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Abstract—The main focus of this paper is for decision analysis
from the target-oriented point of view. Firstly, the target achieve-
ment computation method is revised, in which the resulting
value function can have four shapes: concave, convex, S-shaped,
inverse S-shaped. In addition, it is now more and more widely
acknowledged that all facets of uncertainty cannot be captured
by a single probability distribution. A fuzzy uncertain target-
oriented method is also proposed, in which the proportional
approach is selected to transform a possibility distribution into
its associated probability distribution, and then based on the
random target-oriented model, we can obtain the probability
of meeting targets. Three types of fuzzy targets, widely used
in Bellman-Zadeh paradigm, are selected to illustrate the fuzzy
target-oriented model.

I. INTRODUCTION

Substantial empirical evidence and recent research have
shown that it is difficult to build mathematically rigorous
utility functions based on attributes [1] and the conventional
attribute utility function often does not provide a good descrip-
tion of individual preferences [2]. As a substitute for utility
theory, Kahneman and Tversky [2] propose an S-shaped value
function, and Heath et al. [3] suggest that the inflection point in
this S-shaped value function can be interpreted as a target. To
develop this concept further, target-oriented decision analysis
involves interpreting an increasing, bounded function, properly
scaled, as a cumulative distribution function (cdf) and relating
it to the probability of meeting or exceeding a target value.

Berhold [4] notes that “there are advantages to having the
utility function represented by a distribution” (p. 825), arguing
that it permits the use of the known properties of distribution
functions to find analytic results. Manski [5] calls this the
“utility mass model”. Castagnoli and LiCalzi [6] prove that
expected utility can be expressed in terms of “expected prob-
ability”, with the utility function for performance interpreted
as a cdf in the case of a single attribute (see also Bordley
and LiCalzi [7]). Interestingly, the Savage’s utility function [8]
can always be interpreted as the probability of achieving a
target [7], [6]. In maximizing expected utility, a DM behaves
as if maximizing the probability that performance is greater
than or equal to a target, whether the target is real or just a
convenient interpretation. Taking a different tack, instead of
random uncertainty, Huynh et al. [9] propose a target-oriented
approach to decision making under uncertainty with fuzzy
targets. More details on target-oriented decision analysis could
be referred to [10], [11], [12].

In general, target-oriented decision analysis lies in the
philosophical root of bounded rationality [13] as well as
represents the S-shaped value function [2]. In most studies
on target-oriented decision analysis, monotonic assumption of
attribute is given in advance to simplify the decision prob-
lems. However, in the context of decision analysis involving
targets/goals, usually there are three types of goals: “the more
the better” (corresponding to benefit target), “the less the
better” (corresponding to cost target), and goal values are fairly
fixed and not subject to much change, i.e., too much or too
little is not acceptable (we shall call this type of targets as
interval targets). Thus it is important to consider these three
types of targets. Furthermore, our another motivation comes
from the uncertainty representation of targets. It is now more
and more widely acknowledged that all facets of uncertainty
cannot be captured by a single probability distribution. And
usually it is not so easy to find the probability distribution of
the uncertain target. In many applications, fuzzy subsets [14]
provide a very convenient object for the representation of
uncertain information. Thus is is necessary to consider fuzzy
target-oriented decision analysis. Although Huynh et al. [9]
consider fuzzy uncertainty in target-oriented decision model,
they only consider the payoff variables as well as do not
analysis the differences between Bellman-Zadeh paradigm and
target-oriented decision model.

Based on the above observations, we summarize our primary
contributions as follows. Firstly, we propose an approach for
computing the probability of meeting random target with
respect to different types of target preferences. Although
simple and straightforward, the resulting value function can
have four shapes: concave, convex, S-shaped, inverse S-
shaped. The relationship between target-oriented model and
traditional MADM normalization method is also discussed.
Furthermore, the fuzzy uncertainty is also considered in
target-oriented decision analysis. The proportional conversion
method is chosen to transform a possibility distribution into
its associated probability distribution, and then based on the
random target-oriented model we can obtain the probability of
meeting targets. Some fuzzy targets widely used in Bellman-
Zadeh paradigm [15] are selected to illustrate the fuzzy target-
oriented decision model. The rest of this paper is organized
as follows. Section Il revises random uncertain target-oriented
decision analysis, where three types of target preferences are
considered. In Section IIl, we consider fuzzy target-oriented
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decision analysis via possibility-probability transformation and
illustrate our approach by means of three types of fuzzy targets
widely used in Bellman-Zadeh paradigm. Finally, some con-
cluding remarks and future work are presented in Section IV.

