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of the serial comput-
er. Despite common
roots, AI soon dis-
tinguished itself in
its concern with
autonomous prob-
lem solving and its
emphasis on symbol-
ic, rather than numer-
ic, information.

Some of the earli-
est AI research
addressed approxi-
mations and heuris-
tics for complex
tasks in decision-
theoretic formula-
tions (Simon 1955),
and early work on
expert systems for
diagnosis (although
before this term
became popular)

used Bayesian and decision-theoretic schemes
(Gorry and Barnett 1968). However, many AI
researchers soon lost interest in decision
theory. This disenchantment arose, in part,
from a perception that it was hopelessly
intractable and inadequate for expressing the
rich structure of human knowledge (Gorry
1973; Szolovits 1982). 

Although similar views are still widespread
among AI researchers, there has been a recent
resurgence of interest in the application of
probability theory, decision theory, and deci-
sion analysis to various problems in AI. In

Decision analysis
and knowledge-based
expert systems share
some common goals.
Both technologies
are designed to
improve human
decision making;
they attempt to 
do this by formaliz-
ing human expert
knowledge so that it
is amenable to mech-
anized reasoning.
However, the tech-
nologies are based on
rather different prin-
ciples. Decision anal-
ysis is the application
of the principles 
of decision theory
supplemented with
insights from the
psychology of judgment. Expert systems, at
least as we use this term here, involve the
application of various logical and computa-
tional techniques of AI to the representation
of human knowledge for automated infer-
ence. AI and decision theory both emerged
from research on systematic methods for
problem solving and decision making that
first blossomed in the 1940s. They even share
a common progenitor, John von Neumann,
who was a coauthor with Oscar Morgenstern
of the best-known formulation of decision
theory as well a key player in the development
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this article, we examine some of the reasons
for this renewed interest, including an
increasing recognition of the shortcomings of
some traditional AI methods for inference
and decision making under uncertainty and
the recent development of more expressive
decision-theoretic representations and more
practical knowledge engineering techniques.

The potential contributions for tackling AI
problems derive from the framework of deci-
sion theory and the practical techniques of
decision analysis for reasoning about decisions,
uncertain information, and human prefer-
ences. Decisions underlie any action that a
problem solver might take in structuring
problems, reasoning, allocating computation-
al resources, displaying information, or con-
trolling some physical activity. As AI moved
beyond toy problems to grapple with complex,
real-world decisions in such areas as medicine,
business, and aerospace, the importance of
explicitly dealing with the uncertainty due to
partial information and incomplete models
became increasingly evident. Real-world
applications have also revealed the impor-
tance of modeling human preferences and
attitudes toward risk, central topics of deci-
sion theory to which traditional AI research
has paid little attention.

The purposes of this article are to provide
an introduction to the key ideas of decision
analysis for an AI-oriented reader and to
review recent research that is applying these
ideas to the development of a new generation
of expert systems that treat uncertainty, pref-
erences, and decision making on a more prin-
cipled basis. In particular, we concentrate on
the use of influence diagrams and belief nets
and their role in representation, knowledge
engineering, tractable inference, and explana-
tion. Although we believe that decision
theory and decision analysis can also make
valuable contributions to broader issues in AI,
including planning, reasoning under con-
strained resources, autonomous agents, and a
variety of other topics, these subjects are
beyond the scope of this article. Our focus
here is specifically on their contributions to
knowledge-based expert systems.

Foundations of Decision 
Analysis

The foundations of probability theory extend
at least as far back as the seventeenth century
in the works of Pascal, Bernoulli, and Fermat.
Probability is a language for expressing uncer-
tainty about propositions and quantities in
terms of degrees of belief. Decision theory

extends this language to express preferences
among possible future states of the world and,
hence, among alternative actions that might
lead to them. Probability and decision theory
provide a set of principles for rational infer-
ence and decision making under uncertainty.
By themselves, however, these mathematical
theories are insufficient to address real prob-
lems. Decision analysis is the art and science of
applying these ideas to provide practical help
for decision making in the real world.

We start by introducing the essential ideas
of decision theory and decision analysis. We
will not detail the axioms of decision theory
or present decision analysis techniques, such
as decision trees. Many excellent texts present
this material (Howard and Matheson 1984;
Raiffa 1968). Here, we focus on the essential
underlying ideas and rationale, which are
often misunderstood even among those who
have mastered the technical material.

Subjective Probability

A probability, of course, is simply a number
expressing the chance that a proposition is
true or that some event occurred, with a value
in the range from 0 (certainly false) to 
1 (certainly true). A subjective probability is a
probability expressing a person’s degree of
belief in the proposition or occurrence of an
event based on the person’s current informa-
tion. This emphasis on probability as a personal
belief depending on available information
contrasts with the propensity and frequency
views of probability as something existing
outside any observer. In the propensity view,
probability is a physical property of a device,
for example, the tendency of a particular coin
to come up heads. In the frequency view, prob-
ability is a property of a population of similar
events, for example, the fraction of heads in a
long sequence of coin tosses.

A subjectivist might start with some prior
belief about the fairness of the coin, perhaps
based on experience with other coins, and
then update this belief using Bayes’s rule as
data become available from experimental
tosses. After many coin tosses, the belief of
the subjectivist will, in general, converge to
the observed frequency as the data over-
whelm the prior belief. Thus in the long run,
the subjectivist and the frequentist will tend
to agree about a probability. The key distinc-
tion is that the subjectivist is willing to assign
probabilities to events that are not members
of any obvious repeatable sequence, for exam-
ple, the discovery of room temperature super-
conductivity before the year 2000, but the
frequentist is not. Almost all real-world prob-

Decisions
underlie any
action that a
problem solver
might take…
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lems of interest to decision analysts and
expert system builders involve at least some
uncertain events or quantities for which
empirical data are unavailable or too expen-
sive to collect; so, they must resort to the use
of expert opinion. The appeal of subjective
probability is that it is applicable whether
there is little or much data available. 

Many people find the subjectivist (also
known as Bayesian or personalist) view of
probability natural. However, a few find the
use of probability a stumbling block, often
because the distinction between subjective
and classical views is not made clear, as it
rarely is in introductory courses on probabili-
ty and statistics. An indication of this confu-
sion is the common misapprehension that
probabilistic methods are only applicable
when large amounts of data are available.
Subjective probabilities are often used to
encode expert knowledge in domains where
little or no direct empirical data are available.
However, if and when data do become avail-
able, Bayesian reasoning provides a consistent
framework to combine data with judgment to
update beliefs and refine knowledge. 

If a probability depends on who is assessing
it, then it does not make sense to talk about
“the” probability. Therefore, the subjectivist
talks about “your” probability or “expert A’s”
probability. To draw attention to the fact that
the probability is based or conditioned on the
information available to the assessor, it is
often explicitly specified. P(X | s) is used to
notate the probability of a proposition or
event X conditioned on s, the assessor’s prior
state of information or background knowl-
edge. If the assessor gets a new piece of evi-
dence E, the revised probability of X is
written P(X | E, s), where the comma denotes
the conjunction of evidence E and prior
knowledge s. We often call P(X | s) the prior
probability, that is prior to observing E, and
P(X | E, s) the posterior probability.

Qualitative Structuring and 
Conditional Independence

Probability is best known as a way to quantify
uncertain beliefs, but at least as important is
its role in providing a principled basis for

qualitative encoding of belief structures. This
qualitative role is based on the notion of con-
ditional independence. Event A is judged
independent of event B conditional on back-
ground knowledge s if knowing the value of
B does not affect the probability of A: 

P(A | s) = P(A | B, s)  . 
Conditional independence is symmetric, so
the previous equation is equivalent to stating
that B is conditionally independent of A:

P(B | s)= P(B | A, s)  .
Conditional independence formalizes the

qualitative notion that A and B are irrelevant
to each other. Conditional independence
and, conversely, dependence, provide the
basis for expressing the qualitative structure
in graphic form as a belief network or influ-
ence diagram. Practicing decision analysts,
like knowledge engineers building convention-
al expert systems, often claim that designing
the qualitative structure is far more important
than precision in the numeric parameters. In
Knowledge Representations from Decision
Analysis and in Knowledge Engineering and
Decision Analysis, we discuss structuring
techniques using belief nets and influence
diagrams as well as methods for eliciting
numeric probabilities.

Decision Theory

Decision theory is based on the axioms of
probability and utility. Where probability
theory provides a framework for coherent
representation of uncertain beliefs, utility
theory adds a set of principles for consistency
among beliefs, preferences, and decisions. A
decision is an irrevocable allocation of
resources under the control of the decision
maker. Preferences describe a decision maker’s
relative ordering of the desirability of possible
states of the world. The key result of utility
theory is that, given fundamental properties
of belief and action, there exists a scalar func-
tion describing preferences for uncertain out-
comes. Utility theory also provides ways to
express attitudes toward uncertainty about
outcome values, such as risk aversion. The
valuation of an outcome can be based on the
traditional attributes of money and time as
well as on other dimensions of value, includ-

The appeal of subjective probability is that it is applicable whether there is little
or much data available.



ing pleasure, pain, life-years, and computa-
tional effort. Multiattribute utility theory pro-
vides ways to combine all these elements to
produce a single scalar utility to represent the
relative desirability of any certain outcome.
Based on the axioms of decision theory, it is
relatively easy to show that one should select
the decision that maximizes the expected
utility over a set of decisions with uncertain
outcomes.

Normative versus Descriptive Theories

The axioms of probability and decision theory
are fairly simple and intuitive. Many but not
all who examine them find them compelling
as principles for rational action under uncer-
tainty. The theory is often referred to as nor-
mative, in the sense that it provides a set of
criteria for consistency among beliefs, prefer-
ences, and choices that it claims should be
adhered to by a rational decision maker.
Given a set of beliefs and preferences, the
theory prescribes which decisions should be
chosen, namely, those that maximize expect-
ed utility.

Decision theory is not proposed as a descrip-
tive theory; it does not purport to provide 
a good description of how people actually
behave when making choices under uncer-
tainty. Indeed, it has provoked a large body of
empirical research examining the differences
between how decision theory suggests we
ought to behave and how we actually do
(Kahneman, Slovic, and Tversky 1982). These
psychological studies have found qualitative
similarities between human intuitive judgment
under uncertainty and the prescriptions of
decision theory, but they have also demon-
strated pervasive and consistent biases and
inconsistencies. These differences seem to
result from various mental heuristics that we
use to render complex reasoning tasks
amenable to our cognitive capacities.

