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We study a problem of selling a fixed number of goods over a finite and known horizon. After
presenting a procedure for computing optimal decision policies and some numerical results on
a simple heuristic policy for the problem, we describe results from three experiments involving
financially motivated subjects. The experiments reveal that decision makers employ policies
of the same form of the optimal policy. However, they show systematic biases to demand too
much when they have many units to sell and too little when they have few to sell, resulting
in significant revenue losses.
(Behavioral Operations; Revenue Management; Dynamic Pricing; Decision Bias; Heuristics)

1. Introduction

Firms often face the problem of deciding how to best price and control the inventory of

perishable products for which demand is stochastic and price sensitive. Airlines must do

so for seats on particular flights; hotels must do so for rooms on particular nights; and

fashion retailers must do so for seasonal goods. Keeping prices too high can result in unsold

items, and keeping them too low can have significant opportunity costs, since costumers

would have been willing to pay more. There has been considerable theoretical work in the

operations literature on methods for optimally solving pricing and revenue management

problems, but, as far as we know, there has been no direct experimental work on how well
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actual decisions maker do so. Since managers—who are not necessarily perfectly rational

decisions maker nor extensively trained in optimization methods—are generally responsible

for revenue management (RM) decisions in most firms, investigating how their decisions

may be biased may be valuable. In the current paper, we use laboratory experiments to

investigate decision behavior in a stylized RM problem that captures many of the important

features of the problems faced by practicing managers.

Suppose a firm has a finite number of periods—a season—in which to sell a fixed number

of units of a product. Bids to buy a unit of the product at a particular price arrive sequentially

and stochastically in time; and each time it receives a bid, the firm must choose to accept or

reject it on the spot. When it accepts one, it sells a unit of the product to the bidder at the

bid price. Otherwise, it irrevocably rejects the bid and must wait for another one, which may

or may not come before the end of the season. There are a number of ways to interpret this

general problem. One is to think of it as the one faced by airlines, hotels, and travel agencies

that sell their goods on Priceline.com. Visitors to the site make offers to purchase goods

(e.g., a single one-way ticket from Tucson to New York on July 5, 2006) at particular prices,

and their offers are either accepted or rejected. The visitor’s credit card is automatically

charged the bid price if the bid is at least as high as the current reservation price for the

good, which is determined by Priceline, and, of course, unknown to the visitor; otherwise,

she pays nothing and receives nothing. Another interpretation is that goods in different

product classes (e.g., fare classes) are priced by the seller and posted. Then, when a buyer

attempts to buy a good in a particular class at the posted price, the seller decides whether to

make a unit of the good available. Whatever interpretation one assigns, this general problem

possesses the fundamental features of problems faced by firms in many industries—namely,

a fixed stock of items, a finite selling horizon, and uncertain demand—and is the archetypal

problem in revenue management. It is also the type of problem we study in the current

paper.

There are a number of excellent reviews that can be consulted for introductions to and

overviews of research in pricing and revenue management (e.g., Bitran & Caldentey, 2003;

McGill & van Ryzin, 1999; Talluri & van Ryzin, 2004; Weatherford & Bodily, 1992). There-

fore, we have chosen instead to focus on some of the prior experimental studies of decision

behavior that we believe are most relevant to the revenue management problem we consider

here. These studies all share a common framework: They investigate behavior in sequential

decision problems with known optimal decision policies. The current paper employs this
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same approach.

Optimal stopping is central to many operations management decision problems such as

when to hire a job applicant and when to adopt a new technology, and is also at the core

of many revenue management problems (Brumelle & McGill, 1993). The general theory of

optimal stopping has received considerable attention (e.g., Chow, Robbins, & Siegmund,

1971; Gilbert & Mosteller, 1966), and there has been some work in the experimental liter-

ature on the stopping behavior of actual decision makers. Rapoport and Tversky (1970),

for example, examined decision behavior in the classical full-information optimal stopping

problem in which the decision maker (DM) sequentially observes up to N random draws

from a distribution with a known density f(x), must irrevocably accept or reject each draw

when it is observed, and receives a payoff equal to the value x of the single selected obser-

vation. Rapoport and Tversky found that DMs tended to stop sooner than was dictated

by the optimal—expected payoff maximizing—policy. Similar findings regarding behavior in

full-information optimal stopping problems were reported, among other, by Cox and Oax-

aca (1989) and Schotter and Braunstein (1981).