1. RANDOM UNCERTAIN TARGET-ORIENTED DECISION
MODEL: SINGLE ATTRIBUTE CASE

For notational convenience, let us designate an evaluation
attribute by X, and an arbitrary specific level of that evaluation
attribute by x. We also restrict the variable x to a bounded
domain D = [Xyin, Xmax|. Suppose that a DM has to rank
several possible decisions. Assume for simplicity that the set
A of consequences is finite and completely ordered by a
preference relation >. Denote by p, his probability distribution
for the random consequence X, associated with a decision
d. The expected utility model suggests that the ranking be
obtained by using the following value function

V(d) = EU(Xq) = Y U(x) - pa(x) @)

where U (x) is a Von Neumann and Morgenstern (NM-)utility
function over consequences.

As pointed out by Bordley and Kirkwood [1], an expected
utility DM is defined to be target oriented for a single attribute
decision if the DM’s utility for an outcome depends only on
whether a target is achieved with respect to x. Thus a target-
oriented DM has only two different utility levels, and because
a utility function is only specified to within a positive affine
transformation, these two utility levels can be set to one (if
the target is achieved) and zero (if the target is not achieved).
Then a target-oriented DM’s expected utility for alternative a
is

v(a) =Pr(Xy =1T)
= Z [Pr(z = T)* 1+ (1 —Pr(z = T)) * 0] pa(z)

x

= 3" Pr(a = T)pala)
’ @

where Pr(z > T) is the probability of meeting the uncertain
target T' and T is stochastically independent of X ;. The idea
that the NM-utility function U should be interpreted as a
probability distribution may appear unusual but, in fact, NM-
utilities are probabilities [16], [7]. With the assumption that
the attribute is monotonically increasing, = and ¢ are mutually
independent, Bordley and Kirkwood [1] suggest the following
function

T

Pr(z=T) = / p(t)dt, (3)

Xmin

where p(t) is the probability density function of uncertain
target 7T

A. Three Target Preferences

In most studies on target-oriented decision making, mono-
tonic assumptions of attributes (e.g., wealth) are given to
simplify the problems. In many decision problems involving

goals/targets, usually there are three types of goal prefer-
ences [17].
« Goal values are adjustable: “more is better” (we shall call
benefit targets);
o Goal values are adjustable: or “less is better” (with
respect to cost targets);
« Goal values are fairly fixed and not subject to much
change, i.e., too much or too little is not acceptable (we
shall call this type of targets as interval targets).

The target-oriented decision model assumes that the prob-
ability distribution with respect to the uncertain target is
unimodal as well as views the mode value of probability
distribution of the uncertain target as the reference point,
denoted as T, [7]. To model the three types of goal preference,
similar with Bordely and Kirkwood [1], we define

Xmax
Pr(z = T) = /X " e, (o). @)

As target-oriented decision model has only two different utility
levels, we can define u(z,t) as follows.

1) Benefit target: In this case, the DM has a monotonically
increasing preference, i.e. “the more the better”. As target-
oriented model assumes that there are only two levels of
utility (1 or 0), thus, we define as follows:

u(z,t) = {

Then we can obtain the probability of meeting uncertain
target as the following function

1, x>t
0, otherwise.

Pr(z =T)=Pr(xa>T)= / p(t)dt. (5)
J Xmin

This is consistent with the target-oriented model in the liter-

ature [7], [6], i.e. the target-oriented model views the cdf as
the probability of meeting uncertain targets.

