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Abstract 

Losses from natural hazards, including geophysical and hydro-climatic hazards, have been increasing 

worldwide. Thanks to improved monitoring, observations and modelling, it is now becoming possible to 

assess risks and forecast natural hazards more accurately. The focus of this review article is the process by 

which scientific evidence about natural hazards is applied to support decision making. Decision analysis 

typically involves estimating the future probability of extreme events, assessing the potential impacts of 

those events from a variety of perspectives, and evaluating options to plan for, mitigate or react to events. 

Application of formal decision analysis methodologies across natural hazard contexts has so far been 

uneven, but there are many valuable approaches available, and potential to learn across hazard types and 

timescales of response. We provide a summary and evaluation of existing applications, concluding that 

more thoughtful and widespread application of decision analysis will help to ensure that new scientific 

understanding yields the greatest possible benefits in terms of risk reduction. 

 

1. Introduction 

Mankind has always had to live with natural hazards. Civilisations have had to adapt to the inevitable arrival 

of natural hazards, or risk collapse. The development of civilisation has also hugely increased vulnerability 

to natural hazards. Indeed some aspects of civilisation (such as the need for energy and water, and the 

benefits of trade) have tended to concentrate development in particularly vulnerable locations: on the 

lower reaches of rivers, and on exposed coasts. The prosperity of society demonstrates some skill at 

managing these risks and trade-offs. Societies have built protection systems; the Twentieth Century saw 

the development of scientific forecasting and warning systems for hydro-meteorological and some 

geophysical hazards; huge resources have been mobilised for emergency assistance and recovery. It seems 

therefore that modern civilisation has adapted to natural hazards, as other societies have done in the past. 

Yet the escalating scale of losses from natural hazards (Munich Re, 2015), the global concern about these 

losses (UNISDR, 2015), and the apparent lack of attention to preparedness (when compared with the huge 

sums spent on response and reconstruction; Kellet and Caravani (2013) suggests that this adaptation is far 

from optimal. Decisions are being made, but apparently they are not always the right ones – expecting that 

they might be would be unrealistic, given the scope and severity of uncertainty in natural hazards decisions 

and the inevitability of trade-offs between different objective and actors. Improvement in decision making 

can be expected to contribute to reducing risk, allocating resources more efficiently, avoiding undesirable 

impacts and accessing co-benefits. Our proposition in this review paper is that, on balance, humankind 

would be better at managing natural hazards if more extensive use were made of formal decision analysis. 

Decision analysis (Kleindorfer et al., 1993) encompasses normative theory of how decision-makers should 

make choices, alongside descriptive analysis of human decision making in practice. Empirical study of how 

people make choices under uncertainty has demolished notions that human beings behave as rational 

agents. Kahneman and Tversky (1979)’s prospect theory has been widely applied to understand risk 

assessment decisions, appearing to resonate well with actual behaviour (Greenberg et al., 2012). Wilson et 

al. (2011) showed that wildfire managers’ decision making was influenced by risk-based biases, including a 

preference to minimise short-term over long-term risk due to the belief that future risk could be controlled. 

However, despite its ability to explain individuals’ behaviour, Kahneman (2011) has argued that prospect 

theory should not be used for normative decision making, suggesting that decision-makers use his findings 

to become more aware of their decision framing. Here our emphasis is upon the prescriptive aspects of 
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decision analysis, with a view to improving decision making about natural hazards. Normative decision 

analysis seeks to provide better framing and selection of alternatives than intuitive response (Keefer et al., 

2004) by structuring problems in a way that improves understanding; makes assumptions clear, or clearer; 

and ensures that the decision flows logically from its framing and assumptions.  

This paper will explore characteristics of natural hazards decisions, and evaluate current use of decision 

analysis across a range of natural hazards. We focus upon: (i) the role of uncertainty in natural hazards 

decision making; (ii) the multiple values, attributes and objectives that are typically brought to bear on 

natural hazards decisions and how these are handled in theory and practice; (iii) the multiple actors that 

are involved in natural hazards decisions and (iv) the ways in which good decision making processes might 

be constructed to reflect learning about these various challenging characteristics. Section 2 will set up the 

context and challenges associated with natural hazard decisions. The remainder of the paper will review 

decision analysis methodologies as potential solutions for formalising decision problems: first examining 

approaches for dealing with uncertainty (section 3), before moving onto methodologies for sequential 

decisions (section 4), and decisions with multiple objectives (section 5), and actors (section 6). In section 7 

we consider how decision analysis might contribute towards decision making processes. Section 8 makes 

conclusions and recommendations for further research and practice. We hope to introduce insights from 

decision analysis to areas of natural hazard management where it has seen limited application, and 

promote learning across different classes of hazard, including geo-physical and hydro-meteorological, 

which are researched by different communities.  

Conscious of the wide scope of the fields of ‘decision analysis’ and ‘natural hazards’, we limit ourselves to 
the presentation of decision analysis methodologies in terms of their capacities and shortcomings rather 

than providing guidance on their implementation and interpretation; and, given the limitations of space, 

we have selected illustrative examples rather than attempting comprehensive coverage of all decisions 

made for natural hazards. We focus predominantly on  geological and meteorological/hydro-

meteorological events and some directly associated hazards (wildfires, tsunami, avalanches and landslides). 

  

2. The challenge posed by natural hazards for decision-makers 

Natural hazards have been associated with “messy” (Ackoff, 1974), “wicked” (Rittel and Webber, 1973), 

and “post-normal science” (Funtowicz and Ravetz, 1990) problems, without clear or straightforward 

solutions (Frame, 2008). There are often complex interdependencies, large uncertainties, and pressing 

decisions with important implications for many stakeholder groups with potentially conflicting values. In 

this section we explore these challenging contexts, including how they differ between natural hazard 

decisions operating on different temporal and spatial scales. Characteristics of natural hazard decision 

problems are identified as a first step towards the selection of appropriate decision analysis methodologies, 

which will be described in the following sections.  

