
Decision by sampling implements efficient

coding of psychoeconomic functions

Rahul Bhui1,2 and Samuel J. Gershman1

1Department of Psychology and Center for Brain Science
2Department of Economics

Harvard University

Address for correspondence:
Rahul Bhui
Harvard University
52 Oxford St
Cambridge, MA 02138
E-mail: rbhui@g.harvard.edu

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


Running head: DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 2

Abstract

The theory of decision by sampling (DbS) proposes that an attribute’s subjective value is

its rank within a sample of attribute values retrieved from memory. This can account for

instances of context dependence beyond the reach of classic theories which assume stable

preferences. In this paper, we provide a normative justification for DbS that is based on

the principle of efficient coding. The efficient representation of information in a noiseless

communication channel is characterized by a uniform response distribution, which the rank

transformation implements. However, cognitive limitations imply that decision samples are

finite, introducing noise. Efficient coding in a noisy channel requires smoothing of the signal,

a principle that leads to a new generalization of DbS. This generalization is closely connected

to range-frequency theory, and helps descriptively account for a wider set of behavioral

observations, such as how context sensitivity varies with the number of available response

categories.
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Descriptive accounts of decision making, such as expected utility theory and prospect the-

ory (Kahneman & Tversky, 1979), are typically based on a stable set of “psychoeconomic”

functions specifying the mental representations of gains, losses, probabilities, and delays.

However, the psychological reality of such functions has been challenged by evidence that

decisions are highly context-sensitive: the mental representation of an attribute changes de-

pending on the choice set and other attribute values retrieved from memory (Vlaev, Chater,

Stewart, & Brown, 2011). As an alternative, some accounts have proposed that decisions

are based on more elementary cognitive operations, namely memory retrieval and compar-

ison (Johnson, Häubl, & Keinan, 2007; Marchiori, Di Guida, & Erev, 2015; Stewart, 2009;

Stewart, Chater, & Brown, 2006). One particularly influential account—decision by sam-

pling (DbS; Stewart, 2009; Stewart et al., 2006)—attempts to reconcile these viewpoints by

proposing that psychoeconomic functions can be derived from principles of memory retrieval

and comparison. According to DbS, the shapes of these functions are malleable, reflecting

both local context and long-term statistical regularities that constitute the database from

which memories are sampled. Despite its simplicity, DbS has accounted for a wide range of

empirical phenomena (Stewart, Chater, Stott, & Reimers, 2003; Stewart, Reimers, & Harris,

2014; Ungemach, Stewart, & Reimers, 2011; Walasek & Stewart, 2015).

The basic idea of DbS is that attributes are sampled from memory and ordinally compared

to the attributes of the current prospect. By tallying these ordinal comparisons, a deci-

sion maker computes the rank of the prospect’s attribute relative to the distribution of

attribute magnitudes in memory. Preference is then determined by comparing the ranks

across prospects. While DbS is a psychological process model, this paper shows that the

same set of ideas can be arrived at through a normative analysis. In particular, we derive

DbS from the principle of efficient coding, which has a long history in the study of percep-

tual systems (Atick & Redlich, 1992; Attneave, 1954; Barlow, 1961; Laughlin, 1981), and has

more recently been applied to value representation in the brain (Louie, Grattan, & Glimcher,

2011; Louie, Khaw, & Glimcher, 2013; Louie, LoFaro, Webb, & Glimcher, 2014; Rangel &
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Clithero, 2012).

According to the efficient coding principle, the brain is designed to communicate information

with as few spikes as possible, since spikes are metabolically expensive. As will be described

in more detail below, this is accomplished by choosing a neural code that maximizes the

mutual information between a neuron’s inputs and outputs. When neurons are conceived as

noiseless communication channels, maximizing mutual information is equivalent to minimiz-

ing redundancy, which can be achieved by recoding inputs according to their rank—precisely

the operation implemented by DbS in the limit of an infinite number of samples. However,

the channel becomes noisy when only a finite number of samples are drawn from memory,

in which case some redundancy in the code is required to suppress noise. An approximation

of the information-maximizing strategy is to smooth the samples prior to the rank transfor-

mation. This leads to modifications of DbS that were previously proposed to account for

range effects on choice (Brown & Matthews, 2011; Parducci, 1995; Ronayne & Brown, 2017;

Stewart et al., 2006).

The central contribution of our work is to clarify the computational design principles of DbS

and related models, uniting them with an important strand of theoretical neuroscience. This

paves the way for new behavioral predictions, insights into how DbS might be implemented

in the brain, and a deeper understanding of the connections between information theory and

decision making.

Decision by sampling

In this section, we present DbS formally and then review its applications to empirical phe-

nomena.

Let x ∈ R denote an attribute value in a psychoeconomic space (e.g., gains, losses, probabil-

ities, delays). This attribute occurs in the environment with probability distribution f(x).
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DbS samples a set of comparison values x1:N = {x1, . . . , xN} from f(x) and then computes

the rank of x relative to the sample:

F̂ (x;x1:N) =
1

N

N
∑

i=1

I[x ≥ xi], (1)

where I[·] = 1 when its argument is true, 0 otherwise.1 In the infinite sample limit, the rank

function converges with probability 1 to the cumulative distribution function (CDF), F (x):

lim
N→∞

F̂ (x;x1:N) =

∫ x

−∞

f(x′)dx′ = F (x). (2)

The rank function (and the CDF) is monotonic in x, but importantly it exhibits steeper

changes in high probability regions of the attribute space. Stewart et al. (2006) used this

property to explain several well-known properties of psychoeconomic functions, using various

proxy estimates of f(x) for different attributes:

• Small gains and losses are more probable than large gains and losses, thus the rank

functions for gains and losses are concave (diminishing marginal utility). Importantly,

small losses are relatively more likely than small gains, implying that the rank function

for losses is steeper, as proposed in prospect theory (Kahneman & Tversky, 1979).

• The distribution of temporal delays approximately follows a power law, giving rise to

a power-law rank function. This subsumes hyperbolic discounting as a special case,

but in fact the best-fitting rank function is sub-hyperbolic, consistent with several

experimental studies (Myerson & Green, 1995; Simpson & Vuchinich, 2000).

• Very small and very large probabilities are more commonly encountered than mid-

range probabilities, giving rise to an inverse S-shaped rank function (i.e., overweighting

of low probabilities and underweighting of high probabilities), in agreement with the

1Although we separate x from the sample in our notation, this should not imply that the target itself is
necessarily excluded from the sample.
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probability weighting function derived from choice experiments (Gonzalez & Wu, 1999)

and postulated by prospect theory.

One of the principal advantages of DbS over traditional approaches is that it can explain

departures from these properties as the result of transient contextual information that dis-

torts the long-term statistical regularities. Stewart et al. (2014) showed that the shapes of

utility, discount, and probability weighting functions could be altered by exposing subjects

to distributions of attribute values that varied in their skew. For example, a concave utility

function could be converted to a convex function simply by populating the set of large gains

more densely than the set of small gains, and the rate of discounting could be slowed by

sampling delays from a uniform distribution (rather than an ecologically valid distribution

with positive skew). Field studies by Ungemach et al. (2011) have recapitulated these ob-

servations, finding that choices between two lotteries were affected by incidental exposure

to intermediate attribute values (supermarket prices), and choices between two delayed out-

comes were affected by exposure to events occurring at intermediate delays. Large-scale

studies of satisfaction as a function of income make the same point: relative income rank

strongly determines satisfaction (Boyce, Brown, & Moore, 2010; Brown, Gardner, Oswald,

& Qian, 2008).

An efficient coding perspective

What is the computational logic of the rank transformation? To shed some light on this

question, let us view psychoeconomic functions as communication channels, taking as input

an attribute value x and emitting as output a signal y drawn from the probability distribution

f(y|x). In designing such a channel, a basic problem is that the amount of information that

can be reliably transmitted over a channel with fixed transmission rate (the channel capacity)

is finite (Shannon & Weaver, 1949). A neuron consumes several orders of magnitude more
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energy during spiking compared to rest, such that the brain’s energy budget can only afford

to have around 1% of neurons active at any time (Lennie, 2003). Thus, the energy budget

imposes a stringent constraint on the channel capacity of neurons, placing demands on

neural codes to communicate information with as few spikes as possible. Consistent with

this proposition, studies of many different neural systems suggest that economizing on spikes

is a fundamental design principle (Laughlin, 2001).

