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Fig. 22. Using a sequence of computer-based decision work- 

benches, the critical care team members collaboratively formu- 

late the decision model. 
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Fig. 23. A pilot system for ventilator management, Orchestra 

has four major components. The major components exist at the 

prototype level, and efforts are focused on knowledge engineer- 

ing and integration. 

Orchestra: An intelligent decision system for 

critical care 

The critical care team members will need a signif- 

icant amount of assistance to be able to encode 

decision templates and knowledge maps, to create 

decision frameworks, and to complete, evaluate, 

and interpret influence diagrams. Figure 22 shows 

a top-level architecture for a computer system that 

will help each member of the critical care team 

contribute the appropriate elements to the decision 

context. 

The critical care specialist uses a decision-engi- 

neering workbench to encode the decision tem- 

plates and knowledge maps. (We use the term 'de- 

cision engineering' to refer to the task of analyzing 

a class of decisions-e.g. ,  critical care decisions- in 

decision analytic terms.) These templates convert 

the decision-engineering workbench into a deci- 

sion-framing workbench, which serves as the soft- 

ware tool for the bedside physician. He then uses 

this program to create the patient-specific decision 

framework that serves to guide the nurse's deci- 

sion-making between rounds. And this patient- 

specific decision framework converts the decision- 

framing workbench into a decision-making work- 

bench. This is the tool the nurse uses to add to the 

decision framework the data elements that de- 

scribe the patient's evolving circumstances. All this 

results in a completed influence diagram that can 

be evaluated on the decision-making workbench to 

generate a recommendation. This diagram can be 

'mined' using the decision-making workbench to 

generate the insights that will lead to good medical 

care. 

Using this approach, we are now building a pilot 

system, called Orchestra, for ventilator manage- 

ment. Its elements are illustrated in Fig. 23. The 

system runs on the Apple Macintosh II personal 

computer. The system constituents are a user in- 

terface, a data acquisition and storage system, a 

decision-engineering workbench, and a ventilator 

management knowledge base. The decision-engi- 

neering workbench, called MacAnalyst TM, is now 

complete, and it provides tools for formulating (us- 

ing a graphical interface), evaluating, and apprais- 

ing influence diagrams (Fig. 24). It also provides 

tools for the entry of decision-framing templates 

and knowledge maps. The data acquisition system, 

also completed, is called Respirator Workstation. 

It provides a programming environment, called 

WISP, that allows for the interactive creation and 

execution of software drivers for medical instru- 

mentation that supports the RS232 protocol. The 

Respirator Workstation thus allows flexible data 

acquisition from a wide variety of medical instru- 

mentation. Drivers have now been written for the 

Puritan-Bennett 7200a microprocessor ventilator, 

TM MacAnalyst is a trademark of IDS Partners. 



Fig. 24. The decision-engineering workbench in Orchestra, 

called MacAnalyst, provides tools for formulating, evaluating, 

and appraising influence diagrams. 

for the Ohmeda 3700 pulse oximeter, and for the 

Bard urine-output measuring device. Drivers will 

be written for the Siemens 1281 physiological mon- 

itor and for the Oximetrics mixed-venous oximeter 

when interface boards for those instruments are 

released by their manufacturers. The Orchestra us- 

er interface allows graphic display of the data, en- 

try of noninstrument data by the clinician, and easy 

control of the data acquisition functions (Fig. 25). 

A link to the decision-engineering workbench is 

now under development. This will allow the nurse 

to easily incorporate the acquired data into the 

decision framework. Also under development is 

the ventilator knowledge base, which running on 

the decision-engineering workbench, forms an ex- 

pert system that in response to inputs from the 

critical care team effects the sequential transforma- 

tion of the decision-engineering workbench first to 

a decision-framing workbench and then to a deci- 

sion-making workbench. 

Summary 

We feel that decision analysis can address all major 

ICU decision defects through a consistent, compre- 

hensive, and efficient decision-making methodol- 

ogy. In addition, intelligent decision systems can 

make professional-level decision analysis available 

at the bedside by greatly reducing its cost and by 

increasing its speed. Orchestra illustrates how in- 
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Fig. 25. Orchestra's user interface provides easy control of the 

data acquisition system and allows display of the data in multiple 

formats. 

telligent decision systems technology supports the 

application of the decision analysis approach to 

critical care. This new clinical decision-making ap- 

proach has great potential for improved critical 

care decision-making. 
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