Timescales of decision making 

Decision making regarding natural hazards can be divided into: (i) long term planning or risk mitigation, (ii) 

early warning and preparation, (iii) during event response, and (iv) recovery (World Economic Forum, 2011, 

Rougier et al., 2013), The first three of these are the focus of this review. Each phase may involve different 

actors, institutions, and different requirements for decision analysis (Tacnet et al., 2012, Rougier et al., 

2013). Planning and preparedness decisions lead to anticipatory actions designed to reduce the risk from 

natural hazards. Assuming that the triggering physical phenomenon (extreme rainfall, an earthquake) 

cannot be modified by human action, planning and preparedness focusses upon steps to reduce exposure 

and vulnerability, for example through land zoning, building protection (dams, dykes and earthquake 

resistant buildings), and contingency planning (Tacnet et al., 2012). Planning and preparedness decisions 

mostly deal with the allocation of resources or the regulation of activities. The latter may not have direct 
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resource implications but often involves forgone development opportunities. The mandate and resources 

to incorporate risk of natural hazards into long term planning varies markedly between countries (World 

Economic Forum, 2011).  

For many natural hazard events there is also the opportunity to make decisions during times of imminent 

threat, for example if a volcano becomes active; a cyclone is observed offshore; recent weather 

observations demonstrate conditions which might lead to flooding, landslides, or wildfires; or weather 

forecasts signal potential hazards (Rougier et al., 2013).  These decisions are characterised by urgency, the 

possibility of (averting) major losses and the possibility of the undesirable consequences of false warnings 

and badly prioritised actions. On these timescales decision making revolves around early warning systems 

and emergency planning, for example cancelling leave, clearing roads, and evacuations. As the event 

unfolds these activities need to be reviewed as conditions change, for example as flood levels rise or fall. 

There may also be risks of secondary hazards.  

The ability to respond ahead of and during an event depends on the temporal dynamics of the hazard, and 

its predictability. Distinction is made in the disaster risk reduction community between (Figure 1): i) slow 

onset events, such as drought and extended periods of cold weather; ii) the majority of natural hazard 

types which can be identified with lead times between several hours and several days, and iii) 

instantaneous events with little or no prior warning such as earthquakes and avalanches. Hazard prediction 

may rely on individual hazard events moving in a predictable manner (cyclones and rain storms), having 

known precursors (volcanic eruptions and tsunami), or there may be a gradual build-up of antecedent 

conditions (wildfires, groundwater flooding or landslides). Scientific and technological advances are 

changing the predictability of some natural hazards, with seasonal forecasts now demonstrating some skill 

in tropical regions (e.g. Tall et al., 2012).  

Recovery and reconstruction decisions occur after the emergency response and deal with the allocation of 

resources for relief, rehabilitation, and reconstruction, and increasingly ‘Build Back Better’ (UNISDR, 2015).  

Predictability across timescales and the resulting uncertainty varies markedly between hazards. Cyclones 

can be forecast days ahead of time with relative skill in estimating their magnitude and path, but estimating 

their long term trends under climate change is challenging due to the difficulty of representing them in 

current climate models (Collins et al., 2013). Heat waves, in contrast, show a clearer increase in occurrence 

probability under current predictions (Fischer and Knutti, 2015). For geological hazards, probability 

depends on tectonic properties which change on much longer timescales due to changes in stress and 

formation of new volcanic vents or fault lines (Vecchia, 2001). 

Spatial scales of impacts 

The spatial scale of hazards ranges from site specific events such as avalanches to continental phenomena 

such as heat waves (Figure 2). Precision in the prediction of future event locations is dependent on the 

hazard type, with those strongly dependent on local conditions such as volcanic eruptions more 

straightforward to locate than meteorological hazards such as rainstorms (Vecchia, 2001). The most 

spatially extensive natural hazards may hit several countries (e.g. Løvholt et al., 2014), and require co-

ordination between multiple states or external international assistance. The impacts of natural hazards can 

spill over natural boundaries through disruption of supply chains (Haraguchi and Lall, 2015) and impacts on 

financial markets (especially insurance, reinsurance and catastrophe bonds). The most severe natural 

hazards can result in international, as well as internal, relocation of displaced persons (IDMC, 2015).  

Uncertainty 

Natural hazards decisions are suffused with uncertainty: concerning the nature, timing, severity and 

location of the hazard; the vulnerability of exposed populations and assets; and the costs and benefits of 
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potential risk management actions. Uncertainty stems from limited data availability, challenges in 

modelling, difficulty in quantifying probabilities, and non-stationarity. 

Natural hazards are complex phenomena, and the circumstances surrounding any particular event are 

never repeated, meaning data availability is almost always a problem, and statistical analysis of events 

needs to be undertaken very carefully (Hall and Anderson, 2002). The most extreme events are by 

definition rare, so there is limited empirical evidence of their occurrence or impact (Blazkova and Beven, 

2009). Data collected for the most extreme hazards may be subject to significant uncertainties  (e.g. 

Westerberg et al., 2011, McMillan et al., 2012), partly because disruption of infrastructure can prevent 

monitoring during the event itself (Rougier et al., 2013). Databases can be biased, for instance landslides 

only tend to be recorded when they damage infrastructure (Corominas et al., 2014) or human populations 

(Ibsen and Brunsden, 1996), with small slips rarely recorded (Lumb, 1975). It is challenging to obtain data 

for rapid onset events: extreme precipitation events may be too localised or intense to be captured by 

conventional rainfall monitoring. Data gaps in developing countries are an additional challenge, both for 

understanding hazard and vulnerability. New technologies provide opportunities for real time monitoring 

(e.g. David et al., 2009). 

Given the scarcity and unreliability of empirical evidence about natural hazards, there is increasing use of 

simulation models to understand natural hazards, often in combination with, or calibrated by, statistical 

analysis. Environmental modelling has its own set of uncertainties which have been discussed at length 

elsewhere (Beven, 2009). Understanding one hazard event and its potential consequences may require a 

multitude of models, each with uncertainties; for example in predicting volcanic activity different models 

are needed for gas emissions, tephra fallout, debris avalanches, and lahars (Vecchia, 2001, Mackie and 

Watson, 2014)  The ability to simulate hazards, and the resources required to run the models, varies 

between hazard types and will influence the kind of risk and decision analysis that is appropriate: for 

example high resolution climate modelling can be very computationally expensive, prohibiting the ability to 

represent statistics of extreme events using supercomputers (Allen, 2003), and leading some authors to 

emphasise representation of uncertainty which does not rely on complex models (Dessai et al., 2009, 

Blazkova and Beven, 2009, Brown et al., 2011b). 

Even for those hazards which may be modelled, probabilities can be difficult to quantify. Natural hazards 

are characterised by higher moment properties such as variance and skewness and may be subject to 

propagating uncertainties. Hazard losses may be nonlinear functions of hazard magnitude (Rougier et al., 

2013).  

