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Abstract
Background—Diagnostic and prognostic models are typically evaluated with measures of
accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment
of clinical outcomes, but often require collection of additional information, and may be cumbersome
to apply to models that yield a continuous result. We sought a method for evaluating and comparing
prediction models that incorporates clinical consequences, requires only the dataset on which the
models are tested, and can be applied to models that have either continuous or dichotomous results.

Method—We describe decision curve analysis, a simple, novel method of evaluating predictive
models. We start by assuming that the threshold probability of a disease or event at which a patient
would opt for treatment is informative of how the patient weighs the relative harms of a false-positive
and a false-negative prediction. This theoretical relationship is then used to derive the net benefit of
the model across different threshold probabilities. Plotting net benefit against threshold probability
yields the “decision curve”. We apply the method to models for the prediction of seminal vesicle
invasion in prostate cancer patients. Decision curve analysis identified the range of threshold
probabilities in which a model was of value, the magnitude of benefit, and which of several models
was optimal.

Conclusion—Decision curve analysis is a suitable method for evaluating alternative diagnostic
and prognostic strategies that has advantages over other commonly used measures and techniques.
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Introduction
A typical prediction model provides the probability of an event, such as recurrence after surgery
for prostate cancer, on the basis of a set of prognostic factors, such as cancer stage and
grade1. Such models can be used to predict disease outcome, as in the case of cancer recurrence,
or to make a diagnosis, such as whether a patient has appendicitis. Prediction models are usually
evaluated by applying the model to a dataset and comparing the predictions of the model with
actual patient outcome. Results are typically expressed as the area under the receiver operating
characteristic (ROC) curve. The area under the curve (AUC) can be interpreted as the
probability that in a pair of individuals, one who did and one who did not experience the event,
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the individual who experienced the event had the higher predicted probability. As such, it is
commonly used as a single statistic to compare two or more prediction models2–4.

The AUC metric focuses solely on the predictive accuracy of a model. As such, it cannot tell
us whether the model is worth using at all or which of two more models is preferable. This is
because metrics that concern accuracy do not incorporate information on consequences. Take
the case where a false-negative result is much more harmful than a false-positive result. A
model that had a much greater specificity but slightly lower sensitivity than another would
have a higher AUC, but would be a poorer choice for clinical use.

Decision-analytic methods incorporate consequences and, in theory, can tell us whether a
model is worth using at all, or which of several alternative models should be used5. In a typical
decision analysis, possible consequences of a clinical decision are identified and the expected
outcomes of alternative clinical management strategies then simulated using estimates of the
probability and sequelae of events in a hypothetical cohort of patients. Decision analysis
requires explicit valuation of health outcomes, such as the number of complications prevented,
life-years saved, or quality-adjusted life-years saved. In a decision analysis of alternative
diagnostic or prognostic models, the optimal model is the one that maximizes the outcome of
interest. Techniques have been proposed to simplify decision analyses of diagnostic and
prognostic tests by using a risk/benefit ratio to summarize the health outcomes associated with
the consequences of testing6.

There are two general problems associated with applying traditional decision-analytic methods
to prediction models. First, they require data, such as on costs or quality-adjusted-life-years,
not found in the validation data set, that is, the result of the model and the true disease state or
outcome. This means that a prediction model cannot be evaluated in a decision analysis without
further information being obtained. Moreover, decision-analytic methods often require explicit
valuation of health states or risk-benefit ratios for a range of outcomes. Health state utilities,
used in the quality-adjustment of expected survival7, are prone to a variety of systematic
biases8 and may be burdensome to elicit from subjects. The second general problem is that
decision analysis typically requires that the test or prediction model being evaluated give a
binary result so that the rate of true- and false-positive and negative results can be estimated.
Prediction models often provide a result in continuous form, such as the probability of an event
from 0 to 100%. In order to evaluate such a model using decision-analytic methods, the analyst
must dichotomize the continuous result at a given threshold, and potentially evaluate a wide
range of such thresholds.

We sought a method for evaluating prediction models that incorporates consequences and so
can be used to make decisions about whether to use a model at all or which of several models
to use. We hoped to improve upon currently available techniques by developing a method that
can be applied directly to a validation data set and does not require the collection of additional
information. Moreover, we required a method that could be applied to a model regardless of
whether it gave a binary or continuous result. Here we present a novel technique, decision
curve analysis, which fulfills these criteria.