2) Cost target: Similar with the benefit target, for cost

target we define

1, =<t
u(z, t) = { 0, otherwise.
Then the probability of meeting cost target is as follows

Kmax
Pr(z=T)=Pr(z <T) = / p(t)dt (6)
3) Interval target: In this case, the mode value T, is the
reference point. There will be added loss of value for missing
the reference point on the low side, or added loss for exceeding
the reference point. When = = T, the probability of meeting
target should be equivalent to one. Based on this observation,

we define the target achievement function as follows:
Pr(x = T)=Pr(z€T)

% . p(t)dt A

i if o < Ty

S, P02 N ¢))
= 1, else if x = T,,,;

* Xmax

L pMdt - gpanise.

Xme )
= p0)dt
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It should be note that in case of benefit and cost attribute,
we can also use this relative probability of meeting uncertain
targets. When the DM prefers monotonically increasing pref-
erence, then we can define

x T
pre > 1) - SO0 _
o Pt

Generally speaking, when the DM has an interval target
preference, the value domain below the reference point 7.,
can be viewed as a pseudo benefit attribute; the value domain
upper than the reference point 7,,, can be viewed as pseudo
cost attribute. By means of this relative probability, we can
model three types target preferences. As a generation of this
type of target preference, the reference point value 7, may
have a interval range, such that T;,, = [T, Tinw]- In this case,
Eq. (7) becomes

Pr(x =T)=Pr(z eT)
[ . p(t)dt

p(t)dt.

Xmin

m, if o < T,
Xmin
= 17 else |f S [Tthmu]v
Xmax d .
L p®dt e erwise.

X bl
J X p () dt

@)
B. Illustrative Examples

Choosing a suitable probability distribution for uncertain
targets is due to specific problems. As the normal distribution
is widely used as a model of quantitative phenomena in the
natural and behavioral sciences, we shall assume that the
uncertain target is normally distributed in the bounded domain
D and with mode value T,,,. We assume a DM has three types
of monotonic preferences: benefit, cost, and interval target. By
means of Eq. (5), Eq. (6), Eq. (7), we can obtain the target
achievements with respect to these three target preference
types, as shown in Fig. 1.

Looking at the target achievement of benefit attribute,
Pr(z > T') ,as shown in Fig. 1. This corresponds to the S-
shaped function, which is equivalent to the S-shaped utility
function of prospect theory [2] as well as is consistent with
“Goals as reference point” by Heath et al. [3]. This induced
value function has the following two properties:

1) Gain and loss
The target divides the space of outcomes into regions of
gain and loss (or success and failure). Thus, the value
function assumes that people evaluate outcomes as gains
or losses relative to the reference point 75,,.
2) Diminishing sensitivity
The value function draws an analogy to psychophysi-
cal process and predicts that outcomes have a smaller
marginal impact when they are more distant from the
reference point 7;,,.
It should be noted that Kahneman and Tversky [2] assume
another principle: outcomes that are encoded as losses are
more painful than the similar sized gains are pleasurable. In
their words, “losses loom larger than gains”. The induced value

function by target-oriented model does not entirely satisfy the
prospect theory. The main reasons for this observation are
twofold. The first reason is the distribution type of target.
In case of benefit attribute with target having a normal
distribution, the target is symmetrically distributed. Another
reason is the bounded domain. In fact, when the attribute value
has a bounded domain, and the reference point in the prospect
theory is the middle value of the domain, the value function
induced by prospect theory will also not satisfy this principle.

1

Probaabmly
o

Xmin Xmax

™m
Random target T

Fig. 1. Target achievements under normal distribution

In case of monotonically decreasing preference, we will
obtain the inverse S-shaped function, as shown in Pr(z < T)
of Fig. 1. When the DM has an interval target preference, DM
will evaluate outcomes as losses relative to the reference point
T,.. The attribute value below or exceeding the reference point
is viewed as a loss, in which the value function is convex, as
shown in Pr(z € T') of Fig. 1.