Proponents of alternative schemes for
uncertain reasoning used in expert systems,
such as certainty factors and fuzzy set theory,
have sometimes used these findings from psy-
chology to justify using these formalisms on
the grounds that they can be better models of
human reasoning than probability and deci-
sion theory. However, virtually no empirical
evidence shows that these alternative schemes
provide better psychological models. In any
case, for decision analysis, the goal is to
improve human reasoning rather than repli-
cate it. The observed biases and inconsisten-
cies in unaided human reasoning are central
to the justification for using normative aids,
just as our limited capacity for mental arith-

metic is the reason we find electronic calcula-
tors so useful.

Divide and Conquer

Decision analysis does not aim to avoid sub-
jective judgments. That would be impossible.
Rather, its strategy is divide and conquer: It
replaces complex subjective judgments about
which decisions are best with simpler subjec-
tive judgments about the probabilities of
component events and relative preferences
for elements of possible outcomes. The psy-
chological literature tells us what kinds of
judgments people find simplest and how to
minimize cognitive biases in obtaining them.
The components of the decomposed model
are then reassembled to obtain recommenda-
tions about the complex decisions implied by
the simpler judgments. Decision theory justi-
fies the technical operations involved in the
reassembly, such as applying Bayes’s rule and
selecting choices to maximize expected utility.
Thus, decision analysis does not seek to elimi-
nate human judgment but, rather, to simplify
and clarify it.

The Focusing of Attention

Real-world situations have unlimited com-
plexity in terms of the number of conceivable
actions, states of the world, and eventual out-
comes. Models are necessarily incomplete and
uncertain. The key issue in modeling,
whether for decision analysis or knowledge
engineering using other representations, is
the focus of attention: how to identify what
matters and ignore the rest. Decision analysis
provides a variety of techniques for focusing
attention by performing sensitivity analysis
to help identify those uncertainties and
assumptions that could have a significant
effect on the conclusions. The focus on deci-
sions is of particular importance: The ques-
tion about a possible model elaboration is not
simply, Might it be relevant? but instead, Is it
likely to change the resulting decision recom-
mendations? This method turns out to be an
extremely effective way to guide the model-
ing process and pare away the inessential.
Resources can then be directed to modeling
and analyzing the most sensitive aspects of
the problem.

Insight, Not Numbers

A decision analyst that simply presents a deci-
sion maker with the numeric expected utility
of each decision strategy, along with the
injunction to choose the highest expected
utility, is unlikely to be effective. Practicing
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either explicitly enumerated or relatively easy
to enumerate; the central task is the valua-
tion of the alternatives. With synthetic tasks,
the space of alternatives (for example, the set
of possible configurations or plans) can be
extremely large, and the main problem is
constructing one or more feasible options.
Analytic tasks include prediction, classifica-
tion, diagnosis, and decision making about a
limited set of options. Synthetic tasks include
the generation of alternatives, design, config-
uration, and planning. 

The area of AI in which decision theory has
had the most obvious influence is analytic
expert systems, particularly diagnostic sys-
tems. Probability and decision analysis pro-
vide an appealing approach to analytic tasks
because of the central role of inference and
decision making under uncertainty. Conse-
quently, we focus here on expert systems for
analytic tasks. Decision theory can also be rel-
evant to synthetic tasks, where probabilistic
or preference value functions can guide
search among large numbers of options. The
pioneering work in analytic expert systems
involved medical applications, although
much recent work has addressed fault diagno-
sis in electronic components and mechanical
devices (de Kleer 1991; Genesereth 1984). 

In general, three kinds of tasks are involved.
The first task is diagnosis: How can we infer
the most probable causes of observed prob-
lems (for example, diseases or machine faults)
given a set of evidence (for example, symptoms,
patient characteristics, operating conditions,
or test results)? The second task is informa-
tion acquisition: What additional informa-
tion or tests should we request? This choice
involves weighing the benefits of achieving a
possibly more accurate diagnosis against the
costs of obtaining the information. The third
task is making treatment decisions: What can
we do to fix or treat the problem?

The earliest work on diagnostic expert sys-
tems used explicitly Bayesian and decision-
analytic approaches (Gorry and Barnett 1968;
Ledley and Lusted 1959). The general Bayesian
formulation for diagnostic inference is as fol-
lows: Suppose we are considering a set H of n
possible hypotheses,

H = {h1, h2, … hn}  , 
and a set F of m findings, 

F = {f1, f2, ... fm}  .
In a medical application, the hypotheses

are possible diseases, and the findings can
include patient history, physical signs, symp-
toms, and laboratory results. We assume for
the simplicity of the presentation that all
hypotheses and pieces of evidence are two-
valued, logical variables, each either true or

decision analysts, like builders of expert sys-
tems for decision support, discovered early
that the most important product of the anal-
ysis is not the numbers or even the recom-
mended decision but the improved insights
for the decision makers. These insights come
from understanding why one decision is rec-
ommended over another and which assump-
tions and uncertainties are most critical to
this conclusion. The process is generally fos-
tered by the close involvement of decision
makers in the modeling and analysis process.
Without a basic understanding of the analy-
sis, decision makers are unlikely to accept the
results as a trustworthy basis for action. This
perspective emphasizes the importance of
clear explanations of the model assumptions
and analysis if they are to be used and useful.

The Practice of Decision Analysis

Just as success in building conventional
expert systems requires a great deal more
than understanding the relevant AI research,
decision analysis involves a great deal more
than decision theory. Among other things, it
includes techniques for structuring problems,
encoding probabilities and utilities, comput-
ing implications, analyzing sensitivities, and
explaining results to highlight insights, as we
discuss later. Decision analysis emerged in the
1960s from the recognition that probability
and decision theory could be applied to real-
world decision problems (Howard and Math-
eson 1984; Raiffa 1968; von Winterfeldt and
Edwards 1986). Over the last 20 years, it has
grown into an established professional disci-
pline. A number of commercial consulting
and research firms perform decision analyses
in business, government, and medicine. The
number of professional decision analysts is
comparable to the number of professionals
building expert systems for real-world problems.
Many large corporations routinely apply deci-
sion analysis to scheduling, capital expan-
sion, and research and development decisions.
The emphasis has been on assisting people
and organizations faced with high stakes and
complex resource-allocation problems.

Early Bayesian Expert Systems
By expert system, we mean a reasoning
system that performs at a level comparable to
or better than a human expert does within a
specified domain. It is useful to classify tasks
for which expert systems have been con-
structed as analytic or synthetic. In systems
dedicated to analytic tasks, a set of alternatives
such as possible diagnoses or decisions is

The question
…is not,

Might this be
relevant? but
instead, Is it

likely to
change the

resulting 
decision…
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false. A diagnosis or explanation D is a subset
of H. It is a set of hypotheses believed to be
present, implying all others are absent. We
represent initial beliefs about the prevalence
of the diseases as a prior probability distribu-
tion over all diagnoses P(D | s) for each 
diagnosis D, conditioned on the expert’s
knowledge s. Suppose E is observed evidence
that some findings are present, others absent,
and the rest unobserved. Knowledge about
the uncertain relationships between diagnosis
and evidence is represented as the conditional
probability distribution P(E | D, s). We can
apply Bayes’s theorem to compute the poste-
rior probability of each diagnosis after observ-
ing evidence E:

This most general formulation is complex
both to assess and to compute. Because a
patient can have more than one disease out
of n possible diseases, the number of possible
diagnoses (that is, disease combinations) is 2n.
Thus, the number of independent parameters
necessary to specify the complete prior distri-
bution is 2n - 1. For m pieces of evidence, the
general conditional distribution has 2m - 1
independent parameters given each hypothe-
sis, requiring the specification of 2n (2m - 1)
total independent parameters for all diagnoses.
Clearly, this approach becomes impractical
for more than two or three hypotheses and
pieces of evidence without some kind of sim-
plification.

Two simplifying assumptions were often
made: First (A1) is that the hypotheses in H
are mutually exclusive and collectively
exhaustive; for example, each patient has no
more than one disease. Second (A2) is that
there is conditional independence of evidence;
that is, given any diagnosis, the occurrence of
any piece of evidence fi of the component
hypotheses is independent of the occurrence
of any other piece of evidence fj:

P(fi | s) = P(fi | fj, s)  .
Figure 1 shows a belief network expressing

these two assumptions. With assumption A1,
the only diagnoses we need to consider are
the n singleton hypotheses, hi. With assump-
tion A2, the conditional probability distribu-
tion of the evidence E given a disease hi (as
required for Bayes’s theorem) can be decom-
posed into the product of the conditionals for
individual findings, as follows: 

Under the assumptions A1 of mutually
exclusive hypotheses and A2 of conditionally

independent findings, only m x n conditional
probabilities and n - 1 prior probabilities are
required. The great simplicity of probabilistic
systems based on these two assumptions
made the approach popular. Several medical
diagnostic systems have been constructed
based on the simplified probabilistic scheme
(Szolovits and Pauker 1978), including sys-
tems for the diagnosis of heart disease (Gorry
and Barnett 1968), acute abdominal pain (de
Dombal et al. 1972), and surgical pathology
(Heckerman et al. 1991). Despite the apparent
simplicity of the assumptions, some of these
systems performed at or above the level of
experts. For example, the system of de
Dombal and his colleagues (1974) averaged
over 90-percent correct diagnoses of acute
abdominal pain such as appendicitis, whereas
expert physicians were averaging 65 percent
to 80 percent.

Despite the success of this simple Bayesian
scheme in several of these early applications,
enthusiasm for this approach began to fade in
the early 1970s. One reason might have been
the poor user interfaces of many early sys-
tems and the general lack of attention to inte-
grating systems with the habits and
environment of the diagnostic practitioner.
An important lesson from this experience is
that superior diagnostic performance alone is
not sufficient for acceptance.

A second and more often-cited reason is the
restrictiveness of the assumptions of mutual
exclusivity and conditional independence.
This scheme is sometimes termed “Idiot’s
Bayes.” More generally, critics have pointed
out the limited expressiveness of this formu-
lation and the apparent mismatch between
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Figure 1. The Simplified Bayes’s Formulation. 
The fact that there is a single hypothesis node, h, indicates that the hypotheses are
mutually exclusive and exhaustive. The lack of influence arcs between the finding
nodes indicates that the nodes are conditionally independent given any hypothesis.