Introductory Theory
Take the case of a patient deciding whether to undergo treatment for a specific disease. The
patient is unsure whether or not disease is present. A simple decision-tree is given in figure 1:
p is the probability of disease, and a, b, c and d give the value associated with each outcome
in terms such as quality-adjusted life-years. Let us imagine that there is a prediction model
available. This provides a probability that the patient has the disease: if the probability of
disease is near one, the patient will ask to be treated; if the probability is near zero, he is likely
to forgo treatment. At some probability between 0 and 1, the patient will be unsure whether or
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not to be treated. This threshold probability, pt, is where the expected benefit of treatment is
equal to the expected benefit of avoiding treatment. Solving the decision tree:

By some simple algebra:

(1)

Now d − b is the consequence of being treated unnecessarily. If treatment is guided by a
prediction model, this is the harm associated with a false-positive result (compared to a true-
negative result). Comparably, a − c is the consequence of avoiding treatment when it would
have been of benefit, that is, the harm from a false-negative result (compared to a true-positive
result). Equation 1 therefore tells us that the threshold probability at which a patient will opt
for treatment is informative of how a patient weighs the relative harms of false-positive and
false-negative results. In this formulation, “harm” is considered holistically, as the overall
effect of all negative consequences of a particular decision.

Our formula has been described previously to derive an optimal threshold for an action such
as using a drug or performing diagnostic test9, 10. In a typical example, Djulbegovic, Hozo
and Lyman use data from randomized trial to estimate the benefit and harm of prophylactic
treatment for deep vein thrombosis (DVT). They find that if a patient’s risk of DVT is 15% or
more, he should be treated; if it is less than 15%, treatment should be avoided11. Our method
allows this threshold to vary, depending on uncertainties associated with the likelihood of each
outcome and differences between individuals as to how they value outcomes.

Principal example
The example that we will use to illustrate our methodology comes from a prostate cancer study.
Surgery for prostate cancer normally involves total removal of the seminal vesicles as well as
the prostate, on the grounds that the tumor may invade the seminal vesicles. The presence of
seminal vesicle invasion (SVI) can be observed prior to or during surgery only in rare cases of
widespread disease. SVI is therefore typically diagnosed after surgery by pathologic
examination of the surgical sample. It has recently been suggested that the likelihood of SVI
can be predicted on the basis of information available before surgery, such as cancer stage,
tumor grade, and prostate specific antigen (PSA)12. Although some surgeons will remove the
seminal vesicles regardless of the predicted probability of SVI, others have argued that patients
with a low predicted probability of SVI might be spared total removal of the seminal vesicles:
most of the seminal vesicles would be dissected but the tip, which is in close proximity to
several important nerves and blood vessels, would be preserved. According to this viewpoint,
sparing the seminal vesicle tip might therefore reduce the risk of common side-effects of
prostatectomy such as incontinence and impotence13. Previous investigators have published
both binary decision rules12 and multivariable prediction models13 to help clinicians identify
candidates for tip-sparing surgery. These investigators typically present metrics such as
sensitivity, specificity or AUC to evaluate their models13. Accordingly, they are unable to tell
us whether their model does more good than harm and therefore should actually be used. To
demonstrate the use of decision curve analysis, we used data from an unpublished study of 902
men with prostate cancer who underwent prostatectomy and developed a multivariable model
that gave the probability of SVI on the basis of stage, grade and PSA.

We use this example to illustrate Equation 1. Take the case of a surgeon who needs to decide
whether to dissect or preserve the seminal vesicle tip in a man scheduled for prostatectomy.
The surgeon suspects that total dissection may increase the risk of impotence or incontinence;
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however, preservation might increase the chance of a cancer recurrence if the patient had SVI
and the tumor extended to the seminal vesicle tip. Imagine that the surgeon would definitely
opt for total seminal vesicle dissection if the patient’s predicted risk of SVI were 30%, that
preservation would be chosen if the risk were only 1%, but if the risk were 10%, the surgeon
would be uncertain as to the correct approach. By equation 1, we infer that the surgeon feels
that, for this patient, failing to remove the tip of a cancerous seminal vesicle (i.e. a false-negative
result) is nine times worse than unnecessary tip dissection (i.e. a false-positive result).