Furthermore, let us consider a special case. Without addi-
tional information about the target distribution, we can assume
that the random target 7" has a uniform distribution on D with
the probability density function p(¢) defined by

p(t) — M7 Xmin <t< Xmax;
0, otherwise.

©)

Under the assumption that the random target 7" is stochasti-
cally independent of any alternative, we obtain the probability
of meeting uncertain target for benefit and cost attributes as
follows

Pr(z = T) = Pr(z > T) = =Xun__ for benifit target;
EUT e <) = Xl}idij;(””, for cost target.

(10)

From Eq. (10) it is easily seen that, for benefit and cost

attribute there is no way to tell whether the DM selects an

alternative by traditional normalization method or by target-

oriented model. In other words, in this case the target-based

decision model with the decision function is equivalent to the
traditional normalization function.

C. Comparison and Relationship with Related Research

Prospect theory [2] deals with decision making under risk,
where probability distributions of the lotteries are known to
agent. Prospect theory assumes that the ranking procedure is
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linear in the distorted probabilities. In other words, the ranking
procedure is generated by the value function

o(Xa) =Y U@)olpa@)], (11)
which is linear in ¢ but not in pg. The weighting function does
not obey the axioms of probability theory and it measures the
impact of probabilities on choices rather than the likelihood of
the underlying events. Therefore, prospect theory postulates a
model which in general is not linear in the known probabilities.
It is apparent how little prospect theory tries to part away from
the expected utility model.

Target-oriented decision model focuses on whether the value
function meets a random variable, T' having a probability
distribution. In addition, target-oriented model views the mode
value of probability distribution as reference point, this point
was illustrated by Heath et al. [3]. Finally, target-oriented
decision model satisfies NM-utility axiomatization [7].

I1l. Fuzzy UNCERTAIN TARGET-ORIENTED DECISION
MODEL

It is now more and more widely acknowledged that all
facets of uncertainty cannot be captured by a single probability
distribution. Furthermore, usually it is not so easy to find the
probability distribution of the uncertain target. Possibility the-
ory, introduced by [18] appears as a mathematical counterpart
of probability theory, that deals with uncertainty by means of
fuzzy sets. Formally, the soft constraint imposed on a variable
V is the statement “V is F”, where F is a fuzzy set, can
be considered as inducing a possibility distribution 7 on the
domain of V' such that (x) = w(z), for each . In this paper,
we shall use the possibility distribution 7(z) and membership
degree u(z) interchangeably.

A. Transformation from Possibility to Probability

The conversion problem between possibility and probability
has its roots in the possibility/probability consistency principle
of Zadeh [14], that he propose in the paper founding possibility
theory in 1978 [18]. The possibility-probability consistency
principle is a heuristic relationship between possibilities and
probabilities. This principle can be summarized as: “the pos-
sibility of an event is always greater than or equal to the
probability of the event”. This is based on the consideration
that possibility representation and probability representation
are not just two equivalent representations of uncertainty,
but the representation is weaker because it explicitly handles
imprecision.

Yager [19] investigates the problem of instantiating a pos-
sibility variable over a discrete domain by converting its
possibility distribution into a probability distribution, via a
simple normalization. This conversion has been extended into
a continuous domain [20] as follows:

_ (=)
p(@) = J, m(x)dx
When applying this proportional probability density dis-
tribution to convert the fuzzy number, it is noted that the

(12)

range of the membership grade of the resultant proportional
distribution is greatly reduced when the fuzzy number has
a wide domain. Consequently, the ability of the membership
function to discriminate precisely among the members of the
fuzzy set is impaired. Fortunately however, the domain of
the fuzzy number is always sufficiently narrow to avoid this
becoming a problem. From the analytical point of view, the
proportional proportional transformation approach can deal
with different types of possibility distributions while following
the possibility/probability consistency principle of Zadeh [18].
From the computational point of view, the proportional ap-
proach is convenient and simple in real applications. Thus, in
this study, the proportional probability density function will
be used to transform the possibility distribution to probability
distribution.