P(D | E, s) =
∑∀ D ⊆ H

P(E | D,s) P(D | s) 
.

P(E | hi, s) = ∏P(fi | hi, s) .

∀ fi ∈ E

P(E | D,s) P(D | s)



deposits. PROSPECTOR uses probabilities to rep-
resent degrees of belief in propositions and
quantities related to likelihood ratios to
quantify rule strengths, although its updating
rules are not exactly consistent with a coher-
ent probabilistic interpretation.

The developers of both MYCIN and PROSPECTOR

originally intended their schemes as approxi-
mations to the probabilistic ideal, which they
saw as unattainable for the reasons we dis-
cussed. Recent theoretical and experimental
work examined these and other heuristic
schemes for uncertain reasoning with produc-
tion rules and found a number of inherent
problems related to assumptions about priors,
irreversibility, and the myth of modularity.

A common objection to probabilistic
approaches is the difficulty of assessing prior
probabilities, degrees of belief in hypotheses
before evidence is available. Empirical data
are often hard to obtain, and subjective judg-
ments can be unreliable. MYCIN (although not
PROSPECTOR) appears to evade this problem by
not requiring prior beliefs. Contrary to many
popular interpretations, the certainty factor
was originally intended to represent an
update or change in belief induced by the
evidence, not an absolute degree of belief
(such as a probability) (Heckerman 1986;
Heckerman and Horvitz 1987). Thus, it aggre-
gates the overall change in belief given the
evidence without having to explicitly repre-
sent the prior or posterior belief in each
hypothesis.

When MYCIN suggests a treatment for an
infection, it effectively uses the certainty fac-
tors for the diseases as a proxy for their rela-
tive probability. Because it avoids explicit
reference to priors or prevalence rates, it is, in
effect, treating all infections as having equal
prior probabilities. In fact, diseases often
differ in prevalence rates by many orders of
magnitude, and although physicians might
find them difficult to precisely quantify, they
usually have approximate knowledge about
them. In addition, even approximate priors
can have a substantial effect on diagnosis and
treatment. For example, the fairly prevalent
mononucleosis and relatively rare Hodgkin’s
disease can appear similar in a lymph node

the rigorous, formal, quantitative approach of
probabilistic inference and the informal,
qualitative character of human reasoning.
This mismatch leads to difficulties in encod-
ing expertise and explaining results so that
users can understand and trust them (Davis
1982; Gorry 1973; Szolovits 1982). 

AI Approaches to Expert Systems
Perhaps the decisive blow to early Bayesian
schemes was the appearance of an appealing
alternative approach using logical and rule-
based representations derived from AI. This
approach focused more on the representation
and use of large amounts of expert knowl-
edge and less on questions of normative opti-
mality. Many researchers in this area had had
little exposure to, or interest in, probability
and decision theory.

A key feature of the new expert system
paradigm was the application of the produc-
tion-rule architecture to real-world diagnosis.
The appeal of production rules lay in their
apparent capacity to represent expert knowl-
edge in a flexible declarative and modular
form (Buchanan and Shortliffe 1984). The
production rule has the form of logical impli-
cation: To handle the uncertainty in real-world
diagnosis, investigators simply extend the
production-rule representation to allow inter-
mediate degrees of truth between true and
false for both propositions and for the appli-
cability of each rule. The two best-known
approaches that represent uncertainty as an
extension of deterministic rule-based expert
systems are MYCIN (Buchanan and Shortliffe
1984) and PROSPECTOR (Duda, Gaschnig, and
Hart 1979).

MYCIN, the expert system to aid physicians
in the diagnosis of bacterial infections, intro-
duced the certainty factor, a number represent-
ing the degree of confirmation (between 0
and 1) or disconfirmation (between 0 and -1)
of each proposition or rule. The basic MYCIN

scheme was made available for other applica-
tions as EMYCIN and it is used in several com-
mercially available expert system shells.
PROSPECTOR was constructed to aid geologists
in the identification of commercial mineral
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biopsy; the differences in the prior probabilities
can be essential in diagnosis and treatment.
Given that experts have even a rough knowl-
edge about priors, it seems important to
explicitly represent this knowledge.

An inherent problem of rule-based repre-
sentations is their irreversibility for uncertain
inference. Rules for diagnosis are generally
specified in the direction from possible evi-
dence to the hypotheses. This approach sup-
ports diagnostic reasoning, but it is hard to
reverse the direction to support predictive
inference, for example, to predict the likely
effects of a given disease. (Note that the issue
here is the flow of evidence, not the flow of
control, so the applicability of forward or
backward chaining is irrelevant.) In many
cases, it seems easier to assess uncertain
dependence in the causal direction, for exam-
ple, the propensity of a given disease to cause
a symptom, than in the diagnostic direction,
the degree to which the symptom suggests
the presence of the disease. Causal dependen-
cies are often more invariant over different
situations because they reflect basic properties
of the mechanisms, whereas diagnostic
dependencies depend on the prevalence of
alternative possible explanations of the effect.
Hence, it is often desirable to encode expert
knowledge about causal dependencies but
reverse the direction for diagnostic inference
(Shachter and Heckerman 1987). This is pre-
cisely what Bayes’s theorem does for coherent
probabilistic representations, but it is generally
difficult to do with rule-based representations.

It is also hard to support intercausal inference
(Henrion 1987; Wellman and Henrion 1991),
that is, increasing belief in one possible cause
of an observed effect because of new evidence
against another cause (and conversely). For
example, given that an incipient cold and an
allergy attack are both possible causes of
sneezing, and given a person is sneezing, the
observation of an allergen (for example, a cat)
should reduce belief in the cold (figure 2).
Although one can add special-purpose rules
to achieve this effect, this approach defeats
the goal of having the rules encode only
domain knowledge and not general knowl-
edge about how to perform inference. Again,
this kind of inference arises naturally in prob-
abilistic representations but is awkward and
impossible to do in general for rule-based
schemes. Rules primarily support reasoning in
the direction from condition to action: An
ideal knowledge representation is isotropic in
that it encodes knowledge in whatever way is
most natural but supports reasoning in any
direction required: predictive, diagnostic, or
intercausal.

An often-cited advantage of the rule-based
representation scheme is the ability to add or
remove rules from a knowledge base without
modifying other rules (Davis 1983). This
property has been referred to as modularity.
The modularity of rules in a logical production
system is a consequence of the monotonicity
of logic: Once asserted, the truth of a propo-
sition cannot be changed by other facts.
Unfortunately, it has been shown that this
property does not carry over in any straight-
forward manner to uncertain reasoning with
rules. Uncertain beliefs are intrinsically less
modular than beliefs held with certainty, fre-
quently making the rule-based calculi ineffi-
cient for reasoning with uncertainty
(Heckerman and Horvitz 1987). The tradi-
tional assumption of modularity in rule-
based approaches for reasoning under
uncertainty has implications that had not pre-
viously been appreciated.

Thus, like the early probabilistic systems,
rule-based methods impose strong restric-
tions on the kinds of dependence that can
effectively be represented. Unlike the explicit
assumptions of the simplified probabilistic
systems, the restrictive assumptions in the
heuristic approaches have been less apparent.
The implicit nature of the assumptions in
rule-based systems has tended to promote a
dangerous “myth of modularity”: Rule-based
approaches, like the simple probabilistic
approaches, do not have the expressiveness
necessary to coherently represent the rela-
tionships among uncertain beliefs.
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Figure 2. Explaining Away. 
If sneezing has been observed, then independent evi-
dence for the allergy attack, that is, a cat in the vicinity,
explains away the sneezing, and so reduces support for
a cold.



representation language to display decision
problems, including decision variables, state
variables, and preference or value variables
and their relationships (Howard and Mathe-
son 1981). As well as having a rigorous
formal interpretation, they have a perspicu-
ous qualitative structure that facilitates
knowledge acquisition and communication.
Influence diagrams offer an important com-
plement to more traditional representations,
such as decision trees and tables of joint
probability distributions and outcome values
for each action and state (Raiffa 1968). Unlike
these models, influence diagrams provide an
explicit representation of probabilistic depen-
dence and independence in a manner accessi-
ble to both human and computer.

The influence diagram is an acyclic-direct-
ed graph. The nodes represent propositions or
quantities of interest, including decision vari-
ables, states of the world, and preference
values. The arcs represent influence or rele-
vance, that is, probabilistic or deterministic
relationships between the variables. An influ-
ence diagram for a medical decision problem
is shown in figure 3. The diagram encodes a
decision problem about whether to undergo
coronary artery bypass graft surgery. The
danger in this situation is the risk of myocar-
dial infarction, that is, heart attack. 

Knowledge Representations
from Decision Analysis

As we saw, there has been justified criticism
of the restrictive assumptions of both the
simplified Bayesian scheme and the heuristic
rule-based approaches to uncertain reasoning.
Some have been led to believe that the
assumptions of mutual exclusivity and condi-
tional independence of the Idiot’s Bayes’s
scheme are essential to any Bayesian scheme.
However, this belief is a misconception. In
the last decade or so, much richer knowledge
representations have been explored, still
based in a principled way on probability and
decision theory but capable of expressing a
wider range of both qualitative and quantita-
tive knowledge in a flexible and tractable
manner. Much of this work has centered on
the use of acyclic-directed graphs  to repre-
sent uncertain relationships, including belief
networks and influence diagrams. These rep-
resentations facilitate the assessment of
coherent prior distributions and make it
easier for knowledge engineers and experts to
express and understand more general kinds of
dependence and independence assumptions.

Influence Diagrams

Influence diagrams are a graphic knowledge
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Figure 3. An Influence Diagram for a Patient with Heart Disease. 
Circle nodes denote chance variables; rectangles denote decisions; the diamond denotes the value or utility to the
decision maker; the double circle is a deterministic variable. Arrows into chance nodes and the value node represent
influence arcs, that is conditional dependence of the destination on the origin. Arrows into decision nodes represent
informational arcs, that is the origin variable will be known when the destination decision is made.



The example demonstrates the four differ-
ent kinds of nodes in an influence diagram. A
decision node, depicted as a rectangle, repre-
sents a set of possible alternative actions
available to a decision maker. Decisions are
the control variables or policy variables under
the direct control of a decision-making agent.
In the example, the angiogram test node rep-
resents the decision of whether to perform an
artery-imaging procedure that provides infor-
mation about the extent of coronary artery
disease in the patient. The heart surgery node
is the decision about whether to undergo a
coronary bypass operation.