Application: Decision curve analysis
As it turns out, our method does not require that we obtain information regarding treatment
preferences in this way. We use the theoretical relationship between the threshold probability
of disease and the relative value of false-positive and false-negative results to ascertain the
value of a prediction model. Take a group of patients scheduled for treatment by a surgeon
who would be unsure whether to preserve or remove the seminal vesicle tip if the probability
of SVI were 10%. We can now calculate each patient’s probability of SVI using the
multivariable model, and class the result positive if it is equal to or higher than 10% and negative
otherwise. Applying these results to the dataset yields the data shown in Table 1.

To place a value on this result, we fix a −c, the value of a true-positive result, at 1. We thenobtain
the value of a false-positive result, b − d, as - pt/(1− pt). We can now calculate net benefit using
the following formula (first attributed to Peirce14):

In this formula, true- and false-positive count is the number of patients with true- and false-
positive results and n is the total number of patients. In short, we subtract the proportion of all
patients who are false-positive from the proportion who are true-positive, weighting by the
relative harm of a false-positive and a false-negative result. In table 1, where pt is 10%, the
true-positive count is 65, the false-positive count is 225 and the total number of patients (n) is
902. The net benefit is therefore (65/902) – (225/902) × (0.1/0.9) = 0.0443. A good model will
have a high net benefit: the theoretical range of net benefit is from negative infinity to the
incidence of disease.

To determine whether this value is a good one, that is, whether the prediction model should be
used for a pt of 10%, we need a comparison. The clinical alternative to using a prediction model
is to assume that all patients are positive and treat them – as might be done for individuals
possibly exposed to a dangerous infection easily treated with antibiotics – or assume that all
patients are negative and offer no treatment, as is done for diseases for which there are no
proven screening methods. The true- and false-positive count for considering all patients
negative are both 0, and hence the net benefit for leaving the seminal vesicle tip in all patients
is 0. Hence if the net benefit for the prediction model is positive, it is better to use the model
than to assume that everyone is negative. The true- and false-positive count for the strategy of
treating all patients are simply the number of patients with and without SVI respectively.
Calculating net benefit gives: (87/902) − (815/902) × (0.1/0.9) = − 0.0039 for the strategy of
removing seminal vesicles in all patients. This is less than the net benefit of 0.0443 from the
prediction model.

At a pt of 10%, our prediction model is therefore better than both treating no one and treating
everyone. However, patients differ as to how they rate possible side-effects of surgery. For
example, a surgeon might be tempted treat more aggressively a man who was impotent but had
many responsibilities. For such a man, the surgeon might use a much lower pt, say, 2%, that
is, the seminal vesicle tip would be removed even if there was only a 2% chance of SVI. At
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this pt, the strategies of treating all men and treating using the model are almost identical (net
benefit of 0.0780 and 0.0782 respectively). Similarly, there is a difference of opinion between
surgeons regarding the increase in recurrence risk associated with preservation of the seminal
tip in a patient with SVI: some surgeons feel that even if a patient has SVI, it is unlikely that
the seminal vesicle tip will be involved and, even then, it is not clear that preservation will
inevitably lead to recurrence; other surgeons feel that leaving any part of cancerous seminal
vesicle will substantively increase recurrence rates. We therefore recommend repeating the
above steps for different values of pt. Hence:

1. Chose a value for pt.

2. Calculate the number of true- and false-positive results using pt as the cut-point for
determining a positive or negative result.

3. Calculate the net benefit of the prediction model.

4. Vary pt over an appropriate range and repeat steps 2 – 3.

5. Plot net benefit on the y axis against pt on the x axis.

6. Repeat steps 1 – 5 for each model under consideration.

7. Repeat steps 1 – 5 for the strategy of assuming all patients are positive

8. Draw a straight line parallel to the x-axis at y=0 representing the net benefit associated
with the strategy of assuming that all patients are negative

Applying these steps to our data gives Figure 2. We term this a “decision curve”. Note that as
expected, the two lines reflecting the strategies of “assume all patients have SVI” (i.e., treat
all) and “assume no patients have SVI” (i.e., treat none) cross at the prevalence. Also note that
the prediction model is comparable to the strategy of treat all at low pt and comparable to treat
none at high pt. This is because the probability of SVI predicted by the model ranges from a
minimum of 1.8% to a maximum of 84.3%. Using the model for pt < 1.8% or pt > 84.3%
therefore gives the same result as treat all or treat none, respectively. Between 50% and 84.3%,
the value of the model is sometimes negative: this is due to random noise.