B. Fuzzy Target-Oriented Decision Analysis

In many applications, the subjective assessments provided
by DM(s) are usually conceptually vague, with uncertainty
that is frequently represented in linguistic forms. To help peo-
ple easily express their subjective assessments, the linguistic
variables [21] are used to linguistically express requirements.

Assume that the fuzzy targets linguistically specified by the
DM have the canonical form, and =(¢) is the membership
degree/possibility distribution of uncertain target 7'. Based
on the proportional possibility-probability conversion method
Eqg. (12) and the random target-oriented model for benefit
target Eq. (5), we can obtain

x T ow(t)dt
Pr(z > T) = / pltydt = D TON gy
Xonin Sy m(t)dt

Similarly, we can obtain the target achievement function for
cost target as follows

f Xmax

Xmax
mein
According to the random target-oriented decision model
for interval target Eq. (7) and the proportional possibility-

probability conversion method Eq. (12), we obtain the target
achievement function for interval target as follows:

Iz

m(t)dt

Priw<T)= w(t)dt

(14)

w(t)dt

W, if v <Tp;
PrizeT)=< 1, else if x € [T, Tinul;
L m()dt i
z otherwise.

Xmax w(t)dt ’

Tmu

(15)

In decision making involving fuzzy targets, there are three

types of commonly used fuzzy targets: “fuzzy min T,”,

“fuzzy max T,,”, “fuzzy equal T, or fuzzy range/interval:

from T,,; to T,,,”. For computational efficiency, trapezoidal

or triangular fuzzy numbers are used to represent the above
uncertain targets.
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1) Fuzzy min: Assume that the DM assesses his target of at
least T;,,. In this case the DM has a monotonically increasing

preference, the fuzzy number can be represented as
t—Xomi ;
= Amin if X,,...<t<T
t) ={ Tn—Xmin’ min =& = 4m 16
() { , otherwise. (16)

We can obtain the induced probability of meeting this target
according to Eq. (13).

N

Possibility/Probability distribution

o :
Xmin Fuzzy target T: Fuzzy min 1M Xmax

Fig. 2. Target achievements under fuzzy min target

Fig. 2 graphically depicts the membership function of
the fuzzy min target, its associated probability distribution
and the corresponding probability of meeting the target. As
illustrated, the fuzzy min target induces the S-shaped func-
tion. When X.x = T, the fuzzy min target reduces to
(Xmin, Xmax, Xmax)- In this case, Xpax is the reference point
value, because all the attribute values are below T, thus using
Eq. (13) we will obtain a convex value function.

2) Fuzzy max: Assume that the DM assesses as the mem-
bership function for his target of at most about 7;,, and we
get the membership function for this target as follows:

(t) { 17 if Xmingthm
71' = Xinax— -
m, otherwise.
Then we obtain the the induced probability of meeting target
according to Eq. (14). The related functions of this target are

graphically illustrated in Fig. 3. In this case, we obtain the
inverse S-shaped function.

(17)

N

éPr(xs T)
pg)

xPossibility/Probability distribution

min  Tm Fuzzy target T: Fuzzy max Xma

Fig. 3. Target achievements under fuzzy max target

Similarly, there exists a special case of fuzzy max target,
such that 7' = (Xpmin, Xmin, Xmax). AS Xmin iS the reference
point and DM prefers a monotonically decreasing preference,
thus this special fuzzy max target induces a convex value
function.

3) Fuzzy equal or Fuzzy interval: Another fuzzy target is
“fuzzy equal”. In this case, the target values are fairly fixed
and not subject to much change, i.e., too much or too little
is not acceptable. Let us assume that the DM assesses the
membership function for his target about 7,,, as

%7 if Xmin <t < Thp;
m(t)=¢ 1, if t =T, (18)
Paacl T, <t < X

Fig. 4(a) graphically depicts the membership function of the
unimodal target, its associated probability density function and
the corresponding probability function of meeting this target
via Eg. (15). As the DM assesses feels losses with respect to
the modal value, the unimodal target induces the convex value
function when the possible attribute values are below or upper
the mode value.