One conclusion from the experimental studies of optimal stopping problems is that people

have a propensity to search inadequately, but employ rather complex decision policies that

have the same structural form as the optimal policies (see, e.g., Bearden, Rapoport, and

Murphy, 2005, 2006a, 2006b; Seale and Rapoport, 1997, 2000). Assuming that the early

stopping bias generalizes to situations beyond the laboratory, one might predict that people

do not search enough before making purchase decisions, that they may not visit enough sites

before purchasing books or airline tickets online, for example. Indeed, Johnson et al. (2004)

show that online search is quite limited. For many search problems, such as online shopping,

it would be very difficult, if not impossible, to determine what truly optimal search would

require. This is one reason why laboratory studies are so powerful. We can confront actual

DMs with decision problems for which we know the optimal policies. By comparing actual

to optimal decision behavior, we can gain insights into where decision making is done well

and where it breaks down.

In all previous experimental studies of optimal stopping, the DM had a single unit to

sell (e.g., a single position to fill). Thus, it is unclear how previous behavioral results on

optimal stopping inform the more general revenue management problem in which the DM

has multiple units to sell over a fixed period of time. Do the findings suggest that DMs are

likely to set their selling prices too low, for example? The problems are sufficiently different
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that the answer is not known.

Overall, given the dearth work on decision behavior in dynamic decision problems, it

is difficult to derive specific predictions for how DMs will perform in revenue management

problems such as the Priceline.com problem described above. We can, however, predict the

following: Decision behavior will depart from optimality. Given the relative complexity of

making optimal revenue management decisions, this prediction is obvious and not all that

interesting by itself. However, by finding the ways in which decision behavior systematically

departs from optimality, we can establish a basis for prescription. At the least, experimental

work on these problems can be used to warn DMs about the broad ways in which their

revenue management decisions are likely to err. This by itself, we believe, is valuable.

The rest of the paper is organized as follows. In § 2, we formally describe a simplified

revenue management problem, and present a numerical procedure for computing its optimal

decision policies. We then demonstrate in § 3 that a relatively simple decision heuristic can

perform quite well in the problem. Next, in § 4, we present results from three behavioral

experiments involving financially motivated subjects in which we examine actual decision

behavior in the problem. Finally, § 5 contains a discussion of the experimental findings and

some suggestions for future experimental research on revenue management.

2. The Problem and Its Solution

In this section, we describe a stylized revenue management problem and present a method

for computing its optimal policy. The problem has appeared under various guises in the

operations literature. Lee and Hersh (1993), for example, present it as a model of airline

seat inventory control. Papastavrou, Rajagopalan, and Kleywegt (1996) describe it quite

generally as a dynamic and stochastic knapsack problem, and relate it to transportation

scheduling problems, taking reservations in restaurants, and airline booking. To provide

ourselves with a useful shorthand, we will refer to the problem as the Revenue Management

Problem (RMP).

2.1 The Revenue Management Problem

A DM can sell up to S units over a season of T discrete time periods. Periods are indexed

by t (t = T − 1, . . .,0), which represents the number of periods remaining until the end of

the season. Units cannot be sold after period t = 1, and the salvage value for a unit is set
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at 0. The number of available-to-be-sold units is indexed by s (s = S, S − 1, . . . , 0). The

state of the system is given by (t, s). In each period, an offer to buy a single unit arrives

with probability p, and no offers arrive with probability 1− p. Each offer has an associated

bid (revenue) r, which is a random variable taken from a distribution with density f(r).

Whenever the DM has s ≥ 1 units and receives an offer with bid r, she can sell a unit,

thereby increasing her total revenue by r and leaving her with s− 1 units, or she can reject

the offer. The decision to accept or a reject an offer cannot be delayed—it must be made

instantaneously. The DM’s objective is to maximize her expected (total) revenue for the

selling season.

2.2 Dynamic Programming Solution for the RMP

Based on Lee and Hersh (1993) and Papastavrou et al. (1996), we know that at stage t with

s remaining units, the optimal policy is a threshold rule:

ψ?(t, s, r) =

{
accept offer if r ≥ Rs

t ,

reject offer if r < Rs
t .

The thresholds Rs
t dictate what revenue levels r the DM finds acceptable given t and s.

These thresholds are computed from

Rs
t =

{
V s

t−1 − V s−1
t−1 if s ≥ 1,

∞ if s < 1,
(1)

where

V s
t = p

[∫ Rs
t

0

f(r)V s
t−1dr +

∫ ∞

Rs
t

f(r)
(
r + V s−1

t−1

)
dr

]
+ (1− p)V s

t−1, (2)

with boundary conditions

V s
0 = 0, ∀s, and

V 0
t = 0, ∀t.