The arcs into a decision node are informa-
tional arcs. They indicate what information is
available, that is, the values of uncertain vari-
ables or previous decisions that will be known
at the time the decision is made. The diagram
indicates that when he/she makes the surgery
decision, the decision maker will know
whether the patient has chest pain and the
outcome of the angiogram test if it was per-
formed.

Chance nodes represent states of the world
that are uncertain. They are depicted by cir-
cles or ovals. Uncertain belief about a chance
node is specified as a probability distribution
conditioned on the outcomes of its predeces-
sor nodes. For example, the probability distri-
bution over the values of life-years (years of
life remaining to the patient) depends on
whether the patient has a heart attack and
whether heart surgery was performed because
there is a risk of death from the surgery itself.

A deterministic node is depicted by a double
circle and represents a state of the world that
is a deterministic function of its predecessor
nodes. In the example, the cost is simply the
sum (a deterministic function) of the mone-
tary expenses of the angiogram test, the surgi-
cal procedure, and the hospitalization
following a heart attack. Note that we can
actually be uncertain about a deterministic
node because its predecessors are uncertain.
In this case, we are uncertain about the cost
because the heart attack node is uncertain,
even though it depends deterministically on
these predecessors.

Finally, the value node is depicted as a dia-
mond and represents the preferences or utilities

of a decision maker for alternative outcomes.
Generally, each influence diagram has only
one value node. Its predecessors indicate
those outcomes or attributes that are included
in the evaluation of a choice or plan. For the
heart disease example, the attributes are life
quality, life-years, and cost. This multiattribute
utility function expresses trade-offs among
these attributes for an individual patient as
well as attitudes toward risk and time.

Any variable can be represented by a con-
tinuous scalar or a set of discrete values. It is
usual for the value node to be continuous.
Some variables can be inherently discrete,
such as the heart surgery decision. It is either
performed or not, with no intermediate possi-
bilities. In other cases, the variable can be
inherently continuous but treated as discrete
for representational and computational con-
venience. For example, in response to a par-
ticular level of exertion, the node chest pain
has the values none, mild discomfort, and
crushing sensation. It is important that the
set of outcomes for each variable be defined
unambiguously. They must be mutually
exclusive and exhaustive in the sense of cov-
ering all possible values.

Belief Networks

Much of the research on representation and
inference with these graphic representations
has focused on specializations of influence
diagrams that contain only chance nodes
(Cooper 1984; Kim and Pearl 1983; Lemmer
1983; Pearl and Verma 1987). These special-
ized representations exclusively express prob-
abilistic relationships among states of the
world without explicit consideration of deci-
sions and values. Several different terms have
been used for these representations, including
causal probability networks and Bayesian nets
(Pearl 1988). We use belief networks, which
seems to be the most popular.

Three Levels of Representation 

The representation of a decision problem can
be seen at three levels of specification: relation,
function, and number (Howard and Matheson
1981). We can define a model at each level
without defining information at more specific

Articles

WINTER 1991    73

. . . rule-based methods impose strong restrictions on the kinds
of dependence that can be represented effectively.



are illustrated in figure 4. Source variables (that
is, those variables with no predecessors) are
marginally independent. Where two variables
have one or more common parents but no
arc between them, they are conditionally
independent of each other given their
common parent(s). Finally, a variable is con-
ditionally independent of its indirect prede-
cessors given all the variable’s immediate
predecessors (that is, those nodes from which
it directly receives an arc). 

The influence diagram, or belief net, provides
knowledge engineers the flexibility to specify
and reason about dependencies—or, more
important, independencies—at a purely qual-
itative level before progressing to the level of
function or number. Thus, they can capture
expert beliefs in their full richness (or sim-
plicity as the case might be) without arbitrary
restrictions. The representation provides
explicit control over modularity assumptions.
The independencies in an influence diagram
are a formal expression of the locality of
effect among variables. The effects of one
variable on a distant variable can only propa-
gate along the influence arcs. More precisely,
a variable is screened from the effects of dis-
tant variables (is conditionally independent
of them) given its Markov blanket, that is, its
direct predecessors, direct successors, and the
direct predecessors of these successors (that
is, parents, children, and spouses). In figure 4,
the Markov blanket of y is {v, x}, and the
Markov blanket of w is {u, v, x}.

One way to look at a belief net is as a
decomposition of the joint-probability distri-
bution over all its variables. The joint proba-
bility is equal to the product of the probability
for each variable conditional on its predeces-
sors (if any). The belief net in figure 4 speci-
fies the following decomposition:

P(u,v,w,x,y | s) = P(y | v,x, s) P(v | u,w, s) 
P(x | w, s) P(w | s) P(u | s)  . (1)
If we assess the probability distribution for
each variable conditional on its predecessors,
provided this network has no directed cycles,
the product of the variables is guaranteed to
be a coherent joint distribution. That is, the
joint will be complete, having no unspecified
parameters, and consistent, containing no
conflicts. In this way, the belief network pro-
vides a simple solution to the problem that
was unsolved in PROSPECTOR and related sys-
tems, namely, how to assign probabilities to
variables and links without creating incoher-
ence.

We can now more carefully interpret the
heart surgery influence diagram (figure 3) in
terms of conditional independence. In the
diagram, the primary expression of condition-

levels. The relation level captures the qualita-
tive structure of the problem, as expressed in
the topology of the influence diagram. At this
level, the arcs specify dependence and inde-
pendence between propositions or variables
(nodes). Influence diagrams at the relation
level are similar to several common represen-
tations in modeling and AI research, such as
semantic nets.

The level of function specifies the qualita-
tive functional form of the probabilistic and
deterministic relationships among nodes. For
example, Wellman (1988a) defines monoton-
ic and synergistic influences between vari-
ables in qualitative probabilistic terms and
presents methods of qualitative probabilistic
reasoning based on them.

Finally, the level of number quantifies the
numeric values in the functions and condi-
tional distributions. For example, at the level
of number, we might specify that P(chest pain
= mild discomfort | coronary artery disease = 1
vessel) = 0.25. Chance nodes without prede-
cessors can be specified at the level of number
with marginal (prior) probability distributions.

Conditional Independence

As we mentioned previously, at root, probabilis-
tic independence is a qualitative relationship
among  variables. It captures the intuitive
notion of irrelevance. A belief network
expresses independence graphically. The
arrows or arcs—or, more precisely, the lack of
arcs between variables—express probabilistic
independence. Several kinds of independence
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Figure 4. Expressing Independence. 
The arcs, and lack of arcs, in a belief network express
independence. For example, variables u and w, having
no common predecessors, are marginally independent.
Variables v and x are conditionally independent, given
their common predecessor x. Variable y is conditionally
independent of u and w, given its direct predecessors, v
and x. In general, each variable is independent of all
other variables given its Markov blanket, that is its
direct predecessors, successors, and predecessors of its
successors.



al independence involves coronary artery dis-
ease and its effects. The diagram asserts that
the probabilities over the values of chest pain
(both current and future), angiogram test,
and myocardial infarction are all dependent
on the value of coronary artery disease. Fur-
thermore, given knowledge of coronary artery
disease, the effects of the disease are condi-
tionally independent of one another. Once
we know the precise extent of a patient’s
heart disease, then the presence of chest pain
does not change our belief that he/she might
have a heart attack at some time in the future.
The knowledge of coronary artery disease as
the causal agent tells us all the information
available about the interaction of its effects.

Knowledge Engineering and
Decision Analysis 

Knowledge engineering is the process by which
knowledge is elicited from experts in the
domain, structured, encoded, installed, and
refined in expert systems. Although this term
has not traditionally been used in the decision
analysis field, the work of a decision analyst
in constructing a decision model is funda-
mentally similar to the activities of a knowl-
edge engineer. Both the knowledge engineer
and the decision analyst work with a decision
maker or a domain expert to create a formal
representation of aspects of his/her knowledge,
often supplemented with data from other
sources, such as texts and policy documents.
In conventional expert systems, the knowl-
edge engineer typically uses rule-based and
object-based representations coupled with
some type of deductive inference method.

The decision analyst uses influence diagrams
and decision trees to express qualitative knowl-
edge about the situation. Influence diagrams
have proved particularly useful for expressing
qualitative judgments about uncertain depen-
dence and independence relations in a way
that is intuitive but also with a principled
probabilistic basis. The qualitative diagram is
then used as a framework for assessing quan-
titative probabilistic dependencies. Decision
analysts differ in putting more emphasis on
decisions and building an explicit quantita-
tive preference or utility model, which is only
implicit or absent in rule-based representa-
tions (Henrion and Cooley 1987; Langlotz et
al. 1986). Like knowledge engineers for expert
systems, practicing decision analysts have
developed and refined a battery of practical
techniques for eliciting and quantifying
knowledge and beliefs.

The Encoding of Probabilities

How to obtain the necessary probabilities is
frequently a major concern of those contem-
plating decision analysis for the first time. For
some events, there can be relevant empirical
data to guide probability assessment, but for
many real problems, most or all probabilities
will need to be obtained from expert judg-
ment. Indeed, even where data are available,
it is a matter of expert judgment about how
relevant they are and whether adjustments
are needed to fit the situation at hand. To 
the strict subjectivist, one should be able to
express one’s belief in any proposition as a
single probability number no matter how
little or much one knows about it. This is a
consequence of the axioms of decision theory,
such as the ability to order the relative proba-
bility of any set of events. The objection
What if I don’t know the probability? loses
force once one realizes that probability is not
a physical characteristic, such as mass or
length, that one is trying to estimate; it is just
a way to express one’s degree of knowledge or
ignorance about the proposition. Nonetheless,
expressing one’s knowledge in terms of proba-
bilities is often a demanding task.

However, decision analysts have developed
a variety of techniques to make it as easy as
possible, even for assessors who have little
technical understanding of probability (Morgan
and Henrion 1990; Spetzler and Stael von
Holstein 1975). Methods are available for
assessing discrete-event probabilities and con-
tinuous probability distributions. The simplest
methods require the assessor to make only
qualitative judgments about which is more
probable, the event of interest or some refer-
ence event of agreed probability. The probabil-
ity wheel is a popular method for providing a
reference event. It is a simple graphic device
consisting of a disk with a colored sector
whose angle visually represents the probability
of the reference event. According to whether
the probability of the event is judged greater
or lesser than the relative size of the sector, its
angle is adjusted larger or smaller until the
expert is indifferent. Thus, a probability can
be obtained without explicitly mentioning a
number. As they gain experience with proba-
bility assessment, many experts find they
prefer directly giving numeric probabilities.
For extremely low or high probabilities, tech-
niques that use odds or log-odds scales have
been shown to be useful (von Winterfeldt and
Edwards 1986).