There are two strategies to reduce the cost of information transmission. One is to reduce

the signal-to-noise ratio (i.e., transmit lower precision messages); we will not consider this

strategy further here, under the assumption that organisms need to maintain a certain

level of precision for survival. The second strategy is to eliminate redundancy by recoding

inputs. Intuitively, if an input can be predicted before the output has been observed, then

the output is not conveying any information about the input—it is redundant with the

receiver’s prior knowledge. In other words, unpredictable outputs are more informative than

predictable outputs. The most unpredictable output distribution is uniform; hence, the goal

of redundancy reduction is to find a code that gets the output distribution close to uniform.

As a rough illustration, suppose one wants to identify an item value which can take on

four possible levels with equal probability: very low, slightly low, slightly high, or very

high. Consider the binary code shown in Figure 1a which represents “very low” value as

the codeword 00, “slightly low” as 01, “slightly high” as 10, and “very high” as 11 (assume

no mistakes occur in this encoding process). All codewords are of length 2 which means

that each value can be identified by 2 binary digits (aka bits). Each bit can intuitively be

thought to capture a yes-or-no question that helps to distinguish some values from others.

For example, in this code, one bit reflects the question “Is the value high or low?” while the

other reflects the question “Is the value slightly or very high/low?”

In biological terms, ones and zeros may be expressed as different configurations of neuronal

activity. However, organisms have a finite number of neurons, each with bounded preci-
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sion and response range, and limited metabolic energy to spend on signaling. An accurate

representation of the world demands efficient use of these constrained resources. Roughly

speaking, a neural code is considered to be more efficient if it requires fewer bits on average

to identify an input. If the input distribution is not uniform, efficient codes prioritize values

that occur more frequently by assigning them shorter codewords. Thus the more efficient

code in Figure 1b expends one full bit to pinpoint the “very low” value level, which is the

most common. Its expected codeword length is
(

1
2
× 1

)

+
(

1
4
× 2

)

+
(

1
4
× 3

)

+
(

1
4
× 3

)

= 1.75

bits, making it superior to the fixed-length 2-bit code (and in fact, it reaches peak efficiency

in this situation).

This efficiency obtains because, for the non-uniform attribute distribution, asking whether

the value is low (versus high) overlaps substantially with asking whether the value is very

low (versus slightly low). Most of the time, an affirmative answer to the first query is

accompanied by an affirmative answer to the second. Hence the less efficient code, which

is based on these queries, exhibits redundancy.2 A better approach is to consolidate these

questions and ask straight away whether the value is very low (versus any other value).

Analogous to the game of 20 questions, good codes (or questions) are those that partition the

space of possibilities equally. A direct consequence of this strategy is that the output states

become unpredictable, reflecting high information gain from each question. Accordingly,

notice that the overall distribution of ones and zeros generated by the (more) efficient code

is uniform, compared to the less efficient code which outputs more than twice as many

zeros as ones. This unpredictability is the hallmark of redundancy minimization in the

information-theoretic framework.

To make these ideas more formal, we consider the problem in which an attribute magnitude

x is drawn from a continuous distribution with CDF F (x), and must be encoded by an

internal representation y that takes on one of M + 1 possible integral values rescaled to the

2Strictly speaking, this describes what is called higher-order redundancy, though our approach focuses
on first-order redundancy. We will discuss this distinction in the penultimate section of the paper.
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(a) Uniform attribute distribution (b) Non-uniform attribute distribution

Figure 1: Efficient codes prioritize highly probable regions of the stimulus distribution.

unit interval,
{

0, 1
M
, . . . , M−1

M
, 1
}

. The mutual information between stimulus x and response

y describes the information that x and y carry about each other, and is defined as

I(x; y) = H(y)−H(y|x), (3)

where H(y) is the entropy of the response and H(y|x) is the conditional entropy of the

response given the stimulus (Cover & Thomas, 2006). Entropy in bits is approximately the

number of yes-or-no questions required on average to identify stimuli. Noise in the channel

is captured by H(y|x) which reflects the residual uncertainty in the response, knowing the

stimulus; it expresses how many bits are lost on average when transmitting x over the

channel. Mutual information can equivalently be written as H(x) −H(x|y), which clarifies

its quantitative interpretation: it is the expected reduction in codeword length (i.e., the

number of bits) needed to identify x after observing its representation y. As typically applied,

the principle of efficient coding entails that stimuli should be encoded to maximize mutual

information—that is, the mapping from x to y should maximize I(x; y).

In the noiseless regime, H(y|x) is 0, so maximizing mutual information is equivalent to max-

imizing output entropy (i.e., unpredictability). Because the maximum entropy distribution

for a discrete variable is the uniform distribution, this is achieved by encoding x as a dis-

cretized version of its CDF, such that the boundaries between representational states arise

from the distribution’s (M + 1)-quantiles. When the representational states are vanishingly
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small (i.e., M → ∞), this strategy corresponds to the code y = F (x), also known as the

probability integral transform (Laughlin, 1981). This solution is unique among monotonically

increasing response functions. Intuitively, the efficient code prioritizes distinctions between

frequently-occurring stimulus values, which are located in regions where the PDF is high

and hence the CDF (the integral of the PDF) is steep.

In practice, the brain may not have direct access to the exact distribution function needed

to implement this coding scheme. However, samples from the distribution may be available,

such as items retrieved from memory. Potential codes then involve (possibly stochastic)

mappings from the representations distinguishable by the sample,
{

0, 1
N
, . . . , N−1

N
, 1
}

, to the

available response states,
{

0, 1
M
, . . . , M−1

M
, 1
}

. When the sample size is large, the (discretized)

empirical rank F̂ (x) serves as a good approximation of the (discretized) true rank F (x). Since

DbS approximates the probability integral transform in this way, it can be understood as

implementing efficient coding of psychoeconomic functions. In other words, DbS removes

redundancies from the representations of gains, losses, probabilities, and delays, so that they

can be represented with fewer bits (and thus presumably a lower metabolic cost).3

Coding with finite samples

We can extend this perspective by considering the noisy regime, in which case the result-

ing code will be corrupted and the probability integral transform is no longer optimal. In

particular, when the sample is finite—which is necessarily the case under the inherent com-

putational constraints that organisms face—the empirical rank estimate suffers. Then the

optimal code will have some redundancy in order to prevent information loss.

3We note two implicit assumptions in this analysis. First, the judged magnitude is equal to the neural
response y rather than some further transformation (i.e., the decoding function is linear). Second, the opti-
mization criterion is insensitive to costs other than expected codeword length. Relaxing these assumptions is
beyond the scope of the present paper, which only proposes a theory of optimal encoding and not decoding,
and shows that this is able to explain the shapes of psychoeconomic functions based on the shapes of the
priors. However, different analyses could lead to further insights as demonstrated by Wei and Stocker (2015,
2017) and Park and Pillow (2017) in perception and Woodford (2012a, 2012b) in decision making.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 11

From an information-theoretic perspective, finite samples cause two issues, which we call the

restricted resolution problem and the sampling variability problem. To illustrate, suppose

the representational state space is rich (i.e., M is large) but only a single sample is drawn

(i.e., N = 1). The quantile-based representation can only take on two possible values in this

situation: rank 0 if the sample is higher than the target or rank 1 if the sample is lower.

Thus, even though M + 1 states are available, the representation is effectively restricted to

just two of them (or more generally, N + 1). As a result, y cannot be uniformly distributed

across all possible representations, so H(y) declines; this is the restricted resolution problem.

Furthermore, the (M + 1)-quantiles that define the code are determined from the sample,

and since the sample is stochastic, the representational mapping is noisy. The conditional

distribution of y is no longer close to a deterministic function of x, so H(y|x) rises; this is

the sampling variability problem. These issues prevent mutual information from reaching

its theoretical maximum of I(x; y) = log(M + 1) attained by a perfectly uniform output

distribution and a noiseless channel.