Uncertainties are complicated by changing drivers of risk. For hydro-meteorological hazards, the probability 

of occurrence is non-stationary due to natural variability (e.g. El Niño–Southern Oscillation events) and 

anthropogenic climate change (IPCC, 2012). Economic growth and population change, particularly 

expansion around coastal areas (Parker et al., 2007), generate non-stationarity in vulnerability as well as 

hazard (World Economic Forum, 2011), which is particularly evident in developing countries, which are 

likely to experience unpredictable socio-economic changes in the coming decades (Lempert and Kalra, 

2014). 

The uncertainty and risk analysis literature has conventionally identified two categories of uncertainty 

(Rougier et al., 2013, Parry, 1996, Ferson and Ginzburg, 1996, Winkler, 1996): 

1. Aleatory uncertainty due to the apparently random nature of environmental hazards;  

2. Epistemic uncertainty due to imperfect knowledge of relevant phenomena.  

Though much debated (Rougier et al., 2013, Parry, 1996, Ferson and Ginzburg, 1996, Winkler, 1996), this 

distinction is often helpful in risk and decision analysis of natural hazards, where the frequency and severity 

of the hazard is characterised as a random process. Integrating the hazard with a function to describe 

damage generates an estimate of risk (Hall, 2013) which provides a direct route into decision making, as we 
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shall see later in this paper. Layered onto this conventional probabilistic risk analysis are sources of 

epistemic uncertainty, because of scarcity and limited reliability of observations, because of the limitations 

of physical models and because of the uncertainties in the choices that determine the consequences of 

natural disasters.  

Human agency and group decisions 

Decisions regarding natural hazards cannot be evaluated without attention to the role of human agency 

and processes (Eiser et al., 2012, Mileti, 1999).  One of the few good news stories from the 2004 Asian 

tsunami was the relatively small number of casualties among the aboriginal Onge tribes of the Andaman 

Islands - a people who had long developed oral traditions for hazard identification (Gupta and Sharma, 

2006). Modern practice of decision making incorporates the role of stakeholders in virtually every aspect of 

decision making, from setting the decision scope, objectives, and criteria for success, to providing expert 

advice on the likelihood and consequences. Still more actors are involved in mediating the outcomes of 

natural hazards and efforts to reduce impacts. Decision analysis must evaluate the role of human 

livelihoods and the limits they place on the management options available (Tanner et al., 2015), as well as 

to the collective perception of outcomes given varied social norms, groupings, and lifestyles (Ozdemir and 

Saaty, 2006, Morrow, 2009).   

With many actors involved, any decision regarding natural hazards must reconcile diverse perceptions and 

capabilities – differences that exist within a region, as well as between regions. Despite the difficulties in 

dealing with such complexity, public participation in natural hazard decisions has been shown to generate 

efficient outcomes (Gamper, 2008) and increase community resilience (Berkes, 2007). 

Multiple and conflicting objectives 

Natural hazard decisions are rarely determined by one objective. There are many criteria against which to 

evaluate policy options (Morgan et al., 1990). Natural hazard management typically involves weighing up 

economic costs and benefits against risks to people and sometimes also the environment. Politicians and 

other public servants may also be motivated by the reputational implications of making the wrong choice. 

In the worst cases, societal disruption and unrest can arise from natural catastrophes. 

3. Decision–making under uncertainty for natural hazards 

Uncertainty is possibly the foremost challenge in natural hazards decisions. There are three categories of 

approach to responding to these uncertainties in practice:  

1. Deterministic methods which suppress explicit representation of uncertainty, or condense it to 
simple ‘factors of safety’. 

2. Probabilistic methods which quantify uncertainty in probabilistic terms. 
3. “Deep uncertainty” methods that deliberately avoid probabilistic representation of uncertainty (or 

hybridise).  

These categories correspond to the categories of decision making under certainty, risk and uncertainty 

identified by Knight (1921). Our review of approaches is summarised in Table 1 and elaborated in the 

remainder of this section. 

Deterministic approaches 

The simplest approach to dealing with uncertainty is to not deal with it explicitly at all. Decision makers 

who use deterministic approaches are typically all too aware of sources of uncertainty, but for a variety of 

reasons uncertainty is not formally brought into the decision analysis. A deterministic analysis identifies the 

desired alternative from a set of possible alternatives by identifying outcomes associated with each 

alternative and the cost and benefits of these outcomes. In the context of natural hazards, the decisions 
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may involve building an avalanche barrier, issuing a severe weather warning or mobilising an evacuation 

team.  

Though potentially challenging in a number of respects such as multiple objectives and actors, deterministic 

methodologies are straightforward in their (lack of) characterisation of uncertainty. They are also almost 

always a significant simplification of reality and do not communicate the confidence associated with 

decision making.  

In natural hazards, the majority of decisions have historically been made in a deterministic framework, and 

many deterministic metrics for assessing natural hazards remain in practice and legislation. Although 

progress to probabilistic decision making seems inevitable, deterministic decision making has historic 

precedence, is well understood by operational users, and remains the standard upon which  probabilistic 

decision analysis should improve, especially in situations where decision makers seek a ‘best estimate’ 
outcome.  

Several strategies exist to mitigate the shortcomings of deterministic models. Firstly, the ‘conservative’ 
approach in engineering design allows hazard mitigation infrastructure to be designed in response to poorly 

defined upper boundaries of hazard magnitude. Infrastructure is designed to mitigate events to a standard 

at or above the highest perceived plausible hazard. In the past, this strategy was applied in earthquake 

engineering, with a model of the largest plausible seismic event at the closest potential point to the 

designed building used to inform construction (National Research Council, 1988). A related strategy is the 

‘design event’, in which an event of a pre-specified magnitude is used to inform construction, widely used 

historically in design of flood protection (NERC, 1975) and still quite prevalent worldwide. The former 

approach can be extremely costly due to the required resilience of construction, and has sometimes fallen 

prey to actual events, whereas the latter involves a tacit understanding that there are plausible scenarios 

under which the infrastructure will fail. A third strategy is the ‘safety factor’ (Vrijling  et al., 2011) in which 

an identified margin is added to specifications, in order to account for unquantified uncertainties 

introduced throughout the design process. Such factors are introduced as ‘headroom’ in water planning, 
with water providers designing drought resilience infrastructure to provide a percentage of water above 

that estimated to be required during droughts. Safety factors may be derived from quantiles of probabilistic 

distributions used in probabilistic approaches, which is the approach adopted in Level 1 reliability methods 

(Melchers, 1999) 

Probabilistic approaches 

Probabilistic concepts have been widely applied to quantify uncertainty in natural hazard decisions. 