In between these two extremes there is a range of pt where the prediction model is of value. In
the case of SVI prediction this is between ~2% and ~50%. To determine whether the model is
of clinical value, we need to consider the likely range of pt in the population, that is, the typical
threshold probabilities of SVI at which surgeons would opt for complete dissection of seminal
vesicles. If it were the case that all surgeons remove the seminal vesicle tip only if there was
at least a 60 – 70% risk of SVI, the model clearly has no clinical role. But it is unlikely that
any surgeon would consider removal of a healthy seminal vesicle tip to be worse than failing
to remove a potentially cancerous one. If, on the other hand, we assume that the likely range
of pt in the population is between 20% and 30%, we would use the model, because it is of clear
benefit at these pt’s.

In consultation with clinicians, we estimate that although few if any surgeons would ever have
a pt much above 10% for any patient, some may have pt approaching 1% or less in certain
cases. This means that our prediction model will be of benefit in some, but not all cases. Where
pt is less than 2%, the model is no better than a strategy of treating all patients. Hence where
pt is less than 2% the model is of no value, and patients should have total seminal vesicle
dissection. On the other hand, the model is never worse than the strategy of treating all patients,
and because it is based on routinely collected data, it has no obvious downside. Therefore the
model will be of use for clinicians who, at least some of the time, would opt for seminal vesicle
tip preservation if a patient’s predicted probability of SVI was low.
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If the prediction model required obtaining data from medical tests that were invasive, dangerous
or involved expenditure of time, effort and money, we can use a slightly different formulation
of net benefit:

The harm from the test is a “holistic” estimate of the negative consequence of having to take
the test (cost, inconvenience, medical harms and so on) in the units of a true-positive result.
For example, if a clinician or a patient thought that missing a case of disease was 50 times
worse than having to undergo testing, the test harm would be rated as 0.02. Test harm can also
be thought of in terms of the number of patients a clinician would subject to the test to find
one case of disease if the test were perfectly accurate.

If the test were harmful in any way, it is possible that the net benefit of testing would be very
close to or less than the net benefit of the “treat all” strategy for some pt. In such cases we
would recommend that the clinician have a careful discussion with the patient, and perhaps, if
appropriate, implement a formal decision-analysis. In this sense, interpretation of a decision
curve is comparable to interpretation of a clinical trial: if an intervention is of clear benefit, it
should be used; if it is clearly ineffective, it should not be used; if its benefit is likely sufficient
for some, but not all patients, a careful discussion with patients is indicated.

Extensions of decision curve analysis
Decision curve analysis has two important additional advantages. First, the benefit of using a
prediction model can be quantified in simple, clinically applicable terms. Table 2 gives the
results of our analysis for pt’s between 1 and 10%. The net benefit of 0.062 at a pt of 5% can
be interpreted in terms that use of the model, compared with assuming that all patients are
negative, leads to the equivalent of a net 6.2 true-positive results per 100 patients without an
increase in the number of false-positive results. In terms of our specific example, we can state
that if we perform surgeries based on the prediction model, compared to tip preservation in all
patients, the net consequence is equivalent to removing the tip of affected seminal vesicles in
6.2 patients per 100 and treating no unaffected patients. Moreover, at a pt of 5% the net benefit
for the prediction model is 0.013 greater than assuming all patients are positive. We can use
the net benefit formula to calculate that this is the equivalent of a net 0.013 × 100/(0.05/0.95)
= 25 fewer false-positive results per 100 patients. In other words, use of the prediction model
would lead to the equivalent of 25% fewer tip surgeries in patients in patients without SVI with
no increase in the number of patients with an affected seminal vesicle left untreated.