The impact of these problems can be quantified more precisely. Continuing to suppose

that M > N , observe that the conditional distribution of y given x is a rescaled binomial

distribution. The number of trials is equal to the sample size N , and the probability of

success is equal to the probability that a draw is less than x—that is, F (x). Then the

marginal distribution of y can be derived by integrating its conditional distribution over

f(x):

f(y = k) =

∫

∞

−∞

f(y = k|x)f(x)dx (4)

=

∫

∞

−∞

(

N

k

)

F (x)k(1− F (x))N−kf(x)dx (5)

=

∫ 1

0

(

N

k

)

F (x)k(1− F (x))N−kdF (x) (6)

=
1

N + 1
. (7)
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Thus, the output distribution is uniform across the N + 1 states distinguishable by the

sample, and its entropy is

H(y) = log(N + 1). (8)

The conditional entropy H(y|x) is more challenging to calculate. A clean exact solution

is feasible when N = 1, in which case the conditional distribution reduces to a Bernoulli

distribution, which has the binary entropy function Hb(p) = −p log p − (1 − p) log(1 − p).

Substituting p = F (x) and integrating this function with respect to the distribution of x

yields the conditional entropy:

H(y|x) =
∫

∞

−∞

[−F (x) logF (x)− (1− F (x)) log(1− F (x))] f(x)dx (9)

= −
∫ 1

0

F (x) logF (x)dF (x)−
∫ 1

0

(1− F (x)) log(1− F (x))dF (x) (10)

=
log e

2
≈ 0.721. (11)

Therefore the mutual information is I(x; y) = 1 − log e
2

≈ 0.279 bits; sampling variability

costs most of the capacity remaining in the restricted representation. More generally, the

entropy of the binomial distribution is known to be approximately 1
2
log (2πeNp(1− p)).

The conditional entropy can thus be approximated by integrating this function over the

distribution of x after substituting p = F (x):

H(y|x) ≈
∫

∞

−∞

1

2
log [2πeNF (x)(1− F (x))] f(x)dx (12)

=
1

2
log(2πe) +

1

2
logN +

1

2

∫ 1

0

log [F (x)(1− F (x))] dF (x) (13)

=
1

2
log(2πe) + log

√
N − log(e) (14)

= log
√
N +

1

2
log(2πe−1). (15)
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Figure 2: Finite samples reduce output entropy H(y) and increase conditional entropy
H(y|x), causing a decline in mutual information I(x; y). Thick lines represent mutual infor-
mation in bits between x and y (both discretized with bin width 1/1000 in the simulation).
Attribute values x are drawn from a Beta(1, 2) distribution.

Hence the mutual information is approximately

I(x; y) ≈ log(N + 1)−
(

log
√
N +

1

2
log(2πe−1)

)

(16)

= log

(

N + 1√
N

)

− 1

2
log(2πe−1) (17)

≈ log

(

N + 1√
N

)

− 0.604. (18)

When N is large, I(x; y) ≈ log
√
N = 1

2
logN ≈ 1

2
H(y). Thus, as a rough rule of thumb,

sampling variability chops the restricted capacity in half. Note that all of the above results

obtain without specific assumptions about the distribution of x. Figure 2 displays the costs

imposed by finite samples on mutual information. The values from a simulation closely

match the analytical approximation in Equation (18).4

4While conditional entropy is increasing in N when M > N , the opposite occurs when M < N , as will
become important later. Thus H(y|x) is able to converge to 0 when N → ∞ for a fixed M .
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One can heuristically satisfy the conflicting demands of redundancy reduction and informa-

tion transmission by first smoothing the inputs prior to computing the probability integral

transform (Atick & Redlich, 1992), such that the response is a discrete analogue of

F̂h(x;x1:N) =
1

N

N
∑

i=1

K

(

x− xi

h

)

, (19)

where K(z) =
∫ z

−∞
k(z′)dz′ is an integrated kernel function and h is a bandwidth parameter

(Simonoff, 1995, 1996; Simonoff & Tutz, 2000). We discuss later how this might be imple-

mented via imperfect discrimination between items. From a coding perspective, smoothing

can counteract the restricted resolution problem by spreading out stimulus representations

to better cover the entire space, and can address the sampling variability problem by reduc-

ing the variance of the rank estimate. These correspond roughly to two canonical uses of

smoothing in statistics: to produce estimates in regions where no data exists, and to improve

estimates where data points are sparse (Burman, 1987).5

Figures 3 and 4 depict the effects of smoothing on the response distribution, and the entropies

that result. Smoothing has two effects on H(y) and H(y|x). At low levels of smoothing, the

sharp peaks of the output distribution due to limited coverage are smoothed, which has a

beneficial effect on H(y) and an adverse effect on H(y|x). At high levels of smoothing, the

distribution is smoothed completely so that H(y) and H(y|x) both converge to 0, which is

detrimental for the former and favorable for the latter. The information-maximizing level

of smoothing balances these forces and tends to produce an output distribution closer to

uniform. Simulations shown in Figure 5 indicate that the information-maximizing bandwidth

is decreasing in the sample size, and increasing in the variance of the attribute distribution.

Thus while the redundancy tradeoff does not perfectly translate into the classical bias-

5An alternative solution might be to estimate a parametric model of the attribute distribution using the
sample (in contrast to our nonparametric solution). Brown, Wood, Ogden, and Maltby (2015) propose that
this can help account for apparent range effects of the sort we discuss later. While this is an intriguing
possibility, such an approach would require the agent to have access to a level of distributional knowledge
that we have assumed is unavailable. Moreover, it would require specification of how the distributional model
varies across contexts, adding degrees of freedom.
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variance tradeoff, they exhibit similar qualitative properties; in both cases, smoothing is

most effective when the sample is small and when the underlying distribution is variable.

This analysis suggests that the principle of smoothing may guide the development and as-

sessment of psychoeconomic models. In the following sections, we show that this leads to

new insight into generalizations of DbS along with Parducci’s (1965; 1995) range-frequency

theory.

Range sensitivity as kernel smoothing

One limitation of DbS, noted by Stewart et al. (2006), is that it does not capture the effect

of attribute range on decisions and other economic judgments. For example, increasing the

range of gains causes people to become more risk-seeking (Lim, 1995), and to be less satisfied

with a given gain (Parducci, 1968). Range effects have also been documented in wage
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satisfaction judgments (Brown et al., 2008; Tripp & Brown, 2016), university satisfaction

ratings (Brown et al., 2015), lottery pricing (Blavatskyy & Köhler, 2009), and job application

decisions (Highhouse, Luong, & Sarkar-Barney, 1999; Rynes, Schwab, & Heneman, 1983).

Parducci’s (1995) range-frequency theory (RFT) is the most well-known account of these

effects, grounded in the psychophysics of perception. The theory states that the judged

magnitude (J) of an attribute value x is a convex combination of its sample rank (F , what

Parducci refers to as its “frequency”) and its position relative to the range of attribute values

(R = (x− xℓ)/(xh − xℓ), where xh and xℓ are the highest and lowest values):

J = wR + (1− w)F, (20)

where w is a weighting parameter that determines the compromise between range and fre-

quency.

Parducci (1995) noted that the frequency component of RFT maximized information trans-

mission, and informally suggested that the range component had error-abating properties.

In line with this idea, we show that the range component of RFT can be derived as a kernel-

smoothed estimate of the CDF using a uniform kernel. Both components are special cases

based on the kernel’s bandwidth, and the weighting parameter heuristically tunes the degree

of smoothing. The frequency component emerges when the bandwidth is 0, and the range

component emerges when the bandwidth is proportional to the sample range. We accord-

ingly propose that while the frequency component of range-frequency theory can be viewed

as implementing redundancy minimization, the range component can be viewed as assisting

with efficient coding in the face of noise.