An extensive literature on human judgment
has identified cognitive biases and mental
heuristics that tend to distort human judg-
ments about uncertain events (Kahneman,

What if 
I don’t 
know the
probability?

Articles

WINTER 1991    75



identify the most important probabilities, so
as to best apportion the probability assess-
ment effort (Heckerman and Jimison 1989).

Prototypical Influences

To fully express the influence on a binary
variable E dependent on n binary hypotheses
H1, H2, … Hn requires a conditional probability
distribution with 2n independent parameters.
However, in practice, influences can often be
specified by a prototypical function incorpo-
rating independencies that greatly simplify
the assessment. A common example of a pro-
totypical influence is the noisy-Or gate, which
is a probabilistic generalization of a standard
Boolean Or (figure 5). With a Boolean Or, the
occurrence of any single one of the input
events is sufficient to cause the output event.
In a noisy-Or, each input has some probabili-
ty of being sufficient to cause the output. The
processes that prevent the signal from being
sufficient are independent of each other. This
structure is useful in representing many causal
relationships, for example, where several dif-
ferent faults can each cause the same device
failure mode, or several different diseases can
each cause a common symptom.

The noisy-Or relationship requires the spec-
ification of only one parameter for each input,
the probability of the effect given only that
input is present, pi = P(E | Hi only, s). The
probability of the effect given any combina-
tion of input can simply be derived from the
individual parameters:

P(E | H1, H2, ... Hn, s) = 1 - (1 - p1) (1 - p2) …
(1 - pn)  .
Thus, the complete conditional distribution
requires the specification of only n parame-
ters (Good 1950; Pearl 1986b).

It is often useful to also introduce a leak,
that is, the probability that the effect can
occur in the absence of any cause explicitly
represented in the knowledge base. The leak
constitutes a kind of residual “all others” cat-
egory, representing what is not explicit in the
knowledge base and substantially mitigating
the effects of the closed-world assumption.
For example, in the QMR-BN knowledge base
for internal medicine, each finding or symp-
tom is, on average, associated with about 80
diseases (Shwe et al. 1991). The leaky noisy-
Or assumption allows it to be encoded by a
single causal strength for each disease-finding
pair (about 40,000 such pairs exist in the
knowledge base). Each of the approximately
4,000 findings also has a leak probability, rep-
resenting the chance the finding is observed
because of an unmodeled cause or a false pos-
itive test result.

Slovic, and Tversky 1982). One common bias
is the tendency to underestimate uncertainty,
assessing probabilities that are nearer 1 or 0
than is appropriate. Decision analysts have
drawn on this research to develop methods to
counteract the effects of these biases. Debiasing
techniques include attempts to make all
assumptions explicit, encouraging assessors
to consider extreme possibilities and unex-
pected outcomes. For probabilities or distri-
butions that are particularly important,
decision analysts often use an extensive pro-
tocol to ensure the quantity is clearly defined
and understood, make explicit all important
conditioning events, and counteract possible
cognitive biases (Morgan and Henrion 1990;
Spetzler and Stael von Holstein 1975).

Of course, there are limits to the precision
with which a person can provide a probability,
depending on the skill and knowledge of the
assessor and the complexity of the domain, as
well as cognitive biases. You might be hard
put to say whether your degree of belief in X
is better expressed as 0.7 or 0.8, but approxi-
mate numbers are often sufficient. The
response of the decision analyst is to do a
sensitivity analysis to see whether a change
over this range really matters. If not, which is
often the case, then there is no need to worry
about more precision. If it does matter, then
it might be worth trying to develop a more
elaborate model that is conditioned on other
events to better assess its probability. In this
way, we can apply decision-analytic tools to
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Figure 5. The Noisy-Or Influence. 
This is a prototypical dependency in which each input
Hi , if it occurs, has a probability that it is sufficient to
cause output E to occur. The event that Hi is sufficient is
independent from the occurrence or sufficiency of each
other input. The Noisy-Or requires specification of only
n parameters for n inputs.



Researchers are seeking techniques for
explicitly acquiring and representing other
forms of independence. Heckerman (1990)
describes the use of partitions that can sub-
stantially reduce the effort to assess the dis-
ease-finding links. For each finding, its
associated diseases are classified into groups
that have similar causal strengths. This strength
need only be assessed then once for many dis-
eases. The approach, and the related similarity
networks, are efficient because experts find it
much easier to judge whether two probability
distributions are similar than to assess the dis-
tributions themselves.

Value Structuring and Utility Modeling

The modeling of human preferences in the
form of utility functions is a major concern
for decision analysts. In important decisions,
there are often several objectives that conflict,
for example, in the heart surgery case, life
duration, life quality, pain, and monetary
cost. Decision theorists have developed the
multiattribute utility theory as a way to model
human preferences in such situations (Keeney
and Raiffa 1976; von Winterfeldt and Edwards
1986). The most important stage in preference
modeling is generally the first in which these
objectives or attributes are identified. They are
often organized into a value tree or attribute
hierarchy. It is important not to omit key
attributes and avoid attributes that overlap.

For each attribute, a value function can be
assessed that maps from the quantity of inter-
est, for example, dollars of income or years of
life expectancy, into a value scale whose
increments are equal in significance to the
decision maker. A function must be assessed
then that combines the values for each attribute
into a single utility number to compare alter-
native options. Depending on whether the
attributes are judged independent or whether
there are interactions among them, this can
be a simple additive model or something
more complex. Again, a variety of elicitation
techniques are available to discover the
model form and assess weights or trade-offs
between the attributes (Keeney and Raiffa
1976; von Winterfeldt and Edwards 1986).
Several researchers have examined computer
aids for value structuring and preference
modeling (Holtzman 1988; Klein 1990; and
Wellman 1985).

Utility functions also represent attitudes to
uncertainty or risk. For example, a risk-averse
person will prefer a certain prize of a $500 to a
50-percent chance of $1000 and a 50-percent
chance of 0. A variety of elicitation techniques
have been developed to help decision makers

assess their risk attitudes by asking their rela-
tive preferences among gambles or lotteries
with varying probabilities and outcomes
(Howard 1970; Keeney and Raiffa 1976; von
Winterfeldt and Edwards 1986). Assessment
protocols generally involve making judgments
in a variety of different ways to provide cross-
checks.

Model Refinement and Sensitivity
Analysis

As we noted in Early Bayesian Expert Systems,
no model is complete: It is necessarily a sim-
plification of the knowledge, beliefs, and pref-
erences of the expert or decision maker, which
are themselves a simplification of reality. It is
a compromise between simplicity for ease of
knowledge engineering and computational
tractability and completeness for maximum
precision. During model construction, we can
elaborate it and simplify it as we explore
trade-offs between accuracy and tractability.
We refer to this process as completeness modu-
lation (Horvitz 1987). This process is also used
to some extent by knowledge engineers, but
decision analysts have particular perspectives
and tools to help them.

In particular, the decision analysts use a
variety of sensitivity analysis methods to
examine the importance of various model
parameters and structures, including specific
probabilities, risk tolerance (expressing risk
attitude), and multiattribute trade-off weights
(Howard 1968). In judging the sensitivity of
the model to a particular parameter or model
feature, the question is not just, Could it
affect model predictions? but more specifically,
Could it affect the predicted expected utility
in such a way as to change the recommended
decision? This decision-oriented perspective
provides a stronger measure of importance
that allows pruning many more parameters as
unimportant.

A well-known decision-oriented sensitivity
measure is the expected value of perfect informa-
tion (EVPI), which is the increase in expected
value from improving the decision should the
true value of an uncertain quantity become
known. Another such measure is the expected
value of including uncertainty (EVIU), which
assesses the importance of the explicit repre-
sentation of uncertainty in a variable
(Morgan and Henrion 1990, chapter 12).
Because the probabilistic representation of a
variable exacts costs in elicitation, representa-
tion, and inference, it is desirable to include
only those uncertainties that matter. A third
decision-oriented measure is the expected
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approached this problem by encoding the
expertise of the decision analyst as a set of
rules for constructing influence diagrams
within a particular domain. Holtzman’s pro-
totype, RACHEL, addresses decision counseling
on problems of infertility. It contains deter-
ministic rules that construct and analyze an
influence diagram that responds to the specif-
ic information, preferences, and situation of a
particular case.

Breese (1990) takes a different approach to
this problem. His knowledge base represents
specific and general facts about variables and
their probabilistic relations. His system, ALTER

ID, constructs a belief net or influence diagram
from components in the knowledge base
using a refinement process that is analogous
to the human decision analyst. ALTER ID adds
variables to the model in stepwise fashion
and uses deterministic sensitivity analysis to
guide the direction and extent of the refine-
ments. These approaches raise the more gen-
eral question of what kind of structures are
appropriate for representing uncertain knowl-
edge for decision making if belief nets and
influence diagrams are not the best primitive
representation. 

Reasoning with Belief Networks
and Influence Diagrams

Suppose we observe the actual value of one or
more variables in a belief network or influence
diagram, which might have implications for
other chance variables whose probabilities
will change as a result. A variety of reasoning
types are possible. For example, in figure 3,
knowledge that a patient has coronary artery
disease allows us to infer predictively (that is,
in the direction of the influence arcs, general-
ly from cause to effect) the changed probabil-
ity that he/she will suffer future chest pain or
a heart attack. Conversely, given that the
patient has a specified level of chest pain and
angiogram test outcome, we can infer diag-
nostically (that is, in the reverse direction,
from effect to cause) the probability that the
patient has coronary artery disease. Given
evidence about an effect, for example, sneez-
ing in figure 2, the independent evidence

value of computation (EVC) (Horvitz, Cooper,
and Heckerman 1989). Where additional
computation gives improved precision, but at
additional cost, the EVC can help decide how
much computation is worthwhile. 

To date, few people have investigated the
automation of sensitivity analysis for proba-
bilistic reasoning. A promising area in this
regard is the development of better error the-
ories, improving our ability to predict the
effects of various kinds of errors and simplifi-
cations in input in different model classes.
For example, the effects of errors in the
assessment of conditional probabilities can
only be attenuated in predictive inference but
can be amplified in their effect on posterior
probabilities in diagnostic inference (Henrion
1988a). General theory of this type could lead
to more intelligent automated sensitivity aids
to guide knowledge engineering in the most
profitable directions.