A second advantage of decision curve analysis is that it can be used to compare several different
models. To illustrate this we compare the basic prediction model with an expanded model and
with a simple clinical decision rule. The expanded model includes all of the variables in the
basic model as well as some additional biomarkers. The clinical decision rule separates patients
into two risk groups based on Gleason grade and tumor stage: those with grade greater than 6
or stage greater than 1 are considered high risk. To calculate a decision curve for this rule, we
used the methodology outlined above except that the proportions of true- and false-positive
results remained constant for all levels of pt. Figure 3 shows the decision curve for these three
models in the key range of pt from 1 – 10%. There are three important features to note. First,
although the expanded prediction model has a better AUC than the basic model (0.82 vs. 0.80),
this makes no practical difference: the two curves are essentially overlapping. Second, the basic
model has a considerably larger AUC than the simple clinical rule, yet for pt’s above 2%, there
is essentially no difference between the two models. Third, at some low values of pt, using the
simple clinical rule actually leads to a poorer outcome than simply treating everyone, despite
a reasonably high AUC (0.72). In addition to illustrating the use of decision curves to compare
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multiple prediction models, Figure 3 also demonstrates that the methodology can easily be
applied to a test or model with an inherently binary outcome, such as the simple clinical decision
rule.

Additional example: prognosis
In addition to evaluating diagnostic models, such as the model for SVI in men with prostate
cancer, decision curves can also be used to assess the value of prognostic models. For example,
a number of models have been developed to obtain a patient’s pre-operative probability of
prostate cancer recurrence at five years based on PSA, clinical stage and grade of cancer at
biopsy15, 16. These models are used to counsel patients but also to inform decision making
because a patient with a high risk of recurrence might be asked to consider adjuvant hormonal
therapy. We will use an observational cohort of men treated for prostate cancer to examine
three models that predict recurrence within five years: one based on a multivariable model
(“model”) and two clinical rules: “assume that any man with Gleason grade 8 or above will
recur” (“Gleason rule”) and “assume that any man with Gleason grade 8 or above, or stage 2
or above, will recur” (“stage rule”). We will assess these models to determine how well they
aid the decision whether or not to undergo adjuvant hormonal therapy.

Figure 4 shows the decision curves. Although a cancer recurrence is a serious event, the benefit
of adjuvant hormonal therapy is somewhat unclear, and the drugs have important side-effects
such as hot flashes, decreased libido, and fatigue. Due to differences in opinion about the value
of hormonal therapy, and differences between patients in the importance attached to side-
effects, the probability used as a threshold to determine hormonal therapy varies from case to
case. A typical range of pt’s is 30% – 60%, that is, if you took a group of clinicians and patients
and documented the probability of recurrence at which the clinician would advise hormonal
therapy, this would vary between 30 – 60%. For much of this range, the simple Gleason rule
is comparable to the multivariable model, even though it has far less discriminative accuracy
(for example, AUC 0.56 compared to 0.73). Moreover, the Gleason rule is much better than
the stage rule in the key 30% – 60% range even though it has a lower AUC (0.56 vs. 0.58).
This is no doubt because the stage rule is highly sensitive and the Gleason rule more specific.
But while sensitivity and specificity give a general indication as to which test is superior in
which situation, decision curve analysis can delineate precisely the conditions under which
each test should be preferred.

As a further illustration, figures 5 and 6 show the decision curves for some theoretical
distributions. Note that the results of the decision curve analysis accord well with our
expectations. For example, a sensitive predictor is superior to a specific predictor where pt is
low, that is, where the harm of a false-negative is greater than the harm of a false-positive; the
situation is reversed at high pt; the curves for the sensitive and specific predictor cross near the
incidence; a near-perfect predictor is of value except where pt is close to 1, that is, where the
patient or clinician has to be nearly certain before he would take action; a predictor that is two
standard deviations higher in patients who have the event is superior across nearly the full
range of pt.

Discussion
Given the exponential increase in molecular markers in medicine, and the integration of
information technology into clinical management, the development of prognostic and
diagnostic models is likely to increase1. This lends urgency to the search for appropriate
methods to determine the value of such models.

We have introduced a novel method for the evaluation of prediction models. This method is
decision-analytic in nature and can therefore inform the decision of whether to use a model at
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all, or which of several models is optimal. Applying our method to several prediction models
on two data sets confirms the general principle that metrics of accuracy, such as sensitivity,
specificity and AUC, do not address the clinical value of a model. Although a model with a
higher AUC is likely to be more valuable than one with a lower AUC, we have shown that, as
would be expected from decision theory, models with very different AUCs can be comparable,
and that models with higher AUCs can sometimes lead to inferior outcomes.