Just as kernel density estimates can be written as the average of kernel densities k(z) centered

around each data point, the distribution estimate can be similarly written as the average of

the corresponding distributions K(z) =
∫ z

−∞
k(z′)dz′. For a uniform kernel k(z) = 1/2 for
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|z| ≤ 1 and 0 otherwise, the distribution is K(z) = (z + 1)/2 for |z| ≤ 1, 0 for z < −1, and

1 for z > 1. Thus the CDF can be estimated smoothly by

F̂R(x) =
1

N

∑

i

K

(

x− xi

h

)

(21)

=
1

N

∑

i

K

(

x− xi

(xh − xℓ)/2

)

setting bandwidth equal to half the range (22)

≈ 1

N

∑

i

(

x− xi

xh − xℓ

+
1

2

)

with uniform kernel, approximate due to
truncation of K(·) (23)

=
x−

∑

i xi/N

xh − xℓ

+
1

2
(24)

≈
x−

(

xℓ +
xh − xℓ

2

)

xh − xℓ

+
1

2
approximating the mean by the mid-range (25)

=
x− xℓ

xh − xℓ

. (26)

Hence, R ≈ F̂R(x), meaning the range component of RFT inherits properties of a kernel-

smoothed estimate of the CDF.

Observe also that as bandwidth goes to 0, the estimate simply counts the number of data

points less than the target value. If xi < x then limh→0 K
(

x−xi

h

)

= 1, while if xi > x then

limh→0 K
(

x−xi

h

)

= 0. (In the knife-edge case that x = xi, K
(

x−xi

h

)

= 1
2
.) This means

the estimate becomes the unsmoothed empirical rank, so both the range and frequency

components of RFT can be characterized as special cases of the kernel-smoothed estimate

based on bandwidth. Thus the RFT prediction can be written equivalently as a combination

of smoothed and unsmoothed distribution estimates:

wR + (1− w)F ≈ wF̂R(x) + (1− w)F̂0(x). (27)

This derivation implies that the weighting parameter regulates the level of smoothing in place

of the bandwidth parameter. If psychoeconomic functions are indeed attuned to the statis-
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tical properties of encountered attributes, the argument predicts that the range component

should come to dominate as noise increases.

Why assume that the kernel is uniform and that bandwidth is proportional to range? These

turn out to have optimal statistical properties for estimating CDFs. The uniform kernel

minimizes mean integrated squared error when estimating distribution functions (Jones,

1990). Although other kernels are nearly as efficient, clearly the uniform is among those

that work quite well. Optimal bandwidths for distribution estimation are typically related to

standard deviation. This occurs because when standard deviation rises, data becomes sparse

and variance in the estimate increases. The benefit of variance reduction rises relative to the

cost of increased bias from a higher bandwidth. Distribution-optimal plug-in bandwidths

generally take the form cσ̂N−1/3 (Azzalini, 1981; Hansen, 2004) for various constants c.

Standard deviation is approximately proportional to range, as illustrated by the “range

rule” which states that the standard deviation is roughly the range divided by 4.

The plug-in bandwidth also directly reveals that the sample size should influence bandwidth.

Smoothing is only useful when samples are small, otherwise the bias it induces outweighs the

reduction in variance, and increases error on net. This argument suggests that the weighting

parameter which stands in for the bandwidth should also vary with the relevant sample size

(whether of the observed context or the subsample drawn from memory). Although the math-

ematical expressions we present are not strictly optimal in an information-theoretic sense,

they capture some important regularities borne out by simulation, namely that smoothing

should increase when the variability of the attribute values is large and should decrease with

the number of values retrieved from memory. Moreover, the optimal level of smoothing may

change according to other factors that are less obvious, such as the granularity of response

categories, which we illustrate in the following section.
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Predicting range sensitivity

In the above characterization of RFT as a smoothed distribution estimator, the range weight-

ing parameter w controls the degree of smoothing. This parameter is typically fixed at 0.5

when applying RFT to the data. However, the smoothing interpretation generates new

predictions about what should cause it to vary. Here is one example of how this can help

account for observed data.

When stimuli or responses are limited to a finite number of categories, people tend to parti-

tion the space so as to evenly use all bins (in other words, their limens are the distribution

quantiles). This is just as redundancy minimization demands. Uniform use of categories has

been found in judgments of loudness (Stevens, 1958), size (Parducci & Perrett, 1971), and

could also explain the “numbers-of-levels” effect in marketing, whereby an increase in the

number of attribute levels leads to an increase in the relative importance of that attribute

(Verlegh, Schifferstein, & Wittink, 2002). However, Parducci and Wedell (1986) further find

that the number of available response categories influences the effects of skewness and the

apparent weighting of range and frequency components. As the number of categories in-

creases, the range component becomes more dominant and skewness has a diminished effect

on judgment.

Optimal smoothing provides a possible explanation for this result. We have seen the damage

caused by finite samples when trying to uniformly distribute stimuli across many represen-

tational states (equivalently, categories); the code cannot finely partition the space, and the

representations are quite noisy. However, these problems are less severe when few response

categories are available, because coarsening the response space naturally mitigates the effects

of noise (Simonoff & Tutz, 2000). For example, with N = 1, the quantiles needed to par-

tition a high resolution space are poorly estimated; in contrast, the two-category partition

constitutes a median split, and the lone draw is a passable estimate of the median. In the

regime where M < N (with simulations depicted in Figure 6), the response resolution, and
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Figure 6: When the number of categories is small, the adverse effects of finite samples are
naturally abated. Lines represent entropy and conditional entropy in bits, based on y and a
discretization of x with bin width 1/1000. Attribute values x follow a Beta(1, 2) distribution.

hence H(y), is already capped based on the categories rather than the sample. Moreover,

the channel noise H(y|x) starts decreasing in sample size because the resolution remains

fixed while the quantiles are estimated more precisely. These finite sample issues are thus

less troublesome with fewer categories, reducing the possible upside of smoothing.

To illustrate the predictions resulting from the smoothing interpretation of RFT, we conduct

simulations encoding y based on an RFT coding scheme, and show how mutual information

varies with the range weight w, the number of response categories, and the sample size.

Following Parducci (1965), RFT limens are the weighted average of range and frequency

limens. Range limens here are the quantiles of the standard uniform distribution, and

frequency limens are the linearly interpolated quantiles of the sample (made to include

the endpoints 0 and 1). Which quantiles are chosen depends on the number of response

categories. With three categories, for example, an even partition is formed by the 33rd and

67th percentiles. We pick as the context a skewed Beta distribution with parameters α = 1

and β = 2 (or equivalently, vice versa) to roughly resemble Parducci and Wedell’s (1986)
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stimuli.6

Figure 7 indicates that the information-maximizing range weight is increasing in the number

of categories, as predicted. Similar to the earlier simulations, the optimal range weight is

decreasing in the sample size, further supporting the idea that it acts as a smoothing param-

eter. The utility of smoothing is a consequence of finite samples, so with a large sample, the

optimal weights shrink substantially and the range component becomes negligible however

many categories are available. Note that in order to display the results clearly, the sample

sizes are taken to be N = 102, 103, and 105. These values are greater than would be ex-

pected if they are meant to reflect the number of items retrieved from memory. However, the

sample sizes required for interior solutions (i.e., w∗ 6= 0, 1) depend on the exact distributions

and functional forms assumed, and are in some cases more psychologically plausible. More

importantly, the same qualitative results hold across various sample sizes, category numbers,

and distribution parameters, demonstrating that the information-enhancing properties of the

range component vary as predicted by principles of smoothing.

Smoothing as reduced discriminability

As suggested by Stewart et al. (2006), and later elaborated by Brown and Matthews (2011),

range-like effects can be captured by DbS if one assumes that experienced attribute values

are not perfectly discriminable in memory. In particular, many models of memory assume

that the discriminability of items is inversely proportional to their density in attribute space

(e.g., Brown, Neath, & Chater, 2007). Thus, an item is less likely to be retrieved if other

similar items enter into competition for retrieval. This mechanically flattens out the effective

retrieval distribution, damping its original skewness. Estimated ranks are then based on a

more uniform distribution, mimicking an increase in the relative importance of the RFT

6The results still hold with other parameter values that characterize nonlinear or nonmonotonic distribu-
tions, such as α = 1, β = 5 and α = 2, β = 5.
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range component. Parducci and Wedell (1986) find they can also explain their category

results described in the previous section using a model that acts like that of Brown and

Matthews. Reducing stimulus discriminability and increasing range weight thus have similar

explanatory capabilities.