The value function V s
t gives the DM’s expected future revenue for following ψ?(t, s, r) from

period t to period 0, given that she has s units left. The optimal policy depends only on t,

s, and r, and not on the history prior to t. Thus, Bellman’s (1957) optimality principle of

dynamic programming is satisfied; and the optimal policy for the full problem from period

T to period 0 can be obtained by solving Eqs. 1 and 2 recursively from t = 0 to t = T .

Under the optimal policy, when she receives an offer, the DM simply decides whether the
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Figure 1: Optimal (dotted lines) and mean estimated (solid lines) thresholds for Experiments
1 (left) and 2 (right). For each value of s, estimated thresholds are only shown for values of
t at which at least 2% of the offers for that s were encountered.

expected marginal value for holding a unit for one more period exceeds the marginal revenue

for selling it at the current bid value. If she is (expected to be) better off keeping the unit,

she does so; otherwise, she sells it.

From Papastavrou et al. (1996), we know that the optimal policy for the RMP has the

following properties:

(i) Rs
t is nonincreasing in s for all t.

(ii) Rs
t is nondecreasing in t for all s.

The optimal DM is less choosy when she has more units to sell and when she has less

time to sell them. The intuitions for this are clear. Since the DM is faced with a deadline

beyond which she can no longer sell her units, she must be less demanding when she has

a large number of them to sell; otherwise, since future demand is uncertain, she may end

up with unsold units, which are worthless. The DM should become less demanding as her

deadline approaches, since getting something for a unit is better than getting nothing. These
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properties can be discerned from the thresholds shown in Fig. 1. (We will discuss the esti-

mated thresholds (solid lines) in the figure below when we present our experimental results.)

The pattern of thresholds displayed in the figure also holds for other bid distributions such

as the normal, exponential, and triangular—it is not peculiar to the uniform distribution.

Next, we will present some numerical results on the performance of a simple, non-dynamic

decision heuristic for the RMP. Then, we will describe three behavioral experiments in which

we examine the decision behavior of actual financially motivated DMs in the RMP.

3. A Simple Heuristic for the RMP

Much has been made in the psychology literature of the usefulness of simple decision heuris-

tics (e.g., Gigerenzer et al., 1999). The now-relatively-conventional argument—which actu-

ally dates back to Simon (1955)—is that human DMs have limited computational capacity

but are generally able to make good decisions using simple heuristics. Often, work along

these lines proceeds by simply demonstrating that simple decision heuristics can perform

well, often using Monte Carlo simulation to do so. Less frequently, researchers actually test

whether people employ simple heuristics when making decisions (for some exceptions, see

Bröder, 2000; Newell & Shanks, 2003; Johnson et al., in press).

Above, we showed that expected revenue maximization in the RMP requires the use

of relatively sophisticated dynamic decision policies. Under these, the DM determines her

acceptable revenue levels (i.e., her thresholds) in each period after taking into consideration

both how many periods she has left to sell units and how many units she has to sell. But

how might a DM fare if she employed a simple, static decision policy? The simplest heuristic

a DM might employ is the Fixed Threshold Policy : Accept any offer for which r > R, where

R is fixed for all t and s. If a DM wants to optimize the performance of this policy, how

should she set her threshold? Further, how effective would such a fixed-threshold policy be?

The value (expected revenue) of a fixed threshold policy VH can be obtained by substi-

tuting the single threshold R for each Rs
t in Eq. 2, performing the recursion from t = 0 to

t = T , and setting VH = V S
T . The optimal heuristic threshold RH is found by solving

RH = arg max
R

VH , (3)

which can be done using line-search methods. Some numerical results on the performance

of the Fixed Threshold Policy are displayed in Table 1 for some special cases of the RMP. It
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turns out that very little is lost by using a simple fixed threshold heuristic in these problems.

For each of them, a DM can expect to earn more than 97% of the optimal expected earnings

by using an optimal fixed threshold. We evaluated VH/V S
T for a large number of other

combinations of T , S, and p, and always found that VH/V S
T > 0.94. Further, our numerical

experiments show that VH/V S
T tends to 1 as T grows.

T S p RH VH V S
T VH/V S

T

Problem 1 40 5 0.30 2.42 17.05 17.66 0.97
Problem 2 40 3 0.18 2.29 9.65 10.01 0.97

Table 1: Optimal fixed thresholds RH , expected earnings under the optimal fixed threshold
policy VH , expected earnings under the (full-blown) optimal policy V S

T , and the efficiency of
the fixed threshold policy VH/V S

T for some RMPs.

Gallego and van Ryzin (1994) reported a similar result in a dynamic pricing problem.