Applications range from real-time flood forecasting (Todini, 2004, Young et al., 2014), flood warnings 

(Krzysztofowicz, 1993), flood risk planning (Dawson et al., 2005, Hall et al., 2003); earthquake hazards  

(Anbazhagan et al., 2009, Tseng and Chen, 2012, Sadeghi et al., 2015), climate change adaptation (Hall et 

al., 2012b, New et al., 2007, Borgomeo et al., 2014) and disaster risk (Kull et al., 2013, Michel-Kerjan et al., 

2013, Hochrainer-Stigler et al., 2015, Woo, 2010). 

In probabilistic decision making, the range of possible circumstances (states of nature) that might 

materialise in future are identified. Uncertainty as to which of these states will pertain is represented by a 

probability distribution over the possible states. The expected outcome is the probability weighted sum of 

the values of the possible outcomes in each future state. The risk-based decision problem compares a set of 

alternative acts (A0, A1, A2,…, An), including the base case A0, in which no intervention is chosen (“do 
nothing”), with corresponding expected losses (risks), R0, R1, R2,…, Rn), and costs C0, C1, C2,…, Cn, where by 

definition C0=0. The benefit of alternative Ai is R0-Ri, i.e. the baseline (do nothing risk) minus the residual 

risk for the given alternative. The net benefit for Ai is R0-Ri-Ci. The optimal decision is the act which 

maximises the net benefit. In conditions of scarce resources (which is almost always the case) the option 

that maximises the benefit-cost ratio (R0-Ri)/Ci will be preferred as the decision criterion in economic terms. 
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Costs and benefits will typically be distributed through time, in which case it is conventional to discount 

future streams and costs of benefits to Present Value, though the choice of discount rate is controversial 

(Gollier and Hammitt, 2014). 

A further elaboration is the incorporation of decision makers’ attitudes to risk. Taking decisions based on 

expected risk and cost will be the approach adopted by a risk-neutral decision maker. A risk-averse decision 

maker will weight low-probability high-consequence events more heavily, which can be achieved by using a 

concave utility function (Lindley, 1985). 

The probabilities characterizing the uncertainty of different states of nature can be derived from empirical 

data, mathematical/statistical models, eliciting expert knowledge or any combination of these – often  in a 

Bayesian framework (e.g. Medina-Cetina and Nadim, 2008, Rougier et al., 2013, Hall et al., 2011) . Expert 

elicitation methods have been adopted to estimate probabilities in the absence of statistical evidence 

(Cooke, 1991, O'Hagan et al., 2006). The choice of method will depend on the type and quality of data 

available, on the type of natural hazard in question and on the decision. Of interest is the probability of 

exceedances of a threshold (e.g., exceedance of a wave height) over a pre-defined period of time. For 

instance, probabilistic landslide assessments aim to predict exceedance probabilities of a landslide of a 

particular size in a particular location (Guzzetti et al., 2005). 

A typical probabilistic decision analysis would: (i) estimate probabilities of occurrence for the variables in 

question (e.g., wind speed; wave height; ground motion level) that characterise the hazard; (ii) relate these 

probabilities to the consequences of the hazard (e.g. dike overtopping during a flood event; building 

collapse during an earthquake; water shortage occurrence during a drought) (iii) estimate the damage 

caused by the hazard occurrence of a given severity, and (iv) compare the capacities of alternative decisions 

to reduce the expected risk and associated costs. Results of steps (ii) and (iii) are summarised in the 

loss/consequence component of the risk definition (Hall and Solomatine, 2008). Step (iv) is based on net 

present value or benefit cost ratio calculations, which establish the preference ordering between different 

options based on their risk reduction and cost.  

Estimating probabilities and consequences of natural hazards can result in a chain of causal reasoning, 

which can be structured in fault trees, event trees and decision trees (Benjamin and Cornell, 1970). Fault 

trees estimate the probability of a failure event by estimating the probabilities of the logical conditions that 

might lead to failure. Event trees are more naturally applicable to analysis of natural hazards, as they start 

with the hazard event and step through the causal chain of consequences that might lead to harmful 

outcomes. Sayers et al. (2002) used event tree analysis to analyse the risk of damage to coastal settlements 

from storm surges. A similar process of structuring causal influences is adopted in influence diagrams 

(Castillo-Rodríguez et al., 2014) which can be quantified in the form of Bayesian networks (Pearl, 1988, 

Smith, 2010). The latter method is useful for the incorporation of unknowns within a decision problem for 

the purpose of assessing whether more information is required to support good decisions (Ozdemir and 

Saaty, 2006), which moves towards the area of the non-probabilistic approaches covered in the subsequent 

section. Sensitivity analyses (either deterministic or probabilistic) can be used to determine if more refined 

information about the distribution and range of data might have a substantial effect on potential decision 

alternatives (Pianosi et al., in Review) 

Probabilistic methods have been applied to inform natural hazard management decisions. For instance, 

dealing with floods has transitioned from an approach based on deterministic design standards to an 

explicitly risk-based approach (Hall et al., 2003, Sayers et al., 2002). This risk analysis problem is 

conventionally structured according to a source-pathway-receptor model (Sayers et al., 2002), which begins 

by characterisation of the flood hazard, then analyses flood inundation and the reliability of flood defence 

systems, before combining these with characterisation of the vulnerability of exposed people and 

properties. Elaborations have dealt with the joint probability of multiple hazard variables (e.g. wave height 

and water level, (Hawkes et al., 2002) and the spatial and temporal dependence structure of variables such 
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as rainfall and river flows (Heffernan and Tawn, 2004, Keef et al., 2009). Beven and colleagues have played 

particular attention to the uncertainties in rainfall-runoff modelling and the implications for flood risk 

mapping (Beven et al., 2015). 

Krzysztofowicz (1993) used probabilistic decision theory to develop a framework for issuing flood warnings. 

A Bayesian flood forecasting system was constructed to estimate the probability of flood occurrence. A loss 

function that quantified losses from false alarms and missed events was then used to optimally issue flood 

warnings. Martina et al. (2006) also used decision theory to optimally estimate rainfall thresholds for use in 

flood warnings at given river sections. Mylne (2002) discusses the evaluation of weather forecasts based on 

a simple binary model of user utility (loss). Expected losses are used to evaluate the forecasts, as opposed 

to evaluating them solely on forecast skill.  