This link might explain why range weighting appears to change depending on the salience of

the contextual distribution. For example, when the distribution must be drawn from mem-

ory due to sequential rather than simultaneous presentation, the range component seems to

become more important (Choplin & Wedell, 2014; Niedrich, Sharma, & Wedell, 2001; Qian

& Brown, 2005). Recalling samples from memory injects noise and reduces discriminability.

Similarly, customers who have been exposed to a trend in prices exhibit less range weight-

ing (Niedrich, Weathers, Hill, & Bell, 2009), perhaps because the clearer structure of the

contextual distribution enables more precise retrieval.

The efficient coding framework offers another perspective on this connection: imperfect

discrimination may be a mechanism for introducing redundancy to reduce coding errors.

Kernel smoothing from a sampling perspective can present as reduced discriminability.

Suppose that when an item is drawn from memory, some uncertainty is felt about its true

location. This entails that items won’t be completely distinguishable, and those nearer

each other will be harder to distinguish. These are the assumptions imposed by reduced

discriminability models. The coarse binary comparisons of DbS are then replaced with graded

assessments of order to allow some tolerance. Rather than simply determining whether the

target is greater than each sample value, the differences between the target and the samples

are judged as significant to varying degrees based on the level of uncertainty.

This smoothed comparison is exactly what a kernel encodes, illustrated in Figure 8. Each

sample value xi contributes K(x−xi

h
) to the rank estimate of x. The level of uncertainty is

represented by the bandwidth h, and accordingly controls the degree of smoothing. If this

is small, the contribution of xi boils down to limh→0 K(x−xi

h
) = I[x ≥ xi], a pure binary
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comparison. As uncertainty grows large, this becomes limh→∞ K(x−xi

h
) = K(0) ∀ x, xi. No

comparisons can be made at all, so the effective distribution becomes more uniform, just as

in the reduced discriminability models. The optimal amount of smoothing to account for

sampling variability is somewhere in the middle, informed by range as discussed earlier. In

sampling terms, range provides information about how much comparison tolerance should

be allotted. With a discrete response space, the comparisons exhibit some granularity, but

the essential smoothing properties are shared by discrete analogues of the continuous kernel

(Simonoff, 1995, 1996).

We note further that the region of uncertainty can itself be instantiated by resampling each

retrieved item, suggesting how range sensitivity could be implemented via purely binary

comparisons. If uncertainty is high, resamples will be spread out, some of which will be

greater than items otherwise higher on the scale. This may be more cost-effective than

drawing fresh samples if resamples are cheaper to obtain, which is plausible when they can

be anchored to their originally retrieved estimates. As the cognitive simplicity of DbS is a key

part of its motivation, placing extensions on equal footing contributes to their justification.

In addition, the range component of RFT requires recall of only the distribution endpoints,

and thus may be cognitively undemanding in that sense. Kernel-smoothed rank need not be

more taxing to compute than empirical rank.

Thus the assumption of imperfect discriminability can be directly tied to the implementation

of kernel smoothing. From the efficient coding perspective, the relationship between range

sensitivity and imperfect discriminability is not so surprising. They are alternative facets of

the same smoothing phenomenon.
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Smoothing and context effects

The explanatory power of DbS stems from its ability to predict how judgment is influenced

by the contextual distribution. Context distorts value judgments in ways that produce

violations of classical expected utility theory such as those described earlier. Incorporating

smoothing enables DbS to capture an even wider class of context effects. We have discussed

some of these in a single-attribute setting in terms of range sensitivity.

In a multi-attribute setting, Ronayne and Brown (2017) show how DbS with a form of local

sampling can predict the attraction, compromise, and similarity effects. The compromise

effect is most closely linked to locality so we focus on this. It refers to a scenario in which an

extreme option makes the intermediate option more likely to be chosen. Figure 9 illustrates

a kernel smoothing version of Ronayne and Brown’s setup. Options A and B are focal

price-quality pairs, and RA and RB denote the regions they uniquely dominate. CA denotes

the third, extreme option that makes A the compromise and hence preferred. The model

supposes that a finite sample is drawn from memory, and the subjective value of each option

is the number of samples in the region that it dominates. Hence their unique dominance

regions play a key role in the relative values of options.

Crucially, Ronayne and Brown assume that regions close to the presented options in at-

tribute space are preferentially sampled; the support of the effective retrieval distribution is

represented by the shaded region. As a result, CA contributes more probability mass to the

solo-dominance region of its neighbor A than it does to that of B. Thus the presence of CA

benefits A relative to B, producing the compromise effect.

This locality assumption can be interpreted as a form of kernel smoothing. If the available

options constitute draws from the context, the location they represent for purposes of rank

comparison is inexact. Along similar lines to the previous section, the resulting region of

uncertainty instantiates a kernel which trails off when it gets farther from the option. If this
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Figure 9: Compromise effects can be generated by multi-attribute DbS with locality. (left)
A and B are the focal options, and RA and RB represent their unique dominance regions.
Locality of sampling can be interpreted as a kernel around each option. (right) The third
option CA contributes more mass to RA than RB, benefiting A over B.

is the case, optimal smoothing predicts that the size of the kernel should grow according to

the scale of the option distribution, naturally providing a reason for compromise effects at all

scales. The scope of the compromise effect should also be related to factors like the number of

options available and the psychological noisiness of context retrieval. This could help explain

why the compromise effect decreases when more options are presented (Gourville & Soman,

2007). Because a larger sample is available, smoothing is less necessary and bandwidth

decreases.

Neural evidence and implementation

There is much evidence of neuronal gain control that produces range sensitivity (e.g., Padoa-

Schioppa, 2009; Tremblay & Schultz, 1999), though little research has attempted to pinpoint

value encoding by option rank. Hence this remains an important area for further study.
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Mullett and Tunney (2013) provide the most direct neural evidence to date. In their ex-

periment, participants were faced with blocks containing either rewards of £0.10, £0.20,

and £0.30 or rewards of £5.00, £7.00, and £10.00. Using fMRI, they found activity in

the ventromedial prefrontal cortex and anterior cingulate cortex to be linear in the global

option rank rather than absolute value, meaning the difference between £5.00 and £0.30

was similar to the difference between £0.30 and £0.20. Interestingly, these regions encoded

rank based on the set of stimuli presented across the whole experiment, while activity in the

caudate and thalamus scaled according to the experimental block, exhibiting a more local

context dependency.

Why have there not been more direct signs of rank encoding? We note two possible reasons

why rank-based value representations may be difficult to discern.

First, the point of smoothing is to gracefully approximate rank across the entire range of

values. In general, this mechanism reduces sensitivity to contextual skew, as illustrated by

RFT, according to which the response function is a convex combination of the empirical CDF

(frequency component) and a linear function (range component). Taken to the pure range

extreme, this leads to linearity across the support of the distribution. Thus, smoothing could

provide a normative rationale (consistent with efficient coding) for why Rustichini, Conen,

Cai, and Padoa-Schioppa (2017) observe that offer value cells in the orbitofrontal cortex

adapt to stimulus range, and yet exhibit quasi-linear tuning curves even when the value

distribution is non-uniform.

Second, rank-based coding may take unusual forms not previously considered by those study-

ing decision making. In practice, forms of rate and population coding have dominated the

neuroeconomic literature. Alternatively, efficient coding could be naturally implemented in

the temporal domain. On a neuronal level, encoding based on the rank of spike timing—

known as rank order coding (Thorpe & Gautrais, 1998)—has several benefits. Such schemes

convey information more efficiently than standard rate codes while using simpler and more
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robust decoding mechanisms than precise timing codes (VanRullen & Thorpe, 2001). The

most important information can be transmitted first and quickly decoded, enabling the kind

of swift responses to stimuli that may be essential for survival. Rank order coding is capa-

ble of transmitting information on the rapid timescales of the sensory domain (VanRullen,

Guyonneau, & Thorpe, 2005), and there is evidence of its role in retinal processing (Portelli

et al., 2016).