They showed that the expected revenue under a fixed price heuristic was always close to

the optimal revenue, and, in fact, converged to the optimal revenue as the selling-horizon T

grew. Based on their results, they concluded that when demand functions are well known

and prices can be set freely, there is likely to be little benefit from dynamic pricing policies.

Next, we describe three behavioral experiments in which we examine actual decision behavior

in the RMP.

4. Behavioral Studies of the RMP

4.1 Overview of Experimental Method

We examined decision behavior in the RMP in three experiments. All had the same general

setup and used incentive-compatible payoffs to encourage careful decision making. The

experiments differed in the offer arrival probabilities p, the number of to-be-sold units S,

and whether subjects could make accept or reject decisions for each offer (Experiments 1

and 2) or were constrained to use a single threshold over the entire course of each season

(Experiment 3). Of course, one could manipulate any number of parameters of the RMP,

including the length of the selling season T and bid distribution f(r). Our main objective

has been to look for broad, replicable patterns of decision behavior in the RMP, and we have

felt that our manipulations would allow us to cover a large region of the feasible problem

space.
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We fixed T = 40 and r ∼ Uni[0.01, 5.00] for all three experiments. Experiments 1

and 3 had S = 5 and p = 0.30. Both the number of available units (S = 3) and the

arrival probability (p = 0.18) were lowered in Experiment 2. To maintain some basis for

comparison, we held the ratio of expected number of offers pT to available units constant

across all experiments (pT/S = 2.40). In Experiments 1 and 2, subjects could make accept

or reject decisions for each offer they received. In Experiment 3, subjects were forced to set

a single threshold at the beginning of each season that was then used to automatically make

accept or reject decisions for each encountered offer.

Thirty-four, thirty-three, and thirty-six subjects participated in Experiments 1, 2, and

3, respectively. All were recruited through flyers posted around the Columbia University

School of Business to take part in a decision making experiment. Experiments 1 and 2 were

run simultaneously, with subjects being randomly assigned to one or the other upon arrival

to the lab. Experiment 3 was run after the first two were completed.

The subjects were paid based on their performance in the experimental task and did

not receive any course credit. Specifically, they were paid their earnings from one randomly

selected trial in Experiments 1 and 3, and from two randomly selected trials in Experiment

2. (This procedure kept the expected earnings across experiments roughly the same, since

there were fewer units to sell in Experiment 2.) They earned an average of around $17 for

the 1 hour session.

Each subject was provided with extensive written instructions describing the task and

the interface of the computer program that administered the experiment. The cover story

for the task involved selling “contracts” to “bidders.” The instructions described the RMP

in non-technical language, and the values of the parameters of the problem (T , S, p, and

f(r)) were all presented explicitly. To be clear, the subjects faced the RMP with perfect

information about the problem parameters—there was no ambiguity. Once the subjects were

confident in their understanding of the task, they performed 50 (independent) trials of the

RMP. On each trial, the program automatically advanced through periods in which no offers

arrived, pausing for 500 ms in each period. To emphasize that there was a selling deadline,

the number of remaining periods was displayed textually (e.g., “Periods Remaining: 20”)

and also by a graphical progress bar that shrank in each period.

In Experiments 1 and 2, whenever an offer arrived, the subject was shown the bid value

and had to choose to either accept or reject it. In Experiment 3, the subject set his or

her threshold for the whole season prior to the beginning of each season. Then, each time a
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contract arrived, the subjects observed the value of the contract and whether they accepted or

rejected it. No time restrictions were imposed in the accept-reject decisions. The computer

program also continuously updated and displayed the number of available contracts, the

revenue from each sold contract, and the total revenue-to-date (for the current trial). A

trial terminated either when the deadline was reached or all contracts had been sold. The

arrivals and offer values were generated randomly and independently for each subject by the

experimental program according to the appropriate experimental parameters.

Given the similarity of the experiments, and to conserve space, we will report all of the

results together.

4.2 Results

Revenues

Table 2 presents the average revenues for each of the three experiments. The first column

contains the averages over all 50 trials in each experiment. The second and third columns

present the average earnings in the first and last 20 trials. There are several important

findings. First, in each experiment, the average revenues were significantly less than those

expected under the application of the optimal policy. This holds in all three partitionings:

overall, first 20 trials and last 20 trials. Second, in Experiments 1 and 2, where subjects

could dynamically make accept-reject decisions, we find that the average revenues in the

first and last 20 trials of the experiment are not significantly different. In Experiment 3, on

the other hand, we do find evidence of learning: Average earnings in the last 20 trials are

significantly greater than those in the first 20 trials.