Probabilistic approaches have also been widely applied to seismic hazard analysis (Paté-Cornell, 1996, 

Smyth et al., 2004, Petersen et al., 2004, Bommer and Abrahamson, 2006). For instance, Sadeghi et al. 

(2015)  derive a hazard probability curve for ground motion from past earthquake occurrence records, 

combine this with a loss calculation model to estimate the probability of structural losses based on 

different building types, and use this to evaluate alternative structural strengthening strategies in a cost-

benefit analysis framework. The probability of volcanic eruptions can also be estimated, using conditional 

probability distributions with a combination of physically- and empirically-based simulation models (Hill et 

al., 2009). This is challenging given the non-stationarity of eruptions, with the probability of an eruption 

falling dramatically during long periods of dormancy. 

Bayraktarli and Faber (2011) applied Bayesian probabilistic networks to support decision making for 

earthquakes. Bayesian networks were found to have two major advantages over alternative methods. First, 

they can integrate all aspects affecting structural damage including side-effects, structural response, direct 

and indirect consequences. Second, they are able to incorporate new information into uncertainty 

estimates relatively quickly, providing updated risk assessments to decision-makers allowing consideration 

of the changes to the decision situation that eventuate during and after earthquakes. Such a methodology 

is generally applicable to any such natural hazards that require real-time forecasting e.g. hurricanes, storm 

events, and volcanic eruptions. Aspinall and Woo (2014) used Bayesian Belief Networks to provide a rapid 

analysis of eruption risks in the popular holiday location in Santorini and concluded that with just three or 

four basic indicators, it was not feasible, or defensible, to attempt to judge mentally the implications of 

signs of tectonic unrest. They demonstrated that a structured probabilistic procedure using Bayes’ Rule was 
a more rational approach for evaluating the strength of various sources of evidence. 

Probability has been and still is the main tool used by decision-makers to measure or quantify uncertainty 

(Winkler, 1996) because it provides access to the full richness of statistics for data analysis. Furthermore, 

probabilistic and risk analysis approaches are attractive because they can be incorporated in traditional 

decision making frameworks and can be used as a mechanism to provide ‘objective’ justification for 
uncertain or difficult to negotiate public policy decisions (Rayner, 2007, Pidgeon and Butler, 2009). 

Although widely applied as a tool for characterizing uncertainty, probabilistic concepts can have limitations 

including: (i) biases and heuristics which affect decision-makers when defining probabilities, (ii) difficulty of 

reaching stakeholder agreement on probability distributions, and (iii) over-confidence or insufficiency in 

presenting all the uncertainties involved in a decision (Ozdemir and Saaty, 2006). Probabilistic 

representation of uncertainty to problems which are not well constrained and where values are contested 

may lead to bad decisions (Hall, 2007, Dessai et al., 2009). This emphasises the importance of extensive 

sensitivity analysis in all applications of probabilistic methods, to test assumptions and the implications of 

limitations in empirical evidence. Decision makers may nonetheless be confronted by situations where 

uncertainties are so hard to quantify that the notion of a probabilistic representation becomes untenable. 

It is these circumstances that methods for decision making under so-called ‘deep uncertainty’ or ‘severe 
uncertainty’ have been proposed.   
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Decision methodologies for deep uncertainty 

In recent years there has been an increasing focus on ‘deep uncertainty’ (Lempert et al., 2003a, Lempert 

and Collins, 2007, Spiegelhalter and Riesch, 2011) , ‘severe uncertainty’ (Ben-Haim, 2006), ‘info-gaps’ (Ben-

Haim, 2006), and ‘black swans’ (Popper, 1959, Taleb, 2007). Anthropogenic climate change has also been a 

particular trigger for analysis of deep uncertainty (Kalra et al., 2014, Wilby and Dessai, 2010, Huntjens et al., 

2012, Hallegatte, 2009). The influence of climate change on extreme weather is often the greatest concern, 

making the work also of great relevance to decision making about natural hazards. Deep uncertainty does 

not only refer to an inability to quantify hazard probabilities, but also extends to valuing the consequences 

of decisions (Stirling, 2010) and incorporating multiple perspectives on uncertainty (Jones et al., 2014).  

The naïve approach to epistemic ignorance is to resort to Laplace’s principle of insufficient reason and 
apply a uniform distribution across the possible outcomes. There are good theoretical reasons why a 

uniform distribution is not a valid way of representing ignorance (Ben-Haim, 2006). Other probabilistic 

theorists have suggested that under conditions of severe uncertainty, everything must be done to obtain 

probability distributions, if necessary through expert elicitation exercises (O'Hagan et al., 2006). 

Alternatively the situation can be recognised as Knight (1921)’s problem of “decision making under 
uncertainty”, in which no probability distribution is available over the future states of nature. The latter 

approach has a long tradition in decision analysis, and there is a range of different decision criteria that 

might be applied e.g. maxi-min, least regret and Hurwicz’s criterion. Unfortunately, all of these strategies 

violate some criterion for rationality, so there is no normative approach to making a decision under these 

circumstances (Lindley, 1985, French et al., 2009) 

Writers on decision making under deep uncertainty emphasise that ‘optimal decisions’, which are obtained 
by maximising expected utility in the ways described in the previous section, can be vulnerable to 

misspecification of probability distributions or incomplete valuation of possible outcomes. They therefore 

emphasise ‘satisficing’ (Simon, 1956), rather than optimising: the identification of options that perform 

acceptably well, rather than those that achieve the best score against the decision criteria (Hallegatte, 

2009, Bankes, 2002). Ben-Haim (2006) in particular advocates ‘robust satisficing’: finding solutions that 

perform acceptably well over a wide range of possible conditions. Robustness (i.e. relative lack of sensitivity 

to assumptions or uncertainties) is proposed as a decision criterion (Lempert et al., 2006, Groves and 

Lempert, 2007). Robust strategies are particularly valuable when the consequences of taking a wrong 

decision are high.  

The ‘deep uncertainty’ literature also emphasises the order in which decisions are explored,  critiquing a 

“top down” approach to uncertainty assessment and calling for ‘decision first’ or ‘policy-first’ approaches 
which start by exploring the sensitivity of policy options to uncertain conditions. This helps to focus 

decision analysis on the uncertainties that matter. Methods have been developed for analysing and 

visualising the combinations of conditions that might lead to undesirable outcomes, including Robust 

Decision Making (Lempert et al., 2006, Lempert et al., 2003b) and decision scaling (Brown et al., 2012) 

methodologies. Borgomeo et al. (2015) used such a method in exploring the sensitivity of drought 

management options to unprecedented drought.  