Computer Support for 
Problem Structuring

Conventionally, decision analysis has been
applied to specific decision problems, where
expert systems are designed to support a
whole class of decision problems within a
domain. Of course, the cost in constructing it
can be amortized over a large number of
applications. The usefulness of decision-
focused sensitivity analysis for guiding model
construction in decision analysis points to a
fundamental difference in goals between con-
ventional decision analysis and knowledge-
based expert systems. Decision-focused
sensitivity analysis seems to work well in cut-
ting a model down for a specific decision
problem. However, when constructing a
knowledge base for a wide class of decisions,
determining what might be relevant is much
harder. Almost any hypothesis or evidence
might potentially be of importance to support
decision making for, say, internal medicine. A
vast knowledge base is necessary because
little can be ruled out a priori as irrelevant.

Given a large knowledge base of potentially
relevant information, can we automate the
task of constructing a tractable model focused
on a particular case? Holtzman (1988)

Articles

78 AI MAGAZINE

A comparison . . . found that the Bayesian version significantly
. . . outperformed formulations using certainty factors and
Dempster-Shafer belief functions.



eliminating one cause, allergy, allows us to
reason intercausally that the other possible
cause, a cold, is more likely.

We can also calculate the expected value or
utility of alternative decisions, thus obtaining
recommendations for which a decision is
preferable. These decisions can include prima-
ry decisions, for example, whether heart
surgery is recommended given current knowl-
edge, and information-acquisition decisions,
for example, whether doing an angiogram
test is worthwhile given its costs and the
chance it might improve the primary decision.
We can also do a variety of sensitivity analyses,
answering such questions as, How probable
must coronary artery disease be for surgery to
be worthwhile? or for a given probability of
coronary artery disease, What trade-off
between life quality (freedom from pain) and
life-years of survival would make surgery
worthwhile?

Exact Inference in Belief Networks

Conceptually, the simplest way to perform
inference and compute the probability of an
outcome that is conditional on any observa-
tions is simply to generate the joint distribu-
tion for all the variables as the product of all
the component conditionals, as illustrated in
equation 1. Given a belief network, as in
figure 4, the probability of each instantiation
of the variables (each scenario) can simply be
computed as the product of the conditional
probabilities for each variable given the speci-
fied instantiations of its predecessors, as illus-
trated in equation 1. From this computation,
one can figure the probability of any set of
observations P(E | s) by summing over the
irrelevant variables and compute the condi-
tional probability by dividing the joint proba-
bility by the probability of the evidence:

Of course, the snag with this approach is
that for n variables, there are 2n scenarios.
Thus, computational effort is exponential in
the number of variables and is infeasible for
more than a dozen or so variables. The key to
computational efficiency for inference in
belief networks is the exploitation of the spec-
ified independence relations to avoid having
to explicitly calculate the full joint distribu-
tion. Most of these decompose the network
into smaller pieces. A variety of methods have
been developed, each focusing on particular
families of belief network topology. The sim-
plest method is the simplified Bayes’s scheme,
which we discussed earlier and is illustrated
in figure 1. The next simplest applies when

the network is singly connected, that is, a poly-
tree with no more than one path between any
pair of nodes, as illustrated in figure 6 (Kim
and Pearl 1983). Both these algorithms are
linear in the number of network variables.

Unfortunately, most real networks are mul-
tiply connected; so, more complex methods
are required. A variety of approaches have
been explored (Lauritzen and Spiegelhalter
1988; Pearl 1986a; and Shachter 1986) whose
efficiency varies according to the network’s
characteristics. All these approaches can have
problems if the network contains many inter-
secting loops (ignoring directionality), as
illustrated in figure 7. Cooper (1991) shows
that the general problem of exact probabilis-
tic inference in a belief network is NP-hard;
so, we should not expect to find an exact
method that is computationally efficient for
arbitrary networks. Nevertheless, exact meth-
ods have proved practical for sizable multiply
connected networks. For example, the HUGIN

system can perform diagnostic inference in
under five seconds on the MUNIN network for
neuromuscular disorders, containing about
1000 chance nodes with up to 7 states each
(Andreassen et al. 1987).

Approximate Inference in 
Belief Networks

Despite these successes, there remain networks
such as the QMR-BN belief network (Shwe et al.
1990) with about 4500 nodes with many
intersecting loops, an arrangement that gener-
ally appears intractable for exact methods.
Concern about the tractability of exact meth-
ods has provoked research into approximate
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Figure 6: A Singly Connected Belief Network, or Polytree.

P(A | E, s) =
P(A, E | s)

P(E | s)
.



scenario, using this number to weight the
scenario in the sample.  A virtue of logic sam-
pling and derived approaches is that succes-
sive samples are independent, so convergence
is guaranteed, and the precision of estimated
probabilities can be estimated by standard
statistical methods. 

An alternative simulation-based approach
is stochastic, or Markov, sampling (Pearl
1987). In this case, variables are instantiated
in random sequence, using the probability
conditional on their entire Markov blanket.
This approach neatly avoids problems from
observed variables, which are simply clamped
to their observed value. However, unlike logic
sampling, successive instantiations are not
independent, and the process can suffer from
convergence problems when the network
contains near-deterministic influences (Chin
and Cooper 1987).

Cutset conditioning (Pearl 1988) involves
instantiating variables in the cutset of a net-
work to render the remaining network singly
connected, thus amenable to the efficient
polytree method. Bounded conditioning
improves the efficiency of complete cutset
conditioning by examining the most proba-
ble instantiations of the cutset from which it
computes bounds on the posterior probabili-
ty (Horvitz, Suermondt, and Cooper 1989).

A different class of approximate methods
uses heuristic search of the space of possible
scenarios to find the hypotheses that best
explain the observed findings (Cooper 1984;
Henrion 1990a; Peng and Reggia 1987; de
Kleer 1991). Because a small fraction of the
hypotheses often accounts for the bulk of the
probability, this approach can be efficient.
Admissibility heuristics can guarantee finding
the most probable hypotheses (or n most
probable hypotheses). The most powerful
heuristics depend on specific assumptions,
such as the bipartite network with noisy-
Or–combining functions. Versions of these
search methods can compute bounds on the
probabilities of the hypotheses.  These meth-
ods seem promising. For example, the TOP N

algorithm was applied to the QMR-BN network,
and can find the most probable multiple-dis-
ease hypotheses in seconds (Henrion 1991).

All these approximate algorithms are flexible
or anytime algorithms, that is they can be halted
at any time to give an answer, and additional
computation continually improves results.
Sampling algorithms decrease the variance of
their estimates as the sample size increases.
Bounded conditioning and search-based
methods, such as TOP N, monotonically narrow
the bounds on the probability of the hypoth-
esis as the search continues. Such flexibility is

methods. Most approximate methods achieve
their efficiency by considering only a small
subset of the 2n scenarios and estimating or
bounding the probabilities of events from
this subset. These methods include random
sampling schemes, bounded conditioning,
and search schemes (Henrion 1990b).

Random sampling, or simulation-based
approaches, generates a random sample of
network instantiations and estimates resulting
probabilities from the sample. In logic sam-
pling (Henrion 1988b), each instantiation is
generated following the belief network arcs,
selecting a value for each variable using the
probability conditional on its instantiated
parents. Logic sampling for predictive infer-
ence is a version of Monte Carlo simulation,
applied to discrete variables. For purely pre-
dictive inference, that is in the direction of
the influence arrows, such random sampling
methods are efficient, with computational
effort linear in the number of uncertain vari-
ables and quadratic in the level of precision
required. These methods work equally well
for continuous or discrete variables. For
purely continuous variables there are also a
variety of analytic methods of error propaga-
tion available (see chapter 8 of Morgan and
Henrion [1990] for a review).

For diagnostic reasoning, the complexity of
pure logic sampling is exponential in the
number of observed variables because all
instantiations inconsistent with observed evi-
dence are simply dropped from the sample.
Likelihood weighting (Shachter and Peot 1990)
mitigates this problem. Instead of instantiat-
ing the observed variables, it computes the
joint likelihood that is conditional for each

Articles

80 AI MAGAZINE

Figure 7. A Multiply Connected Belief Network



valuable when there is uncertainty about
deadlines or the cost of delaying a decision,
and can be shown to yield increases in the
expected value of reasoning (Horvitz 1988).
Given a model of delay costs, metelevel deci-
sion analysis can be applied to decide when
to stop computing and act (Horvitz, Cooper,
and Heckerman 1989; Horvitz and Rutledge
1991).

Explanation 
Although decision analysts have long under-
stood the importance of explaining decision
analysis, as encapsulated in the slogan
“insight not numbers,” AI researchers have
frequently criticized probabilistic and deci-
sion-theoretic reasoning as inherently diffi-
cult to explain (Davis 1982; Politser 1984;
Szolovits 1982). Teach and Shortliffe (1981)
identified the ability of an expert system to
explain its reasoning strategies and results as
key to its acceptance by users. Automating
the generation of explanations has long been
a focus of attention in expert system research
(Shortliffe 1984; Winograd 1971; Swartout
1983; Wallis and Shortliffe 1982). More recently,
the development of decision analysis–based
systems has led to increased interest in auto-
mated methods to generate explanations of
probabilistic and decision-analytic reasoning.

Evidence Weights

One approach to explaining probabilistic
inference is to examine the individual impact
of each piece of evidence on the overall con-
clusion. A classic technique is the evidence
weight, that is, the logarithm of the likelihood
ratio, of a hypothesis H with respect to each
piece of evidence, ei:

Weights of evidence have the useful proper-
ty of being additive provided the pieces of
evidence, ei, are conditionally independent.
That is, the evidence weight for combined
evidence is just the sum of the weights of the
components:

W(H, e1 & e2 & … en) = W(H, e1) + W(H, e2)
+ ... + W(H, en)  .  

The convenience of weights of evidence for
performing and explaining probabilistic infer-
ence has an ancient and venerable history,
having first been pointed out by Peirce (1956)
in 1878 and rediscovered by Turing (Good
1950) and Minsky and Selfridge (1961),
among others. Several probabilistic expert sys-
tems for medical diagnosis have made use of

likelihood ratios and weights of evidence for
explaining the importance of evidence to
hypotheses (Ben-Bassat et al. 1980; Hecker-
man, Horvitz, and Nathwani 1991; Reggia
and Perricone 1985; Spiegelhalter and Knill-
Jones 1984). The additivity of evidence
weights has led to perspicuous explanations
using evidence ledger sheets, which sum the
weights for and subtract the weights against a
hypothesis (Spiegelhalter and Knill-Jones 1984).