The “fuzzy equal” target is a special case of “fuzzy inter-
val”. In this case, the DM assesses target ranges. The fuzzy
target fuzzy from 7,,,; to T,,, can be defined as

ﬁ’ If Xmingt<Tm;
m(t) =< 1, if Tyt <t < Toprs (19)
Pl i Ty <t < Xpae

Fig. 4(b) graphically shows the possibility distribution, in-
duced probability distribution, and its associated probability
function of meeting targets.

C. Comparison with Bellman-Zadeh's Paradigm

In their pioneering work on MADM, Bellman and
Zadeh [15] suggest that a attribute can be represented as
a fuzzy subset over the alternatives. In particular, if x is
a attribute we can represent this as a fuzzy subset = over
A such that A(x) is the degree to which this criterion is
satisfied, where V A(x) € [0,1]. They use the fuzzy member-
ship function to represent the degree of preference (utility).
Both the Bellman-Zadeh’s paradigm and our approach use
fuzzy subset to model decision making involving targets. The
main differences between our approach and Bellman-Zadeh’s
paradigm are twofold.

The semantics of membership functions of fuzzy sets are
different. Bellman and Zadeh view the membership function
of fuzzy sets as a kind of utilities, whereas in our approach
the membership function of fuzzy sets is viewed as a kind
of uncertainty representations, possibility distribution. In fact,
according to the context of problems, membership degrees can
be interpreted as similarity, preference, or uncertainty [22]. As
pointed out by Beliakov and Warren [23]:

In fuzzy set theory, membership functions of
fuzzy sets play the role similar to utility function-
stthe role of degrees of preference. Many authors,
including Zadeh himself, refer to membership func-
tions as ‘a kind of utility functions’. The equivalence
of utility and membership functions extends from
semantical to syntactical level. Although this is not
the only possible interpretation of membership func-
tions, it allows one to formulate and solve problems
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o Possibility/Probability distribution

Possibility/Probability distribution -

Pr(xeT) p(t)

Fuzzy target T: Fuzzy equalTm

(a) Fuzzy equal target

Fig. 4. Target achievements

of multiple attributes decision making using the
formalism of fuzzy set theory.

Xmax Xmin

31
(4]

The semantics of fuzzy numbers are different. In our ap-

proach, even the same fuzzy number can have more than one
semantic depending on DM’s preferences. Whereas, Bellman

[5]
[6]

and Zadeh consider only one semantic. For example, for

the fuzzy number T

(Xmin, Tm, Xmax), in the above

[71

discussion, we view this fuzzy number as fuzzy equal target.

Huynh et al. [9] have also considered this fuzzy target by as-

(8]

suming monotonically increasing target preference. Generally

speaking, we suggest that each fuzzy number can have three

[]

types of target preference depending on DM’s preferences.

In this study, we only listed the three types of fuzzy targets

[10]

commonly used in Bellman-Zadeh paradigm. To be consistent

with Bellman-Zadeh paradigm the same semantics of fuzzy

numbers is assumed.

1V. CONCLUDING REMARKS AND FUTURE WORK

The importance of behavioral aspects of decision making

[11]

[12]

[13]

has grown, and this was recognized by the award of the 2002

Nobel Prize in Economics to Daniel Kahneman [24]. As

emerging area considering behavioral aspects of decision mak-

an [14]

[15]

ing, target-oriented decision analysis lies in the philosophical

root of bounded rationality as well as represents the S-shaped

value function.

[16]

[17]

The contribution of this paper is to propose a hybrid

uncertain target-oriented decision analysis model. To do so,
firstly we proposed an approach for computing the probability

[18]

[19]

of meeting random target, in which the resulting value function

can have four shapes: concave, convex, S-shaped, inverse

S-  [20]

shaped. Furthermore, considering the uncertainty representa-

tion of targets, a fuzzy uncertain target-oriented method has

[21]

been proposed. The proportional approach was used to trans-

form a possibility distribution into the probability distribution.

[22]

Fuzzy targets widely used in Bellman-Zadeh paradigm [15]

were selected to illustrate the fuzzy target-oriented model.
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