Robust Decision Making (RDM) uses multiple views of the future to identify conditions under which a 

decision would fail to meet its objectives (Lempert et al., 2006, Groves and Lempert, 2007, Lempert et al., 

2013b). The RDM process includes scoping, simulation to identify a policy or decision for evaluation, 

scenario discovery to identify vulnerabilities of a policy, the identification of hedging actions and the 

visualisation of results to facilitate the selection of a robust decision (Lempert et al., 2006, Lempert et al., 

2003b).  

RDM has been applied to inform long-term planning for natural hazards, especially around water 

management (Groves et al., 2012, Groves and Lempert, 2007, Kalra et al., 2015), flood risk management 
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(Fischbach, 2010, Lempert et al., 2013a) and coastal flooding and storm surges (Groves et al., 2014). Figure 

3 shows an example from RDM analysis, for water resources planning in Southern California (Lempert and 

Groves, 2010). The cost of the water utility’s master plan is evaluated over 200 alternative future states of 
the world, to identify which scenarios would cause the plan to fail. Statistical analysis based on scenario 

discovery algorithms is then applied to understand which factors lead the plan to fail in these conditions. 

This information can inform decisions about whether and when the water utility should change its master 

plan. 

Decision scaling focuses on stakeholder-defined thresholds that determine acceptable system performance 

and the conditions under which these thresholds are exceeded  (Brown et al., 2011a, Brown et al., 2012). 

Decision scaling was applied to improve management of the Great Lakes in the United States (Brown et al., 

2012), to assess flood risk (Steinschneider et al., 2015) and to trade-off ecological and water engineering 

performance indicators  (Poff et al., 2015, Singh et al., 2014). 

Info-gap decision theory was introduced by Ben-Haim (2006) to support decisions made where there is a 

mismatch between the information known on the decision variables of interest and the information 

needed to make a decision. In the context of natural hazards, these decision variables may describe the 

magnitude or frequency of occurrence of the hazard (e.g., the return period of a flood or the magnitude of 

an earthquake), the shape of the loss functions associated with the hazards, or even a set of utility 

functions associated with different materializations of the hazard. The best estimate of this uncertain 

variable is denoted ũ, and the departure from this estimate is parameterized by α: α   0. As α increases 

and we move away from this best estimate, the value of the variable u will become more and more 

uncertain as described in the uncertainty model U(α, ũ). Using this uncertainty model, info-gap decision 

theory compares alternative decisions based on their robustness, defined as the maximum uncertainty 

horizon α over which a specific decision achieves a pre-specified performance, and ‘opportuneness’, which 

measures the minimum level of uncertainty α required to achieve a ‘windfall’ gain or reward to the 

decision-maker (Ben-Haim, 2006, Hall et al., 2012a). 

Applications of info-gap decision theory to natural hazards range from analyses of the impact flood 

inundation models and flood frequency analysis uncertainties on flood management decisions (Hine and 

Hall, 2010), to  water resources decision making under climate and socio-economic change (Korteling et al., 

2013, Matrosov et al., 2013) and earthquake resilient design (Takewaki, 2013, Tang et al., 2015). 

The deep uncertainty literature underscores the benefits of flexibility and adaptability in dealing with 

uncertainty. Successful strategies typically need to be adaptive as more information will become available 

in the future. Flexibility means that decisions can be reversed or modified as the uncertain future 

materialises. A flexible strategy may be one focussed on the short-term without long-term implications or a 

strategy that can be readily amended or updated in a cost effective manner through time (Wilby and 

Dessai, 2010, Huntjens et al., 2012, Wilby et al., 2009, Hallegatte, 2009). A flexible strategy will have a 

lower likelihood of experiencing negative ‘lock-in’ (Payo et al., 2015), that involves an irreversible 

destruction of capabilities. This then focusses attention on the sequences of decisions rather than single 

decisions, which we deal with next.  

4. Sequential decisions 

Management of natural hazards seldom involves one single decision. This is particularly true in real-time 

management of hazard events, which involves sequences of decisions as the event and its consequences 

materialise. It also however applies to longer-term risk management problems, where the nature of the 

hazard, exposure and vulnerability is evolving through time, so management actions need to evolve in 

response.  

A particularly interesting question in sequential decision analysis is whether it is worth investing now to 

keep options open for the future. This is the question that is dealt with in real options analysis (Dixit and 
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Pindyck, 1994). Woodward et al. (2014) have applied real options analysis to the design of flood defence 

systems and Hino and Hall (in Review) extend the analysis to deal with land use zoning decisions in areas at 

risk of flooding.  

Decision trees (French, 1986, Lindley, 1985) provide a structured way of dealing with sequential decision 

problems. The tree contains event nodes with uncertain outcomes (in the same way as probabilistic risk 

analysis) and decision nodes which characterise the choices available to a decision maker in given 

circumstances. Integration over the choices and events identifies the preferred course of action. Decision 

trees and real options analysis rely on probabilistic characterisation of uncertainties, whilst the proponents 

of ‘adaptation pathways’ (Haasnoot et al., 2012, Ranger et al., 2010) have emphasised sequential decisions 

as a means with dealing with deep uncertainty. The approach aims to build flexibility into a decision or 

strategy by sequencing the implementation of actions over time so that the system adapts to changing 

social, environmental and economic conditions and options are available to respond to a range of plausible 

future conditions. A pathway provides a visual representation of the sequencing of decision points and 

potential adaptive actions that may be implemented in the future. Monitoring of decision-relevant 

variables is an important component of implementing a pathways approach (Yohe and Leichenko, 2010). 

This establishes a linkage between risk assessment and adaptation action that is absent in many adaptation 

interventions.  

An adaptation pathways approach was first applied as part of the Thames Estuary tidal flood risk 

management project in London (Ranger et al., 2010). Adaptation pathways have been used in a range of 

contexts including delta flood and water management in the Rhine-Meuse delta in the Netherlands 

(Haasnoot et al., 2012); strategic regional planning on the Eyre Peninsula, Australia (Siebentritt et al., 2014); 

coastal planning in Lakes Entrance, Australia (Barnett et al., 2014); urban adaptation in New York to 

hurricane and storm surge risk (Rosenzweig and Solecki, 2014); and flood risk management in the Hutt 

River, New Zealand (Lawrence et al., 2013). In each case, the approach was uniquely interpreted to respond 

to the local priorities and decision contexts.  