Importantly, there is no significant difference in the average earnings for the last 20 trials

of Experiments 1 and 3. That is, after the learning phase (i.e., the first 30 trials) those

subjects who were free to dynamically make accept-reject decisions did not earn significantly

higher revenues than those who were forced to use a fixed threshold.

Figures 2 and 3 (left-hand panel) exhibit the average revenues across the 50 experimental

trials. To further examine learning, we regressed the average earnings onto trial number.

The slope coefficients were not significant for Experiment 1 (b = 0.005, p = 0.23) or for

Experiment 2 (b = −0.002, p = 0.65); however, the slope for Experiment 3 was positive and

significant (b = 0.02, p < .01). Thus, there is no strong evidence that subjects in the first

two experiments were able to modify their policies with experience in order to increase their

revenue, whereas they were able to do so in Experiment 3.
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All First 20 Last 20 Optimal
Experiment 1 17.09∗ (0.50) 17.01∗ (0.82) 17.20∗ (0.62) 17.66
Experiment 2 9.69∗ (0.37) 9.71∗ (0.70) 9.58∗ (0.54) 10.01
Experiment 3 16.59∗ (0.72) 16.36∗ (1.12) 16.83∗,∗∗ (0.90) 17.05

Table 2: Average revenues in Experiments 1-3. Values in parentheses represent the standard
deviation of average revenues taken across subjects. Each average was compared to the
optimal expected revenues using a t-test; those marked with an ∗ were significantly different
from the optimal expected revenues at the α = .0.05 level. In addition, the averages for
the averages first and last twenty trials were compared using a repeated-measures t-test.
Only the differences in mean revenues in Experiment 3 were significant at the α = 0.05 level
(marked with a ∗∗).

Opportunity Cost Analysis

Obviously, since the subjects did not earn as much as expected under the optimal policy, we

may conclude that they used some other, non-optimal policies. By definition, any accept or

reject decision that departs from the dictates of the optimal policy will decrease expected

revenue. Here, we consider the implied revenue loss (or opportunity costs) resulting from

departures from the application of the optimal policies. There are two types of non-expected

revenue maximizing errors: rejecting an offer that is good enough or accepting an offer that

is not good enough. We will refer to these as accept and reject errors, respectively. We would

like to determine which errors are most common, which tend to be most costly, and under

what conditions these errors are most likely to occur.

The implied revenue loss for an accept error is:

Lacc(r
s
t ) = rs

t −Rs
t .

Similarly, the implied revenue loss for a reject error is:

Lrej(r
s
t ) = Rs

t − rs
t .

To test whether one of the error types had a greater impact on revenue losses, we computed

the mean implied revenue loss for each type for each subject, and used paired-sample t-tests

to compare the two. In both Experiments 1 and 2, we find that the average implied revenue

losses are greater for accept errors than for reject errors. On the other hand, reject errors were

more numerous than accept errors in Experiments 1 and 2, though only significantly so in

the latter. There was no significant difference in average implied revenue losses from accept

and reject errors in Experiment 3; nor was one error type more common. The summary

results and test statistics from these analyses are reported in Table 3.
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Figure 2: Average revenues across trials in Experiments 1 (left panel) and 2 (right panel).
The error bars represent 1 standard deviation. The horizontal lines represent the optimal
expected earnings.

Tables 4 and 5 contain the aggregate proportion of accept errors (conditional on an error)

broken down by t and s for Experiments 1 and 2, respectively. To determine whether the

errors are more strongly associated with time or inventory levels, we fit logistic regression

models to each individual subject’s error data. Let qt,s denote the proportion of times that

a reject error was made in state (t, s) conditional on an error being made. (Therefore 1− qt,s

is the proportion of times that an accept error was made in state (t, s) conditional on an

error being made.) We fit the following logistic regression model to each individual subject’s

(error) data:

logit (qt,s) = β∅ + βtt + βss + βt,s (t× s) . (4)

The model allows us to estimate the effects of t and s (and their interaction) on the prob-

ability of each error type. What we would like to know is whether there is a systematic

relationship between t and s and the error types. The reasoning we employ goes as follows:

If the signs of a coefficient are systematically positive or negative across subjects, then this

would suggest that the errors are systematically related to the variable to which that coeffi-
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Figure 3: Average revenues (left panel) and average threshold (right panel) from Experiment
3. The error bars represent 1 standard deviation. The horizontal line in the left panel
represents the optimal expected earnings, and the one in the right panel represents the
optimal single threshold value.

cient corresponds. For instance, if βs were consistently negative across subjects, this would

suggest that subjects tend to make more accept errors as their inventory decreases; on the

other hand, if βs were just as likely to be positive as negative, then this would suggest no

systematic relationship (across subjects). To test the coefficients formally, for Experiments

1 and 2, we conducted (two-tailed) binomial tests on each coefficient in which “successes”

were defined as negative coefficients and the probability of success under the null hypothesis

was assumed to be 0.50. The proportion of negative coefficients are displayed in Table 6.