Decision curve analysis can be applied to both multivariable prediction models that give the
probability of an event and to standard diagnostic tests that produce a simple binary result.
Moreover, this method does not require information on the costs or effectiveness of treatment
or how patients value different health states. We see this as beneficial because the method can
be directly applied to a model validation dataset. A search of the medical literature suggests
that the number of studies on diagnostic and prognostic markers using metrics of accuracy,
such as the AUC, dwarfs the number of those using decision analytic methods. This is likely
due to the burden of obtaining additional data, especially if health state utilities are required.

Nonetheless, interpretation of a decision curve analysis requires some understanding of the
likely range of patients’ values. We believe that this is comparable to interpretation of clinical
trial results. To determine the value of a treatment tested in a trial, a clinician needs to have
some idea of a just how effective the treatment needs to be before patients would be prepared
to take it, bearing in mind its side-effects. If the benefits of treatment are either much larger or
smaller than most patients would require, the clinician can either give or withhold treatment
without a detailed understanding of a patient’s preferences. If, on the other hand, effects of the
treatment might be large enough for some patients, but not for others, a careful discussion with
the patient is indicated, perhaps with formal elicitation of health state preferences and a decision
analysis. In short, we do not propose decision curve analysis as a substitute for existing
decision-analytic methods, though it may help indicate where such methods may be of benefit.

Similarly, we are not suggesting that decision curve analysis can replace measures of accuracy
such as sensitivity and specificity. First, such measures are vital in the early stages of
developing diagnostic and prognostic strategies, for example, when determining whether a
biomarker shows any evidence of value on a convenience sample or when calibrating
instruments or techniques17. Second, although it is possible for a model to be accurate but
useless, the converse is not true: those proposing diagnostic or prognostic methods must show
that they are reasonably accurate as well as demonstrating that they improve decision-making.

As pointed out when describing our methods, several previous workers have used the relative
benefit and harm associated with true- and false-positive results to determine a single, optimal
threshold for a diagnostic test10, 11, 18. Determining a single threshold is only possible under
two conditions: first, the benefits and harms of action must be well understood; second, how
benefits and harms are valued must be similar between individuals. As an illustration, compare
one of the examples given by Djulbegovic, Hozo and Lyman11 – prevention of DVT – with
our prostatectomy example. In the DVT case, precise estimates for the treatment benefit
(reduction in rate of DVT) and harm (major bleeding) are available from a randomized trial,
moreover, there are no important differences between individuals as to the relative harm of a
DVT and a bleed: the authors use the assumption that “the avoidance of DVT and bleeding
complications represents approximately the same value to the patient”11. In the prostatectomy
example, conversely, estimates of the benefits (improved urinary and erectile function) and
harms (increased rate of cancer recurrence) of the seminal vesicle tip sparing approach are
available only from observational studies of moderate size13 and are subject to considerable
disagreement. Moreover, how different individuals value potency and continence compared to
cancer recurrence varies greatly. Other investigators have used the relative benefits and harms
associated with different test outcomes in net benefit or loss functions to compare predictive
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models19, 20. However, this requires investigators to specify a value for harms and benefits.
For example, Habbema and Hilden describe a method to assess a prediction tool for
management of acute abdominal pain by ascribing losses to outcomes such as failure to
diagnose appendicitis (36 units), appendectomy for a patient with a healthy appendix (10 units)
and intensive follow-up in a patient with non-specific abdominal pain (2 units)20. Such
methods can be adapted for sensitivity analysis using different values for such outcomes, but
this is generally complex and does not clearly maintain the inherent relationship between values
and probability thresholds. Our method combines values and thresholds in a simple,
parsimonious method to determine whether a predictive model should be used clinically, whilst
allowing each to co-vary appropriately.

One assumption of our method is that the predicted probability and threshold probability are
independent. This is true for the examples we give in this paper: there is no relationship
between, say, the appearance of a cancer cell under the microscope (Gleason grade) and how
a patient values sexual and urinary function relative to cancer recurrence. It is possible that a
third variable, such as age, might influence both the probability of recurrence and treatment
preferences; however, in our data set, the correlation between age and SVI was very low (0.04).
We think that an important correlation between predicted probability and threshold probability
will be very much the exception rather than the rule. One possible example would be gender.
If gender was indeed correlated with both outcome and threshold probability, the analyst might
consider constructing a decision curve separately for men and women.

In the examples presented here, we have not considered the uncertainty associated with model
predictions and their possible impact on the decision curve. We are currently evaluating
methods to characterize uncertainty, including confidence bands and metrics such as the
probability that the net benefit of a model is superior to a comparator.