The Modulation of Completeness and
Abstraction

A good explanation should be as simple as
possible, consistent with communicating the
essential information. One approach to creat-
ing simpler explanations of probabilistic diag-
nosis is to control the level of abstraction to
suit the user’s needs. For example, PATHFINDER

can generate explanations at the level of evi-
dence for and against general classes of dis-
ease, such as inflammatory, infectious, and
malignant diseases, rather than about each
individual disease in the classes (Horvitz et al.
1989). In PATHFINDER and related work by Ben-
Bassat and Teeni (1984), the level of abstrac-
tion can be controlled with heuristic
abstraction hierarchies, classifying diseases
into groups that depend on the diagnostic
problem at hand. Generating a good explana-
tion involves trade-offs between various goal
attributes, particularly simplicity and com-
pleteness. The use of multiattribute utility
models supports metareasoning about these
trade-offs to construct more effective explana-
tions (Horvitz 1987; McLaughlin 1987).

Qualitative Explanation

Because people generally seem to find qualita-
tive descriptions easier to understand than
quantitative results, several projects have
sought to explain probabilistic and decision-
analytic reasoning in qualitative terms. One
approach has been to map numeric probabili-
ties into phrases such as “unlikely” or “almost
certain” or value outcomes into phrases such
as “slight risk” or “severe danger.” Users often
find this approach appealing both for encod-
ing and explanation. Elsaesser (1988) uses a
related approach for the qualitative explana-
tion of Bayesian updating. Sember and Zuker-
man (1989) provide a linguistic explanation
of reasoning between neighbors in a belief
network. Klein (1990) demonstrates how to
generate qualitative explanations of choices
based on hierarchical additive multiattribute
utility models. This approach has also been
used to explain Bayesian updates; for exam-
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W(H, ei) = Log       
P(ei | H, s) ( P(ei | H, s) ) .



ence underresponded to the true diagnostici-
ty of the evidence by a factor of 2 and in 25
percent of the cases actually responded in the
wrong direction (Wise 1986). However, MYCIN

itself was a forgiving application in which
this behavior did not have serious results on
recommended treatments.

Comparisons of Uncertainty Calculi

Experimental comparisons of certainty factor
and other rule-based schemes with probabilis-
tic inference have shown that the differences
can be significant under other circumstances.
A comparison of alternative formulations of
PATHFINDER found that the Bayesian version
significantly outperformed formulations
using certainty factors and Dempster-Shafer
belief functions (Heckerman 1988). A system-
atic comparison of six common uncertainty
calculi with a variety of small- and medium-
sized rule sets found that the difference
between schemes depended strongly on the
situation (Wise 1986). When the evidence is
strong and consistent, most schemes perform
well. However, if the evidence is weak or con-
flicting, heuristic schemes can perform poorly
relative to Bayesian schemes, sometimes
doing no better than random guessing.

Differences in Knowledge Engineering

The studies just mentioned compared the
performance of different uncertain reasoning
schemes within the same basic structure. In
practice, the decision-analytic approach to
knowledge engineering can focus on different
aspects of a domain and result in a signifi-
cantly different structure than rule-based and
other expert system paradigms. The resulting
structural differences can cause greater differ-
ences in performance than the differences in
inference mechanism. To investigate differ-
ences in the knowledge engineering process,
Henrion and Cooley (1987) examined the
construction of two diagnostic systems for
the same problem, namely, the diagnosis and
the treatment of disorders of apple orchards.
The systems were based on decision analysis
and a rule-based paradigm, respectively. Part
of the inference network for the rule-based
system is shown in figure 8a, and the corre-

ple, “Observation of A makes B a great deal
more likely” (Elsaesser and Henrion 1990).
The literature on the numeric interpretation
of probability phrases is considerable, show-
ing a degree of consistency but significant
context effects that can cause misinterpreta-
tions (Wallsten et al. 1986).

A related approach focuses on the relative
sizes of probabilities, values, or expected utili-
ties. Langlotz, Shortliffe, and Fagan (1986b)
constructed a system called QXQ that explains
why one decision has higher expected value
than another using qualitative comparisons
of the probabilities and values of the most
important possible outcomes of each decision.
Henrion and Druzdzel (1990) developed a
scenario-based scheme in which posterior
probabilities are explained in terms of the rel-
ative plausibility of alternative scenarios, or
deterministic stories, that can explain the
observed findings. Explanations are simplified
by considering only the most likely scenarios.
A third qualitative approach uses qualitative
probabilistic networks (QPNs). QPNs are belief
nets and influence diagrams in which influ-
ences are represented as purely qualitative;
for example, observing A increases the proba-
bility of B (Wellman 1988b). QPNs have been
used as the basis for explaining probabilistic
reasoning by qualitative belief propagation,
tracing the directions of the impacts of evi-
dence through a network (Henrion and
Druzdzel 1990; Wellman and Henrion 1991). 

Comparing Decision Analysis
and Rule-Based Expert Systems

There has been a common perception that
even if commonly used calculi for uncertain
reasoning have deficiencies, it does not really
make much practical difference what method
you use. This perception is partly based on an
early experiment with MYCIN that found its
conclusions were fairly robust with respect 
to the granularity of the certainty factors
(Buchanan and Shortliffe 1984). However, as
the MYCIN authors originally warned, it is dan-
gerous to overgeneralize from these results.
An empirical comparison of certainty factors
with probabilistic inference in a simple case
showed that the certainty factor–based infer-
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For decision analysis, the goal is to improve human reasoning
rather than to replicate it.



sponding part of the influence diagram for
the decision-analytic system is shown in
figure 8b. 

The arrows in figure 8a indicate dependen-
cies in the diagnostic rules, in the direction of
the flow of evidence from findings to diseases
to the treatment decision. The arrows in
figure 8b represent influence, coded as condi-
tional probabilities, from cause to effect. For
example, the diagnostic rule goes from Phy-
tophthora lab test to Phytophthora infection.
(Phytophthora is a fungus that attacks apple
trees). However, the influence is coded in the
other direction, from disease to test result. A
diagnostic decision rule directly recommends
treatment depending on the amount of evi-
dence for the disorders, the abiotic stress, and
the Phytophthora infection. Given the full
diagram, Bayesian inference algorithms allow
reasoning in either direction. The influence
diagram contains an extra residual node,
“other root disorder.” This node is useful for
handling other disorders that can explain
away some of the observtions. 

The most obvious difference between the
models is that the influence diagram contains
an explicit model of the orchardist’s costs and
preferences (the diamond node) as a function
of the potential costs and benefits of fungicide
treatment. Where the rule-based system
simply asserted that treatment was recom-
mended if a fungus infection was suspected,
the decision model explicitly weighed the
costs and probabilities. The influence diagram
being somewhat larger took somewhat more
effort to build and quantify. However, the
decision-analytic model could cover a wider
range of cases and types of inference.

The Perfect versus the Fallible Expert 

The difference in the treatment of discrepan-
cies between system performance and the
expert’s expectation illustrates a fundamental
difference between the two paradigms. The
rule-based system was tuned so that its behav-
ior coincided as closely as possible with the
expert’s judgments. Thus, the expert was the
“gold standard” for performance. In contrast,
when a result of the decision analysis (that
the fungicide treatment was barely worth-
while in a particular case) ran counter to the
expert’s intuition, the decision analyst
explored with the expert the possibility that
the result inferred by normative methods
from the expert’s more strongly held opinions
might be correct. Indeed, it turned out that
the analysis of this apparent discrepancy led
the expert to a new insight about the nature
of the problem, and he changed his intu-
itions. This experience illustrates the way in

which decision analysis, by formalizing, aims
at clarifying and improving human intuition.
This approach is based on a view of human
reasoning under uncertainty as being fallible,
which is supported in the psychological liter-
ature (Kahneman, Slovic, and Tversky 1982),
and contrasts with paradigms that treat the
“expert as gold standard.”

A second study—troubleshooting in motor-
cycle engines—also illustrates this contrast,
having examined the differences between
expert rules and decision-analytic inference.
This study compared decision-analytic meth-
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Figure 8a is part of an inference network for a rule-based system. The arrows indicate
direction of diagnostic rules, from observables to disorders, to the treatment decision. 

Figure 8. Comparing Rule-based and Influence Diagram Representations.
These two figures show the same part of a system for diagnosing apple trees and rec-
ommending treatment (Henrion & Cooley, 1987). 
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is worth trying in the absence of substantial
successful applications. Although some aspects
of the technology, including knowledge engi-
neering tools, inference algorithms, and
explanation techniques for large networks,
have yet to reach full maturity, a few signifi-
cant applications are already in practical use,
with several more on the way to completion. 

Of course, decision analysis has been applied
to practical decision making for over 20 years
in business, engineering, medicine, and other
domains. In many cases, the product has been
a computer-based tool to support decisions.
However, these tools have typically focused
on a narrowly specified class of decisions for
which only a limited number of uncertain
variables (a few tens at most) are used. Our
focus here is on systems that can legitimately
be termed knowledge based, that is, systems
that incorporate belief networks of significant
size. Most such systems to date aim at diag-
nosis in medicine or engineered systems. We
will describe the PATHFINDER and INTELLIPATH

project, and briefly mention several others.
The PATHFINDER project has used a probabilis-

tic and decision analytic approach to develop

ods with sequencing rules of expert mechan-
ics for selecting the next component to test
(Kalagnanam and Henrion 1990). The opti-
mal decision-analytic strategy that minimizes
average costs (time to identify the fault) is to
test the next untested component that has
the minimum ratio of test cost to probability
of failure. In a simulation, this strategy, using
the subjective probabilities and costs estimat-
ed by expert mechanics, performed about 20
percent better in terms of expected cost than
the test sequences suggested by the same
mechanics. This improvement in perfor-
mance was robust to substantial errors in the
assessed costs and probabilities. This study is
another empirical indication of how norma-
tive inference methods can result in signifi-
cant improvement over unaided human
expert judgment.