For the β coefficients, we only find a significant relationship between inventory level (s) and

error type. Specifically, in both experiments, we find that accept errors tend to increase as

inventory levels decrease. Based on these analyses, there is no systematic relationship be-

tween time-remaining (t) and accept or reject errors. We conclude that the departures from

optimality tended to be primarily due to inappropriate sensitivity to inventory: Subjects

were more likely to make reject decisions when inventory levels were higher and to make
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P (Lacc) P (Lrej) t-value Lacc Lrej t-value
Experiment 1 0.05 (0.04) 0.06 (0.05) t33=0.93 -0.42 (0.15) -0.31 (0.14) t33=3.19*
Experiment 2 0.04 (0.03) 0.09 (0.05) t32=3.71* -0.48 (0.22) -0.37 (0.18) t30=2.70*
Experiment 3 0.04 (0.05) 0.04 (0.04) t35 = 0.31 -0.27 (0.19) -0.29 (0.16) t21=0.75

Table 3: P (Lacc) (P (Lrej)) denotes average proportion of observed periods on which an accept
(reject) error was made. Average revenue losses for suboptimal acceptances are denoted by
Lacc and suboptimal rejections by Lrej. The standard deviations of the averages across
subjects are shown in parentheses.

t
31-40 21-30 11-20 1-10 Average

s = 1 1.00 0.94 0.78 0.66 0.76
s = 2 0.80 0.77 0.58 0.71 0.67
s = 3 0.79 0.55 0.38 0.57 0.51
s = 4 0.48 0.38 0.41 1.00 0.43
s = 5 0.25 0.22 0.25 – 0.24

Average 0.39 0.54 0.57 0.67

Table 4: Aggregate proportion of accept errors (conditional on making an error) broken down
by s and t for Experiment 1. The margins provide the weighted (by number of occurrences
of errors) average for each t and s.

accept decisions when inventory levels (s) were lower. The errors tended to be independent

of time (t).

Estimating Decision Policies

We have seen that the subjects in each experiment earned less than predicted by the ap-

plication of the appropriate optimal policy. It is easy to determine the policies employed

by subjects in Experiment 3, where the subjects were forced to specify a single threshold

for each season. In contrast, in Experiments 1 and 2, we only observed whether a subject

accepted or rejected each offer; we must, therefore, estimate (or infer) decision policies from

the observable data.

Some questions we wish to address are: What kind of decision policies do subjects em-

ploy in the unconstrained RMP? Do they use sophisticated policies or do they use simple

heuristics? It is reasonable to assume that the subjects employ some kind of threshold when

making decisions. In what follows, we will assume that each subject employs a threshold

decision policy of the form: {
accept offer if r ≥ R̂s

t ,

reject offer if r < R̂s
t .
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t
31-40 21-30 11-20 1-10 Average

s = 1 0.95 0.87 0.76 0.66 0.81
s = 2 0.87 0.65 0.59 0.72 0.67
s = 3 0.52 0.45 0.61 0.00 0.50

Average 0.67 0.66 0.68 0.69

Table 5: Aggregate proportion of accept errors (conditional on making an error) broken down
by s and t for Experiment 2. The margins provide the weighted (by number of occurrences
of errors) average for each t and s.

P (β∅ < 0) P (βt < 0) P (βs < 0) P (βts < 0)
Experiment 1 0.18* 0.47 0.71* 0.56
Experiment 2 0.27* 0.39 0.85* 0.58

Table 6: Proportion of negative logistic regression coefficients from Experiments 1 and 2.
Entries marked with an asterisk are significant at the α = 0.05 level using a two-tailed
binomial test assuming the the true (population) proportion of negative coefficients is 0.50.

where R̂s
t is the subject’s (empirical) threshold for state (t, s). Given this assumption, we

would like to find the thresholds that best predict the subjects’ decision data. There are

four obvious threshold-setting policies. The first, which we term a Sophisticated Threshold

Policy, permits the DM to adjust her threshold as a function of both t and s. The optimal

policy is a special case (parameterization) of this policy. Another possible policy that a DM

might employ is to set her threshold only on the basis of how many units she has left to

sell; related, another would be to judge acceptable offer values solely on the basis of time

remaining to sell units. Finally, the simplest reasonable policy that a DM could employ

is to decide on a target marginal revenue and to then only accept offers whose associated

revenues exceed her target regardless of inventory and how much time remains in the selling

season. As we showed above in § 3, this policy is not as näive as it might appear: A DM

who employs it can do quite well.