We show how smoothing can be naturally integrated into rank order coding. Existing compu-

tational implementations permit neurally plausible extensions that would generate smooth-

ing. Consider the simple example circuit shown in Figure 10 modeled after Thorpe, Delorme,

and Van Rullen (2001). Suppose neurons A, B, and C represent stimuli with attribute inten-

sities A > B > C. They are to be compared using their rank-influenced cumulative outputs

a, b, and c. Normally A will fire first because the intensity of its stimulation is highest,

B will fire later, and C will fire later yet. So a should be the greatest, and this can be

accomplished straightforwardly via the inhibitory interneurons I that attenuate the effects

of later firing inputs. Because A fires first, the inhibition will grow to depress the effects of

B, and subsequently C, reflecting their lower rank. Stronger inhibitory power sharply raises

the relative value of the highest ranks, producing a value of a much greater than b and c.

In this mechanism, neural activity is implicitly assumed to decay instantly. However, a

gradual decay may be more realistic. If active traces remain after a neuron’s initial spike,

subsequent neurons can fire before earlier traces completely decay. The inhibitory effects

of higher ranked neurons are accordingly lessened since part of their activity occurs after

lower ranked neurons spike. This means the active trace operates like an asymmetric kernel,

with the decay distribution affecting the kernel shape and the decay rate controlling the

bandwidth. A slow decay reflects a large bandwidth that smooths the encoded attribute

ranks. Steep changes due to differences in rank are consequently diminished.

In summary, we have shown how efficient coding could be implemented naturally in the
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Figure 10: Slow post-spike activity decay implements smoothed rank order coding. (top)
Diagram of simple network implementing rank order coding. Simulation assumes divisive
inhibition which attenuates effect of inputs by a factor of 0.5I(t). (middle) When decay is
fast, output values are sharply sensitive to rank, as a >> b, c. (bottom) When decay is
slow, output values are less sharply sensitive to rank, as the decay operates similar to an
asymmetric kernel.
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temporal domain, with smoothing implemented through gradual decay of activity. However,

this hypothesis remains to be verified experimentally.

Neuroeconomic models and efficient coding

We provide an adaptive rationale for DbS and its family by grounding them in the efficient

coding framework. This elevates DbS to a select class of theories that have been justified

both normatively based on principles of efficient coding and descriptively based on data

from perceptual as well as economic domains. It is no coincidence that there is a link

between these elements. From the start, research in behavioral economics was guided by the

notion that cognitive processes underlying judgment resembled those underlying perception

(Kahneman, 2002). This supposition works well partly because efficient coding constitutes

a unifying principle that spans low-level perception and high-level judgment.

Natural selection imposes pressure on organisms to efficiently represent the information they

need to survive and reproduce. The brain spends a tremendous amount of energy, accounting

for 20% of resting oxygen consumption in adult humans, most of which is directly required

for signaling (Laughlin, 2001). Given the enormous metabolic costs of neural activity and

infrastructure, encoding information wastefully would produce a steep drop in fitness, and

should therefore be sharply curtailed by selection pressures. This argument applies generally

across species and types of processing.

The realm of perception provides a low-level testbed in which computational descriptions of

problems to be solved, and hence the nature of optimality within them, can be more trans-

parently specified. Thus the development and assessment of theories, including those based

on efficient coding, can progress at a faster rate. This creates an arbitrage opportunity for

the study of decision making. Research in cognitive science and computational neuroscience

has yielded a wealth of precise, quantitative, and tractable characterizations of perceptual
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processing. These insights are being ported into the study of decision making and have

already demonstrated great predictive power.

To better locate DbS in this landscape, we describe two other branches of neuroeconomic

modeling which are motivated by their optimal information-theoretic properties under alter-

native assumptions.

First, our analysis ignored statistical dependencies between the symbols that comprise the

representation (e.g., the ones and zeros of the codes in Figure 1), making redundancy purely

a matter of unequal symbol usage (sometimes called first-order redundancy). This would be

appropriate if, for example, the representation were implemented by a single neuron with

many states, or by many neurons firing one at a time. However, if multiple neurons were

collectively responsible for encoding a complex stimulus, then higher-order redundancy could

arise from interdependencies between their individual representations (Atick, 1992; Brady &

Field, 2000). This issue occurs often in visual processing, as neighboring pixels in natural

scenes exhibit highly correlated luminance values, producing higher-order redundancy in

pixel-based codes. One way to address this problem is by local suppression of activity, and

this is the approach taken by divisive normalization.

Divisive normalization is a mechanism whereby neighboring neurons inhibit each other and

thus exhibit responses that are normalized with respect to their pooled inputs. This leads

to adaptive gain control that calibrates the sensitivity of neuronal responses according to

the local context. It was proposed to assist with redundancy reduction in sensory processing

(Schwartz & Simoncelli, 2001a; Wainwright, Schwartz, & Simoncelli, 2002), and has been

shown theoretically and empirically to help reduce higher-order redundancies in such set-

tings. For example, it removes statistical dependencies in representations of the heavy-tailed

multivariate distributions that characterize natural image statistics (Lyu, 2010, 2011; Malo

& Laparra, 2010). Divisive normalization has been observed across various species in neural

pathways for vision (Busse, Wade, & Carandini, 2009; Carandini, Heeger, & Movshon, 1997;
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Heeger, 1992), audition (Rabinowitz, Willmore, Schnupp, & King, 2011; Schwartz & Simon-

celli, 2001b), olfaction (Luo, Axel, & Abbott, 2010; Olsen, Bhandawat, & Wilson, 2010),

and even multisensory integration (Ohshiro, Angelaki, & DeAngelis, 2011). It is considered

a “canonical computation” due to its prevalence (Carandini & Heeger, 2012). When applied

to economic behavior, divisive normalization predicts context dependence that is able to

account for classic deviations from expected utility theory (Louie et al., 2011, 2013, 2014;

Rangel & Clithero, 2012).

A second assumption in our analysis was that the organism could not reduce the cost of in-

formation transmission by strategically changing the signal-to-noise ratio. This is reasonable

when precision is of vital importance. However, giving up the ability to crisply distinguish

between certain values can be adaptive at times. If this were feasible, it could be worthwhile

for the organism to transmit, say, only the first bit of the codes in Figure 1 when the cost

of full precision outstrips the benefits (the calculation of which could involve consideration

of downstream processing or behavioral responses). Sequential sampling models elaborate

on this approach with a noisy channel, and describe the process of decision making as the

optimal accumulation of evidence over time pertaining to different options (Bogacz, Brown,

Moehlis, Holmes, & Cohen, 2006; Laming, 1968; Stone, 1960).

In typical sequential sampling models, an agent is trying to identify the unknown state of the

world based on noisy signals received over time, and an option is chosen when the evidence

accumulated in its favor reaches some threshold. This threshold was originally derived from

efficient Bayes-optimal statistical algorithms for estimating the state of the world from a

sequence of data generated at a unit cost (Arrow, Blackwell, & Girshick, 1949; Fudenberg,

Strack, & Strzalecki, 2017; Wald, 1947; Wald & Wolfowitz, 1948). These models closely

match the joint distributions of choices and response times observed in perceptual tasks (e.g.,

Ratcliff, 1978, 2002; Ratcliff & Rouder, 1998; Smith, Ratcliff, & Wolfgang, 2004), as well as

patterns of neural activity (Gold & Shadlen, 2002; Hanes & Schall, 1996; Ratcliff, Cherian,
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& Segraves, 2003; Shadlen & Newsome, 2001; Smith & Ratcliff, 2004). Woodford (2014,

2016) provides a complementary information-theoretic formulation in which the threshold

rule is assumed, and instead the degree of noise in the code can be controlled at a cost

proportional to information-processing capacity. He derives the dynamic signal precision

which maximizes expected utility (based on the reward for correct identification), finding it

to depend (negatively) on the experienced evidence gap between options. Woodford’s theory

applied to economic decisions predicts aspects of stochastic choice even more accurately than

other sequential sampling models which assume a fixed-rate accumulation process driven by

the value difference between options (Krajbich, Armel, & Rangel, 2010; Krajbich, Hare,

Bartling, Morishima, & Fehr, 2015; Krajbich, Lu, Camerer, & Rangel, 2012; Krajbich &

Rangel, 2011; Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010).