Recent Applications
No matter how great the theoretical appeal of
a set of principles of rationality, most practi-
tioners that build knowledge-based systems
are unlikely to be convinced that the approach
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Figure 9: Belief Net for Gas Turbine Diagnosis. 
This is a fragment of a belief net for a system for diagnosing faults in a gas turbine for an auxiliary power unit for a
commercial aircraft. (Courtesy of Knowledge Industries).



diagnostic systems for lymph node pathology.
The academic project has given rise to a com-
mercial system, INTELLIPATH, which provides
diagnostic support for surgical pathologists in
several domains of pathology. Over 250
INTELLIPATH systems have been sold worldwide,
and it represents one of the  few commercially
successful applications of knowledge- based
technology for medical diagnosis. The history
of PATHFINDER and INTELLIPATH provides a
number of interesting lessons.

Surgical pathologists make diagnoses based
on the observation of features in a section of
tissue under the microscope. The diagnosis of
diseases from lymph node biopsies is one of
the most difficult tasks of surgical pathology.
Although experts show agreement with one
another, diagnoses by community hospital
pathologists have to be changed by expert
hematopathologists in as many as 50 percent
of the cases (Velez-Garcia et al. 1983). It is
critical to differentiate benign from malignant
conditions and to classify precisely malignant
lymphoma so that the most appropriate form
of surgery, radiation therapy, or chemothera-
py can be chosen. For these reasons, improve-
ments in diagnostic performance have the
potential for significant benefits.

Early work on PATHFINDER at the Stanford
University Medical Computer Science Group
explored a variety of nonprobabilistic and
quasiprobabilistic schemes (Heckerman
1988). These schemes included a rule-based
production system using propositional logic,
EMYCIN certainty factors, and Dempster-Shafer
belief functions (Shafer 1976). Finally,
PATHFINDER investigators tried a Bayesian prob-
abilistic scheme, reinterpreting the numeric
beliefs as probabilities and assuming the con-
ditional independence of findings. The switch
to the probabilistic interpretation resulted in
a qualitative improvement in performance,
that is, agreement with expert diagnosticians.
This improvement was immediately apparent
and remarked on by the expert in a blinded
study, where the expert did not know which
representation was being used.

The current PATHFINDER belief network
includes about 30 different types of primary
and secondary malignant hematopoietic dis-
eases of the lymph node and about 30 differ-
ent benign diseases that are easily confused
with malignant lymphomas (Heckerman,
Horvitz, and Nathwani 1991). The diseases
are assumed to be mutually exclusive, an
appropriate assumption in pathology. The
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Figure 10: End-user Interface for Turbine Diagnosis. 
This screen is from the gas turbine diagnosis system illustrated in figure 9. It is used during diagnosis for choosing
findings to observe and displaying current most probable diagnoses. The left column shows categories of findings; the
center shows findings observed so far; and the right column shows the list of possible faults, grouped by type, and
ordered by probability. The popup box shows specification of the observed value of selected finding. This screen is
from the IBM-PC delivery system. (Courtesy of Knowledge Industries.)



bilistic reasoning with a set of supportive
tools, including an analog videodisc library of
microscope images to illustrate typical fea-
tures, text information on diseases and
microscopic features, references to the litera-
ture, and an automated report generator.
Hitherto, knowledge bases encoding the
knowledge of teams of expert surgical pathol-
ogists are available for 10 of 40 different
tissue types. 

Another significant medical application is
MUNIN, a system for diagnosis of neuromuscu-
lar disorders developed by a team at the Uni-
versity of Aalborg, Denmark (Andreassen et
al. 1987). MUNIN is implemented in HUGIN, a
general tool for construction and inference
on belief networks (Andersen 1989). MUNIN

contains about 1000 chance nodes with as
many as 7 states each and has significant
multiply connected portions. Exact diagnos-
tic inference takes under 5 seconds.

A third medical application, SLEEP CONSULTANT,
diagnoses sleep disorders and related pul-
monary disorders (Nino-Marcia and Shwe
1991). It was developed by Knowledge Indus-
tries (KI), a Palo Alto, California, company
that specializes in the development of proba-
bilistic and decision-analytic systems. Data
are automatically obtained from a digital
polysomnograph monitor that records
dynamic physiological data while the patient
is sleeping (or trying to). In the physician’s
office, the data are transferred to the diagnos-
tic system and combined with other data
obtained from patient interviews and records

network also includes information about the
dependencies among the diseases and about
100 morphologic and nonmorphologic fea-
tures visible in lymph node tissue. These
findings are not assumed to be conditionally
independent, and their dependencies are
encoded explicitly, resulting in a multiply
connected network. The network makes use
of over 75,000 probabilities in performing
inference. The use of similarity networks and
partitions have made it practical to encode
this amount of expert knowledge without
unreasonable effort (Heckerman 1990).
PATHFINDER performs exact diagnostic infer-
ence in this network in under a second on a
486-based computer.

Although PATHFINDER does not make treatment
recommendations, it does use approximate
expected value of information calculations to
guide the sequencing of questions to those
that will be most valuable in differentiating
among the most probable and important
diagnoses. As a measure of importance, it
uses estimates of the relative costs of misdiag-
nosis, that is, the potential cost of treating for
disease A when disease B is present. Current-
ly, a study funded by the National Cancer
Institute on the clinical efficacy of using the
PATHFINDER belief network is under way at the
University of Southern California. 

INTELLIPATH is a commercial system based on
the ideas in PATHFINDER and is distributed by
the American Society of Clinical Pathologists.
It provides a practical diagnostic aid for surgi-
cal pathologists. INTELLIPATH integrates proba-
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Figure 11: The Qualitative Structure of the QMR-BN Belief Network. 
Disease probabilities are conditioned on the sex and age of the patient. Findings are conditionally independent given
the diseases. Multiple connectedness (multiple undirected paths between nodes) is apparent.
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to obtain probabilities for possible disorders.
The system is being distributed by CNS, a
Minneapolis company specializing in sleep
diagnosis equipment. 

A number of probabilistic systems are being
developed for the diagnosis of capital equip-
ment. Knowledge Industries has developed a
diagnostic system for a major airline that
deals with jet engine problems (figures 9 and
10). Another KI system is under development
for the Electric Power Research Institute to
diagnose problems with large gas turbines
used by electric utilities. SRI International,
together with Ontario Hydro, a Canadian
power utility, developed GEMS (generator expert
monitoring system), a prototype system for
the diagnosis of electric power generator
problems. This project is interesting in that 
it was originally developed using a forward-
chaining rule-based system with certainty 
factors. Because of difficulties with this repre-
sentation, the authors, who had no prior
experience with probabilistic schemes, con-
verted it to a belief network representation.
They found this approach a far more natural
and convenient representation of the causal
knowledge of the experts. The resulting net-
work contains about 1000 diagnostic nodes
and 1300 links, primarily noisy-Ors (Klempn-
er, Kornfeld, and Lloyd 1991).

Perhaps the largest Bayesian belief network
currently in existence was developed as part
of the QMR-DT Project (Shwe et al. 1991). QMR

(Quick Medical Reference) is a knowledge
base and diagnostic aid for internal medicine,
a development of the INTERNIST-1 system.
(Miller, Masarie and Myers 1986).  QMR con-
tains carefully encoded knowledge of almost
600 diseases, about 4,000 findings (signs,
symptoms, lab results, and so on), and 40,000
links between them. QMR uses a heuristic,
numeric representation of the uncertain rela-
tionships among diseases and findings. The
QMR-DT (for QMR Decision Theory) Project—at
Stanford University, Carnegie Mellon Univer-
sity, and the University of Pittsburgh—has
developed a probabilistic reformulation of
QMR. This reformulated system provides a rig-
orous probabilistic interpretation of the inde-
pendence assumptions and a mapping from
the numeric associations to conditional prob-
abilities. The assumptions in the first version,
QMR-BN (QMR Belief Net) (figure 11), include
marginal independence of diseases given age
and sex of the patient, conditional indepen-
dence of findings, and noisy-Or influences.
The system also includes leak rates, that is,
probabilities that findings will be observed, in
the absence of causal diseases. QMR-BN adds
prior probabilities for diseases that are obtained

from empirical data on prevalence rates. 
The purpose of the QMR-DT Project is to

explore the practicality and value of a coher-
ent probabilistic interpretation compared to
the existing heuristic QMR scheme. It has also
stimulated the development of new inference
algorithms: Because multiple diseases are pos-
sible and because the network is highly multi-
ply connected, standard exact algorithms are
rendered impractical. Random Sampling with
likelihood weighting (Shwe et al. 1991) and
the search-based TOP N algorithm (Henrion
1991) have both proved practical. Initial
results have demonstrated comparable perfor-
mance to the original QMR on a number of
test cases (Middleton et al. 1991).

Conclusions 
We introduced the basic ideas of probabilistic
reasoning and decision analysis and reviewed
their application to work on knowledge-based
expert systems. Historically, interest in heuristic
uncertainty calculi and rule-based representa-
tions arose partly in response to the computa-
tional difficulties and restrictive expressiveness
of the early probabilistic expert systems. How-
ever, recent work has revealed that these
heuristic schemes have problems of their
own: restrictive assumptions and inconsisten-
cies. A decision-theoretic perspective makes it
clear that no scheme for reasoning and deci-
sion making under uncertainty can avoid
making assumptions about prior beliefs and
independence, whether these assumptions are
implicit or explicit.

Recognition of the difficulties of the heuris-
tic approaches, coupled with the recent devel-
opment of more efficient and expressive
representations from decision analysis, has
stimulated a renewed interest in probabilistic
and decision-theoretic approaches. In particu-
lar, belief networks and influence diagrams
provide an appealing knowledge representa-
tion that can express uncertain knowledge,
beliefs, and preferences in both qualitative
and quantitative forms in a flexible yet princi-
pled fashion. Among the advantages of these
representations, we have discussed the follow-
ing. Knowledge, whether expert judgment or
from empirical data, may be expressed in
whichever direction is most natural, general-
ly, but not necessarily in the causal direction.
Probabilistic algorithms use this form to
reason in whichever direction is
required—causal, diagnostic, or intercausal.
Thus, unlike rule-based representations, there
is no essential link between the form of
encoding and the form of reasoning for
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and representational techniques to help auto-
mate various aspects of decision analysis and,
thus, render it more widely available. This
interaction between decision analysis and
expert systems has already produced some
important contributions to both reasoning
theory and knowledge representation and the
development of a new generation of practical
technology. In the long run, we anticipate
the emergence of a combined enterprise in
which the current separation between the
two technologies disappears.
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