The last three policies are all special cases of the Sophisticated Threshold Policy. There-

fore, evidential support for any of them will provide support for the sophisticated policy. On

the other hand, in principle, the simpler policies can each be rejected based on the empirical

data. Our approach to evaluating the relative success of these policies in accounting for the

data is based on elimination. For each policy, we are looking for reasons to reject the hy-

pothesis that subjects used it. Put differently, we cannot show inductively that a particular

policy is the correct one, but we can show that a particular policy is an incorrect one. This
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problem in evaluating models of decision making in dynamic decision problems was discussed

in Bearden and Rapoport (2005).

We can estimate decision policies by estimating thresholds from the decision data. To do

so, we find for each subject the set of thresholds that maximize the proportion of correctly

predicted decisions. The average estimated thresholds for each experiment are shown in

Fig. 1. These thresholds are based on aggregating all 50 experimental trials. Since we

observed no shift in average earnings over the course of Experiments 1 and 2, we make the

assumption that each subject employed the same policy over the course of the 50 trials.

Note that the curves do not span the entire range of t. This is because some (t, s)

states were either never encountered (e.g., holding 5 units when t = 10) or encountered very

infrequently (e.g., holding 1 unit when t = 30 in Experiment 1); so estimating thresholds for

these states was either impossible or likely to be overly sensitive to error (i.e., to response

variability). The subjects’ data in Experiments 1 and 2 are fit very well by the threshold

rule; on average, the policy predicts more than 96% of the subjects’ decisions.

Based on the curves in Fig. 1, it seems that the subjects did not employ any of the three

non-sophisticated policies because: 1) the curves are increasing in t, and 2) the curves are

decreasing in s. Only the Sophisticated Threshold Policy simultaneously permits both of

these properties. It is important to emphasize that we did not constrain Rs
t ≤ Rs−1

t . Thus,

the analyses were not biased in favor of the sophisticated policy. In sum, we conclude that

the Sophisticated Threshold Policy best accounts for the decision data from the RMP, and

the subjects’ policies are in line with the qualitative (structural) predictions that follow from

the optimal policy.

No estimation is required for the Experiment 3 policies, since subjects were required to

specify their (single) threshold at the beginning of each season. Table 7 shows the mean

thresholds. We compared the mean thresholds across 50 trials and those from the first

and last 20 trials to the optimal threshold (2.42) using t-tests. None of the tests yielded

significant differences at the α = 0.05 level. However, the mean thresholds in the last 20

trials are significantly lower than those in the first 20 trials, t35 = 2.52, p = 0.02. We have

already seen in Table 2 that the average revenues were significantly greater in the last 20

trials of the experiment. Thus, in sum, subjects learned to increase their average revenues

with experience by lowering their thresholds and being less demanding. And, again, after

sufficient experience (thirty trials), we observed no difference in the mean revenues of those

who were free to use dynamic thresholds (Experiment 1) and those who were forced to use
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a single static threshold (Experiment 3).

All First 20 Last 20 Optimal
Average Threshold 2.42 (0.35) 2.49 (0.40) 2.37 (0.36) 2.42

Table 7: Average thresholds for Experiment 3. Standard deviations of the averages across
subjects are shown in parentheses.

5. Discussion

Our results show that the subjects in Experiments 1 and 2 used sophisticated policies that

were suboptimally parameterized, and that they did no better than those who were forced to

use simple heuristic policies in Experiment 3, once the latter had sufficient experience with

the problem. Importantly, the subjects who were free to dynamically make accept and reject

decisions showed no evidence of learning, whereas those forced to use the simple heuristic

did learn to increase their revenues. It seems that learning from experience is facilitated

when the policy used by the subject, even when it is imposed on her, is simpler. Revenue

losses resulted from a clear pattern of being too demanding when holding higher levels of

inventory and insufficiently demanding when holding lower levels. We term this inventory

mis-sensitivity. The pattern of subjects’ accept-reject decisions is consistent with using a

threshold R̃s
t that is a convex combination of the optimal threshold Rs

t and a reference

threshold R
g(S)
t :

R̃s
t = λRs

t + (1− λ) R
g(S)
t , (5)

where 0 < g(S) < S. For instance, the results from Experiment 1 are qualitatively consistent

with using g(S) = bS/2c. In other words, the subjects’ thresholds tended to be regressive:

They were biased toward values that would be optimal for more intermediate inventory

levels. Bearden, Wallsten, and Fox (in press) showed that subjective assessments of quantities

that are bounded (e.g., probabilities) tend to be regressive; that is, small values tend to be

overestimated and large values underestimated. In the RMP experiments, the subjects could

directly observe their inventory levels—there was no ambiguity about how many contracts

they had left to sell—but they had to decide on their thresholds, and these tended to display

the regressive property consistent with Eq. 5.