5. Decisions with multiple objectives 

Decision making regarding natural hazards typically involves multiple categories of impacts and costs. 

Reducing risk to life is a central objective for disaster risk reduction. Deciding what and how much to do to 

reduce risk to life leads, implicitly or explicitly, to the need to trade off the costs of risk reduction with the 

benefits of avoided loss of life. Natural hazard decision problems also bring in considerations of 

environmental impact, public confidence and reputational risk, all of which are also problematic to value in 

consistent ways.  

Faced with this challenge, there are two routes that are adopted in the literature to dealing with multiple 

attribute in decision problems. The first seeks to monetize all of the different possible outcomes from a 

decision problem, so reducing it to a single attribute problem. Alternatively, the problem can be dealt with 

formally as a multi-attribute decision. Information on preferences can be included as weightings to each 

decision variable, using a compensatory approach in which strong performance in one criterion can 

compensate for poor performance in others; or as minimum or maximum values for one or more criteria, in 

a non-compensatory approach. Where non-compensatory approaches are used, multi-criteria decisions can 

be made as attribute-based or alternative based decisions. In an attribute-based approach, decision 

variables are considered in a pre-determined sequence, with alternatives not meeting each criterion in 

sequence rejected. In alternative-based non-compensatory decisions the search process stops when the 

first alternative matching or exceeding a criteria set is identified. This is typically performed where a large 

number of options are available or the process time for the decision is significant (French et al., 2009). 

Linear weightings imply a constant marginal rate of substitution between different attributes, which 

seldom reflects the concerns that decision makers have about the system attributes that they value, least 



13 
 

of all with different degrees of relative scarcity (Bommier and Villneuve, 2012). A wide range of multi-

criteria decision making methods have thus developed to deal with the range of problem contexts, features 

of the information used, weighting requirements, number of actors and types of criteria used including 

deterministic, stochastic and fuzzy data types (Triantaphyllou, 2013). A comparison of alternative methods 

have shown that evaluation outcome depends heavily on both choice of the utility function and its 

parameters (Podvezko and Podviezko, 2010). Multi-attribute utility theory with non-additive utility 

functions provides a flexible version of the multi-attribute decision problem (Keeney and Raiffa, 1993). 

However, this comes with a high penalty of having to construct complex utility functions, which is an 

elicitation problem with which most decision makers struggle.  

6. Group decisions  

In theoretical terms, there is no acceptable solution to the problem of how competing values and 

objectives should be reconciled in formal decision problems (Arrow, 1951). Given this awkward fact, 

emphasis has to shift from formal methods to the practice of dealing with multiple actors in decision 

making settings. A variety of group decision making (GDM) methods have been developed to facilitate the 

convergence of decision maker opinions (Zhang et al., 2015).  

Such GDMs face two major hurdles, namely dealing with the complexity of the heterogeneous information 

from a large number of decision makers, and providing acceptable solutions based on the unification of this 

information. Early GDMs employed voting rules to order relative preferences, with more recent GDMs 

attempting to better represent differences between actual evaluated values (Lee et al., 2015). Success 

appears most likely when actors from community groups, business, industry, and all levels of government 

and non-governmental organisations are involved in the decision making process from the very beginning 

(IPCC, 2014).  

Such an involved process can be greatly facilitated through the development of a decision support system 

(Mejía-Navarro and Garcia, 1996) into which actors have considerable input and through which they are 

able to explore the implications of alternative portfolios of proposed risk reduction projects and disaster 

scenarios (IPCC, 2014). One unfortunate caveat to such progress is the evidence that the effectiveness of 

such decision support systems can be reduced over time through gamesmanship by various actors (Madani 

and Lund, 2011).   

7. Good decision making processes 

Our discussion of decision making for natural hazard management has so far focussed upon the formal 

structure of decision problems (treatment of uncertainty, sequential decisions, decisions with multiple 

attributes and actors). Decision theory emphasises the process of making decisions as being just as 

important as the formal structure adopted.   

To address the ingredients for good decision making for natural hazards management, we might first 

consider what makes a good decision. The question has been considered widely in decision theory, risk 

governance, ethical reasoning, and related fields. There is no universal criterion for a good decision (Jones 

et al., 2014), it is difficult to evaluate decisions after they have been made and there is a notable lack of 

historical analysis of performance of decisions. Chance dictates that bad decisions can be associated with 

good outcomes and vice versa (Hammond et al., 1998). This is perhaps especially true for natural hazards: it 

is difficult to evaluate plans for high consequence events with poorly understood probabilities. Yet there is 

some agreement on what makes good decision making. Good decisions will likely emerge from processes in 

which: parties are explicit about their goals, agreed criteria, rules and norms are followed, the best 

available science is used, and alternative options and trade-offs are considered from a wide range of 

viewpoints (Jones et al., 2014). These principles emphasise the importance of good decision making 

processes, but also imply the importance of sound logic and rules, which is where decision analysis can 

contribute.  
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Morgan et al. (1990) present guidance for good decision analysis. Several, such as documenting the analysis 

clearly, and presenting the results for peer review, concern the quality of the output, which can 

nonetheless be challenging to uphold given the time pressures associated with policy relevant research, 

particularly for natural hazards. The other rules give more substantive direction in the recommended 

approach for decision analysis. Morgan et al. (1990) highlight the importance of letting the problem drive 

the analysis, which is echoed by others who emphasise the centrality of user needs (Jones et al., 2014): the 

decision analysis should not be separated entirely from the decision-makers. The importance of iterative 

analysis has also been highlighted, in order to incorporate new information about emerging risks. This may 

be particularly important during phases of imminent threat, or for long term planning under climate 

change, as climate change signals strengthen and emerge from natural variability (Ranger et al., 2010).  

Another key component of good decision analysis is to consider a wide range of views, but still keep the 

analysis as simple as possible, so that it can be widely understood, and is more likely to be seen as 

legitimate (Government Office for Science, 2011). Given inevitable simplifications it is important to be 

explicit about assumptions and uncertainty. 