Hilden21 has written of the schism between what he describes as “ROCographers”, those who
are interested solely in accuracy, and “VOIographers”, who are interested in the clinical value
of information (VOI). He notes that while the former ignore the fact that their methods have
no clinical interpretation, the latter have not agreed upon an appropriate mathematical
approach. We feel that decision curve analysis may help bridge this schism by combining the
direct clinical applicability of decision-analytic methods with the mathematical simplicity of
accuracy metrics.
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Figure 1. A decision tree for treatment
The probability of disease is given by p; a, b, c and d give, respectively, the value of true
positive, false positive, false negative and true negative.

Vickers and Elkin Page 11

Med Decis Making. Author manuscript; available in PMC 2008 October 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Decision curve for a model to predict seminal vesicle invasion (SVI) in patients with
prostate cancer
Solid line: Prediction model. Dotted line: assume all patients have SVI. Thin line: assume no
patients have SVI. The graph gives the expected net benefit per patient relative to no seminal
vesicle tip removal in any patient (“treat none”). The unit is the benefit associated with one
SVI patient duly undergoing surgical excision of seminal vesicle tip.
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Figure 3. Decision curve for seminal vesicle invasion (SVI): Comparison of three models
Dotted line: assume all patients have SVI. Grey line: Binary decision rule. Solid line: Basic
prediction model. Dashed line: Expanded prediction model incorporating additional
biomarkers. The graph gives the expected net benefit per patient relative to no seminal vesicle
tip removal in any patient (“treat none”). The unit is the benefit associated with one SVI patient
duly undergoing surgical excision of seminal vesicle tip.
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Figure 4. Decision curve for prediction of recurrence after surgery for prostate cancer
Thin line: assume no patient will recur. Dotted line: assume all patients will recur. Long dashes:
binary decision rule based on cancer grade (“Gleason rule”). Grey line: binary decision rule
based on both grade and stage of cancer (“stage rule”). Solid line: multivariable prediction
model. The graph gives the expected net benefit per patient relative to no hormonal therapy
for any patient (“treat none”). The unit is the benefit associated with one patient who would
recur without treatment and who receives hormonal therapy.
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Figure 5. Decision curve for a theoretical distribution
In this example, disease incidence is 20%. Thin line: assume no patient has disease. Dotted
line: assume all patients have disease. Thick line: a perfect prediction model. Grey line: a near-
perfect binary predictor (99% sensitivity and 99% specificity). Solid line: a sensitive binary
predictor (99% sensitivity and 50% specificity). Dashed line: a specific binary predictor (50%
sensitivity and 99% specificity).
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Figure 6. Decision curve for a theoretical distribution
In this example, disease incidence is 20%; the predictor example is a normally distributed
laboratory marker. Thin line: assume no patient has disease. Dotted line: assume all patients
have disease. Solid lines: prediction model from a single, continuous laboratory marker: from
left to right, the lines represent a mean shift of 0.33, 0.5, 1 and 2 standard deviations in patients
with disease.
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Vickers and Elkin Page 17

Table 1
Relationship between true seminal vesicle invasion (SVI) status and result of prediction model with a positivity criterion
of 10% predicted probability of SVI.

SVI
n = 902 Positive Negative

Prediction Model: Probability of SVI ≥10% Yes 65 225
No 22 590
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Table 2
Net benefit for removing the tip of the seminal vesicles from all patients or according to a prediction model,
using a threshold of pt
The reduction in the number of unnecessary surgeries removing the seminal vesicle tip per 100 patients is calculated
as: (net benefit of the model – net benefit of treat all)/(pt/(1− pt)) × 100. This value is net of false negatives, and is
therefore the equivalent to the reduction in unnecessary surgeries without a decrease in the number of patients with
SVI who duly have tip surgery.

pt (%) Net Benefit Advantage of model
Treat All Prediction Model Net benefit Reduction in avoidable tip surgeries per 100 patients

1 0.087 0.087 0 0
2 0.078 0.078 0 0
3 0.069 0.072 0.004 13
4 0.059 0.066 0.007 17
5 0.049 0.062 0.013 25
6 0.039 0.059 0.020 31
7 0.028 0.056 0.027 36
8 0.018 0.053 0.035 40
9 0.007 0.048 0.041 41
10 −0.004 0.044 0.048 43
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