Generally, it would be difficult to assess the quality of revenue management decisions

in natural environments. To determine optimal policies in these environments, one must
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make some strong assumptions, and whether these assumptions are (precisely) met would

be difficult to ascertain. For instance, pricing models often require that the DM know the

demand density function for all feasible prices. The optimal policies are not based on the

DM having a “rough sense” of these functions or “good intuitions” about them; rather,

these models assume that the DM knows the densities with precision. Clearly, conditions

such as this are unlikely to be met in most of the scenarios faced by actual managers. This

fact illustrates one of the reasons why experimental studies are so useful. We can place

financially motivated DMs in contexts in which they do have all of the information that is

assumed by the optimal models, which, in turn, allows us to legitimately compare decision

behavior to the predictions of the appropriate optimal policies. By examining the ways in

which laboratory behavior departs from optimality, we can establish some basis for making

predictions about how DMs are likely to err in the wild.

Heching, Gallego, and van Ryzin (2002) compared the actual pricing policies of a women’s

apparel retailer to several model-based pricing schemes. Each of the models they examined

required certain assumptions (e.g., knowledge of the demand function), which are unlikely to

be perfectly met in reality, in order to derive pricing policies. Nonetheless, accepting these

limitations, based on analyses of the company’s historical pricing and sales data, Heching et

al. concluded that the company’s markdown prices were generally lower that those suggested

by the models. They also concluded that the company would have increased its revenue

significantly by employing smaller price markdowns earlier in the sales season rather than

their actual practice of implementing steep markdowns late in the season. Our experimental

results on behavior in the RMP are consistent with these empirical findings. In particular,

we find that the largest driver of revenue losses in the RMP was subjects’ tendencies to be

insufficiently demanding when they held only a small number of units, which was correlated

with nearing the end of the selling season. It is as if the subjects in the experiment employed

steep markdown policies, and lost revenue for doing so.

Although the biases we documented are compatible with those reported in Heching,

Gallego, and van Ryzin (2002), this alone does not establish that our results generalize to

revenue management decision making in actual managers. As we stated earlier, one way to

gain confidence in the generality of biases observed in laboratory studies is to demonstrate

that those biases occur in a range of problems. Below, we will propose a few directions in

which experimental studies of revenue management might proceed.

So far, we have only discussed problems for which the arrival rate for offers is determined
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exogenously. Quite often, the DM can affect arrival rates by adjusting selling prices. Gen-

erally, demand for a good increases when prices decrease. Dynamic pricing problems, where

the DM gets to set prices and influence demand, are another potentially fruitful area for

experimental research. Gallego and van Ryzin (1994) have shown that the optimal pricing

policy for their continuous-time dynamic pricing problem, where prices can be chosen from

an interval, have two important structural properties. First, the optimal price decreases in

the number of units left in inventory. Second, for any given inventory level, the optimal

price decreases as the end of the selling season approaches. Bitran and Mondschein (1997)

proposed a special case of the Pricing-RMP in which the price at each period is constrained

to be nondecreasing in time, reflecting some retailers’ (e.g., clothing retailers) reluctance to

increase prices for a good during a selling season. Zhao and Zheng (2000) present results on

a related (continuous-time) pricing problem in which demand is time-inhomogeneous. Some

important questions present themselves: How well do actual DMs solve dynamic pricing

problems? Do they tend to set prices too high or too low? How well are their pricing policies

adapted to time-inhomogeneous demand? A number of other pricing problems that may be

suitable for laboratory investigation can be found in Talluri and van Ryzin (2004).

To the extent that our experimental results have clear practical implications, two major

managerial contributions stand out. First, in determining which bids to accept for perishable

assets, sellers seem to use reasonably sophisticated policies that are suboptimally parame-

terized. Specifically, they seem to be too demanding when holding higher levels of inventory

and insufficiently demanding when holding relatively lower levels. The second major man-

agerial implication is that sellers who are constrained by one reason or another to use a single

threshold (or reservation value) over the course of an entire selling season end up doing as

well as those who are free to dynamically adjust their thresholds within a season, though

optimal theory reveals that the latter can earn more. Of course, before too much is made of

these conclusions, the generality of the behavioral results must be established with a wider

and richer range of parameter values (e.g., season duration, size of initial inventory, salvage

value, shortage costs, etc.).
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