Good decision making is typically characterised as a cyclic process, encompassing (i) 

scoping/framing/problem identification (ii) analytical (iii) implementation and (iv) 

monitoring/evaluation/review phases (Error! Reference source not found.). This cycle should be tailored to 

the nature of the problem in hand, so that the complexity of the problem influences the design of the 

process (Jones et al., 2014). If risk is simple, well-bounded with clear cause and effect, a focus on numerical 

analysis might be appropriate; but if risk is complex, with conflicting values, large uncertainties, and unclear 

solutions, many stakeholders and contrast between calculated and perceived risk, then iterative, adaptive, 

process-driven stakeholder co-production is advised (Harris, 2007) .  

8. Conclusions 

Decision analysis allows the many disparate but connected management and mitigation challenges 

presented by natural hazards to be formalised. The range of natural hazards contexts is broad and it is not 

possible to formulate universally applicable solutions to natural hazards problems, but methodologies for 

their framing can be appropriated from theory and from successful application in other hazard contexts. 

Application of formal decision analysis methods to natural hazard problems is still relatively immature. This 

is surprising because in many respects natural hazard management problems lend themselves to decision 

analysis – they involve explicit weighing up of costs and benefits under conditions of uncertainty. Acting 

against this has been the severe uncertainty that often characterizes natural hazards problems and the 

often urgent need to address these problems – which favours expediency over rigour.  

In this paper we have identified generic characteristics of decision analysis problems for natural hazards. 

We have identified the following cross-cutting aspects:  

1. The characterisation of uncertainty: deterministic (no uncertainty), probabilistic, or deep 
uncertainty (no probabilities) 

2. Single step or sequential decision problems 
3. Single or multi-attribute decision problems 
4. Single or multi-actor decision problems 

Applied decision analysis remains uneven and limited in its ability to develop by the importance of the 

decisions that are made, with natural hazard decisions often controversial, pre-existing decision 

frameworks legally mandated and limited capacity within decision making organisations. As opportunities 

to implement better decision methodologies emerge, communication between decision makers in different 

fields of the advantages, disadvantages and suitability of specific methods is essential for new theoretical 

work and practical experience to be appropriately dispersed. Decision analysis provides a means of 

justifying investment in data acquisition and research to explore uncertainties. Uncertainties are significant 
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in natural hazard decisions, because of the potential for preference orderings to change, depending on 

what uncertain future materialises.  

Decision analysis becomes ever-more relevant with the advent of new methods of data acquisition, from 

pervasive sensors to Earth observation. These new data streams provide the potential to generate better 

informed uncertainty estimates. Increased use of decision theory in natural hazard science will enable 

decision making to be better informed by new advances in scientific knowledge, thereby increasing 

society’s ability to cope with such hazards.  

Given the growing risk from natural hazards, and the potential for major policy interventions to reduce 

losses from natural hazards, there is a strong case for improving methodology. As risks, and commitments 

to risk management, grow, there will be increasing scrutiny applied to how natural hazard management 

decisions are being made. Decision analysis provides formal and repeatable frameworks for structuring 

decisions. However, the models which are used in decision analysis are reliant on assumptions which will 

introduce deep uncertainties, which must be explicitly examined as part of a good decision analytic process. 

Progress in the theory of decision analysis must be matched by progress in the application of state-of-the-

art decision methodologies to natural hazards decision making, and monitoring and evaluation of successes 

and failures of decisions made for the short and long term. Exchanges between academia and operational 

hazard management will allow better understanding of real-world cases by academics and support 

operational decision making. Better integration between those managing separate hazard phases – 

planning, forecasting, response and recovery - will enable implementation of end-to-end risk-based 

approaches and shared expertise on formal decision analysis.  

In this paper we have identified quite extensive but often rather isolated use of decision analysis in the 

management of natural hazards. We have identified the characteristics of natural hazard management 

problems that map onto different aspects of decision theory. By making this connection we hope to 

promote further uptake of applied decision analysis.  
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Figure 1.  The range of lead-times of natural hazards (data from World Health Organisation (2011)) 

 
Figure 2.  The spatial scales of natural hazards 
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Figure 3. Projected present value (PV) shortage costs and supply costs for a water utility’s master plan for 200 alternative states of 
the world, reflecting different combinations of uncertain climate sequences, water demands, groundwater response, future costs 

and impact of climate change on imported supplies. The diagonal line shows the satisficing criterion and the diamonds show the 

states of the world where the combination of uncertain factors (decline in precipitation, reduction in imported supplies and 

changes in groundwater response) leads to poor performance (from Lempert and Groves, 2010). 

 
Figure 4 The decision analysis cycle (from Jones et al., 2014). 
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Approach to 

uncertainty 
Methodology Key principles Examples of application to natural hazards 

Deterministic 

  

Conservative Engineering Design to highest plausible hazard 
Historically for Earthquake Engineering (National Research 

Council, 1988) 

Design Event Nominal Hazard Flood Risk (NERC, 1975) 

Safety Factor Added Margin Flood Risk (Vrijling  et al., 2011), Drought (Hall et al., 2012b) 

Probabilistic 

  

Decision Trees Mapping probabilistic decisions 
Tornado Warnings (Durage et al., 2016) Typhoon 

Management (Cheng et al., 2007) 

Influence Diagrams Can frame complex decisions and supporting information Flood Risk (Castillo-Rodríguez et al., 2014) 

Bayesian Decision 

Networks/Bayesian Belief 

Networks 

Bayes’ Rule 

Conditional independence 

Volcanology (Aspinall and Woo 2014), Earthquake Risk 

(Bayraktarli and Faber (2011) 

Sensitivity Analysis Tests for information uncertainty Earthquake Risk (Rohmer, 2014) 

Deep 

Uncertainty 

Adaptation Pathways 
Postponement of a sequence of decisions to await new 

information on uncertainties 

Flood and Drought Management (Haasnoot et al., 2013), 

Hurricanes (Rosenzweig and Solecki, 2014) 

RDM Bottom-up maximin approach 
Water Resources (Kalra et al., 2015), Flood Risk (Lempert et 

al., 2013a), Coastal Flooding (Groves et al., 2014) 

Info-gap 
Compares alternative decisions based on their robustness 

and opportuneness 

Flooding (Hine and Hall, 2010), Drought (Matrosov et al., 

2013), Earthquake Resilient Design (Tang et al., 2015) 

Decision Scaling 
Uses stakeholder-defined thresholds, finds conditions 

under which these thresholds are exceeded 

Drought and Climate studies (Brown et al., 2012) and Flood 

Risk (Steinschneider et al., 2015) 

 

Table 1 Methodologies for decision making under uncertainty 

 