Thus, efficient coding provides a unified set of principles for understanding many kinds of cog-

nitive processes including economic decision making. It helps account for apparent violations

of rational choice by recourse to deeper forms of optimality that reflect the cost-effective dis-

tortion of mental representations. Given its deep foundations and broad applicability, this

approach will doubtless continue to be a fruitful source of neuroeconomic theories in the

future.

Conclusion

Abundant evidence demonstrates context sensitivity in judgment and decision making that

deviates from classic theoretical models. Decision by sampling was intended to account for

such data, proposing that the value of an attribute is encoded as its rank in a contextual

distribution drawn from memory. This can be computed by tallying ordinal comparisons

between the target attribute level and samples from the context, and entails that psychoeco-

nomic functions are intrinsically malleable. Here, we ground DbS in an influential strand of
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theoretical neuroscience which posits that activity patterns in the brain efficiently represent

information. This hypothesis of efficient coding predicts that neural processing, and there-

fore the psychophysical functions it generates, should be adapted to natural stimuli faced by

the organism.

We identified DbS (and equivalently, the frequency component of range-frequency theory) as

an implementation of information-theoretic redundancy minimization, which is efficient in a

noiseless communication channel. Redundancy minimization requires values to be encoded

so that they are uniformly distributed across the bounded response range, which is achieved

by the rank transformation of DbS. However, when only a finite sample can be drawn from

memory, as is made necessary by inherent computational constraints, the transmission of

information is impaired. We theoretically specified the problems caused by finite samples,

and showed that smoothing could help counteract these problems and partially restore coding

efficiency.

We drew out the implications of this smoothing, showing that under certain assumptions

that reflect optimal smoothing, the range component of RFT can be derived as a kernel-

smoothed estimate of rank. This derivation revealed that RFT implements efficient coding

in a previously unrecognized fashion. It also suggests that principles of optimal smoothing

enable us to predict variation in the RFT weighting parameter, and we demonstrated that

this can help account for past data on how judgment is affected by the number of available

response categories. Psychologically, kernel smoothing can manifest as reduced discrim-

inability of retrieved items, which sheds light on how previous extensions of DbS and RFT

that assume imperfect discriminability capture range sensitivity. Similarly, extensions of

DbS based on locality of sampling that capture context effects observed in decision making

can be interpreted as kernel smoothing, providing further rationale for such approaches.

These insights into DbS open up many directions for future research. First, our analysis

indicates that the optimal amount of smoothing depends on sample size; thus, can we predict
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smoothing from individual differences in memory capacity? Second, can we manipulate the

degree of smoothing by changing parameters of the task? For example, can we increase

smoothing by placing individuals under cognitive load? Third, can we find direct evidence

for adaptive smoothing in the brain? Answering this question will require measurement

techniques with high temporal resolution (such as single unit recordings) in order to test

the predictions of the temporal coding scheme described in this paper. Finally, can we link

this coding scheme to decision making behavior, such as context effects? We believe that

efficient coding provides a powerful framework for addressing these questions.
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Johnson, E. J., Häubl, G., & Keinan, A. (2007). Aspects of endowment: A query theory

of value construction. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 33 , 461–474.

Jones, M. (1990). The performance of kernel density functions in kernel distribution function

estimation. Statistics & Probability Letters , 9 (2), 129–132.

Kahneman, D. (2002). Maps of bounded rationality: A perspective on intuitive judgment

and choice. In T. Frangsmyr (Ed.), Nobel prizes 2002: Nobel prizes, presentations,

biographies, & lectures (pp. 416–99). Stockholm: Almqvist & Wiksell Intl.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 41

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica, 263–291.

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and

comparison of value in simple choice. Nature neuroscience, 13 (10), 1292–1298.

Krajbich, I., Hare, T., Bartling, B., Morishima, Y., & Fehr, E. (2015). A common mechanism

underlying food choice and social decisions. PLOS Computational Biology , 11 (10),

e1004371.

Krajbich, I., Lu, D., Camerer, C., & Rangel, A. (2012). The attentional drift-diffusion model

extends to simple purchasing decisions. Frontiers in Psychology , 3 .

Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the rela-

tionship between visual fixations and choice in value-based decisions. Proceedings of

the National Academy of Sciences , 108 (33), 13852–13857.

Laming, D. R. J. (1968). Information theory of choice-reaction times. Academic Press.

Laughlin, S. B. (1981). A simple coding procedure enhances a neuron’s information capacity.

Zeitschrift für Naturforschung C , 36 , 910–912.

Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory

information. Current Opinion in Neurobiology , 11 , 475–480.

Lennie, P. (2003). The cost of cortical computation. Current Biology , 13 , 493–497.

Lim, R. G. (1995). A range-frequency explanation of shifting reference points in risky

decision making. Organizational Behavior and Human Decision Processes , 63 , 6–20.

Louie, K., Grattan, L. E., & Glimcher, P. W. (2011). Reward value-based gain control:

Divisive normalization in parietal cortex. Journal of Neuroscience, 31 , 10627–10639.

Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural mech-

anism for context-dependent decision making. Proceedings of the National Academy of

Sciences , 110 , 6139–6144.

Louie, K., LoFaro, T., Webb, R., & Glimcher, P. W. (2014). Dynamic divisive normalization

predicts time-varying value coding in decision-related circuits. Journal of Neuroscience,

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 42

34 , 16046–16057.

Luo, S. X., Axel, R., & Abbott, L. (2010). Generating sparse and selective third-order

responses in the olfactory system of the fly. Proceedings of the National Academy of

Sciences , 107 (23), 10713–10718.

Lyu, S. (2010). Divisive normalization: Justification and effectiveness as efficient coding

transform. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & C. A (Eds.),

Advances in neural information processing systems (Vol. 23, pp. 1522–1530).

Lyu, S. (2011). Dependency reduction with divisive normalization: Justification and effec-

tiveness. Neural Computation, 23 (11), 2942–2973.

Malo, J., & Laparra, V. (2010). Psychophysically tuned divisive normalization approximately

factorizes the PDF of natural images. Neural computation, 22 (12), 3179–3206.

Marchiori, D., Di Guida, S., & Erev, I. (2015). Noisy retrieval models of over-and under-

sensitivity to rare events. Decision, 2 , 82–106.

Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., & Rangel, A. (2010). The drift diffusion

model can account for the accuracy and reaction time of value-based choices under high

and low time pressure. Judgment and Decision Making , 5 (6), 437–449.

Mullett, T. L., & Tunney, R. J. (2013). Value representations by rank order in a distributed

network of varying context dependency. Brain and Cognition, 82 (1), 76–83.

Myerson, J., & Green, L. (1995). Discounting of delayed rewards: Models of individual

choice. Journal of the Experimental Analysis of Behavior , 64 , 263–276.

Niedrich, R. W., Sharma, S., & Wedell, D. H. (2001). Reference price and price perceptions:

A comparison of alternative models. Journal of Consumer Research, 28 (3), 339–354.

Niedrich, R. W., Weathers, D., Hill, R. C., & Bell, D. R. (2009). Specifying price judgments

with range–frequency theory in models of brand choice. Journal of Marketing Research,

46 (5), 693–702.

Ohshiro, T., Angelaki, D. E., & DeAngelis, G. C. (2011). A normalization model of multi-

sensory integration. Nature neuroscience, 14 (6), 775–782.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 43

Olsen, S. R., Bhandawat, V., & Wilson, R. I. (2010). Divisive normalization in olfactory

population codes. Neuron, 66 (2), 287–299.

Padoa-Schioppa, C. (2009). Range-adapting representation of economic value in the or-

bitofrontal cortex. Journal of Neuroscience, 29 (44), 14004–14014.

Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review ,

72 (6), 407.

Parducci, A. (1968). The relativism of absolute judgments. Scientific American, 219 , 84–90.

Parducci, A. (1995). Happiness, pleasure, and judgment: The contextual theory and its

applications. Lawrence Erlbaum Associates, Inc.

Parducci, A., & Perrett, L. F. (1971). Category rating scales: Effects of relative spacing and

frequency of stimulus values. Journal of Experimental Psychology , 89 (2), 427.

Parducci, A., & Wedell, D. H. (1986). The category effect with rating scales: Number of

categories, number of stimuli, and method of presentation. Journal of Experimental

Psychology: Human Perception and Performance, 12 , 496–516.

Park, I. M., & Pillow, J. W. (2017). Bayesian efficient coding. bioRxiv , 178418.

Portelli, G., Barrett, J. M., Hilgen, G., Masquelier, T., Maccione, A., Di Marco, S., . . . Ser-

nagor, E. (2016). Rank order coding: a retinal information decoding strategy revealed

by large-scale multielectrode array retinal recordings. eNeuro, 3 (3), ENEURO–0134.

Qian, J., & Brown, G. D. (2005). Similarity-based sampling: Testing a model of price

psychophysics. In Proceedings of the 27th annual conference of the cognitive science

society (pp. 1785–1790).

Rabinowitz, N. C., Willmore, B. D., Schnupp, J. W., & King, A. J. (2011). Contrast gain

control in auditory cortex. Neuron, 70 (6), 1178–1191.

Rangel, A., & Clithero, J. A. (2012). Value normalization in decision making: Theory and

evidence. Current Opinion in Neurobiology , 22 , 970–981.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review , 85 (2), 59.

Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a bright-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 44

ness discrimination task: Fitting real data and failing to fit fake but plausible data.

Psychonomic Bulletin & Review , 9 (2), 278–291.

Ratcliff, R., Cherian, A., & Segraves, M. (2003). A comparison of macaque behavior and

superior colliculus neuronal activity to predictions from models of two-choice decisions.

Journal of Neurophysiology , 90 (3), 1392–1407.

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions.

Psychological Science, 9 (5), 347–356.

Ronayne, D., & Brown, G. D. (2017). Multi-attribute decision by sampling: An account of

the attraction, compromise and similarity effects. Journal of Mathematical Psychology ,

81 , 11–27.

Rustichini, A., Conen, K. E., Cai, X., & Padoa-Schioppa, C. (2017). Optimal coding and

neuronal adaptation in economic decisions. Nature Communications , 8 (1), 1208.

Rynes, S. L., Schwab, D. P., & Heneman, H. G. (1983). The role of pay and market pay vari-

ability in job application decisions. Organizational Behavior and Human Performance,

31 , 353–364.

Schwartz, O., & Simoncelli, E. P. (2001a). Natural signal statistics and sensory gain control.

Nature Neuroscience, 4 (8), 819.

Schwartz, O., & Simoncelli, E. P. (2001b). Natural sound statistics and divisive normalization

in the auditory system. In T. Leen, T. Dietterich, & T. V (Eds.), Advances in neural

information processing systems (Vol. 13, pp. 166–172).

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the

parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology , 86 (4),

1916–1936.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Univer-

sity of Illinois Press.

Simonoff, J. S. (1995). Smoothing categorical data. Journal of Statistical Planning and

Inference, 47 (1-2), 41–69.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 45

Simonoff, J. S. (1996). Smoothing methods in statistics. Springer Science & Business Media.

Simonoff, J. S., & Tutz, G. (2000). Smoothing methods for discrete data. Smoothing and

regression: Approaches, computation, and application, 193–228.

Simpson, C. A., & Vuchinich, R. E. (2000). Reliability of a measure of temporal discounting.

The Psychological Record , 50 , 3–16.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends

in Neurosciences , 27 (3), 161–168.

Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Attention orienting and the time

course of perceptual decisions: Response time distributions with masked and unmasked

displays. Vision Research, 44 (12), 1297–1320.

Stevens, J. C. (1958). Stimulus spacing and the judgment of loudness. Journal of Experi-

mental Psychology , 56 (3), 246.

Stewart, N. (2009). Decision by sampling: The role of the decision environment in risky

choice. Quarterly Journal of Experimental Psychology , 62 , 1041–1062.

Stewart, N., Chater, N., & Brown, G. D. (2006). Decision by sampling. Cognitive Psychology ,

53 , 1–26.

Stewart, N., Chater, N., Stott, H. P., & Reimers, S. (2003). Prospect relativity: How choice

options influence decision under risk. Journal of Experimental Psychology: General ,

132 , 23–446.

Stewart, N., Reimers, S., & Harris, A. J. (2014). On the origin of utility, weighting, and

discounting functions: How they get their shapes and how to change their shapes.

Management Science, 61 , 687–705.

Stone, M. (1960). Models for choice-reaction time. Psychometrika, 25 (3), 251–260.

Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for rapid process-

ing. Neural Networks , 14 (6), 715–725.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. In Computational neuroscience (pp.

113–118). Springer.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 46

Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal

cortex. Nature, 398 (6729), 704.

Tripp, J., & Brown, G. D. (2016). Being paid relatively well most of the time: Negatively

skewed payments are more satisfying. Memory & Cognition, 44 , 966–973.

Ungemach, C., Stewart, N., & Reimers, S. (2011). How incidental values from the en-

vironment affect decisions about money, risk, and delay. Psychological Science, 22 ,

253–260.

VanRullen, R., Guyonneau, R., & Thorpe, S. J. (2005). Spike times make sense. Trends in

Neurosciences , 28 (1), 1–4.

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: From early

perception to decision-making. Journal of Cognitive Neuroscience, 13 (4), 454–461.

Verlegh, P. W., Schifferstein, H. N., & Wittink, D. R. (2002). Range and number-of-levels

effects in derived and stated measures of attribute importance. Marketing Letters ,

13 (1), 41–52.

Vlaev, I., Chater, N., Stewart, N., & Brown, G. D. (2011). Does the brain calculate value?

Trends in Cognitive Sciences , 15 , 546–554.

Wainwright, M., Schwartz, O., & Simoncelli, E. (2002). Natural image statistics and di-

visive normalization: Modeling nonlinearity and adaptation in cortical neurons. In

Probabilistic models of the brain: Perception and neural function. MIT Press.

Walasek, L., & Stewart, N. (2015). How to make loss aversion disappear and reverse: Tests

of the decision by sampling origin of loss aversion. Journal of Experimental Psychology:

General , 144 , 7–11.

Wald, A. (1947). Sequential analysis. New York: Wiley.

Wald, A., & Wolfowitz, J. (1948). Optimum character of the sequential probability ratio

test. Annals of Mathematical Statistics , 19 (3), 326–339.

Wei, X.-X., & Stocker, A. A. (2015). A Bayesian observer model constrained by efficient

coding can explain ‘anti-Bayesian’ percepts. Nature Neuroscience, 18 (10), 1509.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277


DECISION BY SAMPLING IMPLEMENTS EFFICIENT CODING 47

Wei, X.-X., & Stocker, A. A. (2017). Lawful relation between perceptual bias and discrim-

inability. Proceedings of the National Academy of Sciences , 114 (38), 10244–10249.

Woodford, M. (2012a). Inattentive valuation and reference-dependent choice (Vol. 17).

(Unpublished manuscript, Columbia University)

Woodford, M. (2012b). Prospect theory as efficient perceptual distortion. American Eco-

nomic Review , 102 (3), 41–46.

Woodford, M. (2014). Stochastic choice: An optimizing neuroeconomic model. American

Economic Review , 104 (5), 495–500.

Woodford, M. (2016). Optimal evidence accumulation and stochastic choice. (Unpublished

manuscript, Columbia University)

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/220277doi: bioRxiv preprint 

https://doi.org/10.1101/220277

