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Abstract: In this letter, a multichannel decision-directed approach to
estimate the speech power spectral density (PSD) matrix for multichannel
speech enhancement is proposed. There have been attempts to build mul-
tichannel speech enhancement filters which depend only on the speech
and noise PSD matrices, for which the accurate estimate of the clean
speech PSD matrix is crucial for a successful noise reduction. In contrast
to the maximum likelihood estimator which has been applied convention-
ally, the proposed decision-directed method is capable of tracking the
time-varying speech characteristics more robustly and improves the noise
reduction performance under various noise environments.
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1. Introduction

The main purpose of speech enhancement is to estimate the desired clean speech signal
from the observations corrupted by unwanted interferences and additive noises.1

During the past decades, a number of multichannel speech enhancement approaches
have been proposed.2–6 In Ref. 7, new simplified expressions for the speech distortion
weighted multichannel Wiener filter (SDW-MWF), the minimum variance distortion-
less response (MVDR) beamformer, and the generalized sidelobe canceller (GSC) were
proposed which depend only on the complex power spectral density (PSD) matrices of
the signals, instead of the channel transfer functions or the location of microphones
and sound sources.

Since the multichannel speech and noise PSD matrices become the only statis-
tics required to determine the final gain function in Ref. 7 and the following works,8–10

it is certain that an accurate estimation of these PSD matrices is the key to a successful
noise reduction. In order to estimate the time-varying noise PSD matrix, the multi-
channel minima controlled recursive averaging (MCRA) technique8 has been applied
to the recent approaches for multichannel speech enhancement.8–10 As for the speech
PSD matrix, the maximum likelihood (ML) estimation technique which turns out to
be a simple subtraction of the noise PSD matrix from the noisy input PSD matrix has
been widely adopted.5–10 However, the ML estimation approach based only on the
temporally smoothed statistics of the input signal is not sufficient to track the nonsta-
tionary speech signals.

In this letter, we propose a decision-directed (DD) approach to estimate the
complex clean speech PSD matrix for the multichannel speech enhancement. In a simi-
lar way to the single channel DD approach,11 the processed output of the previous
frame is combined with the estimate by the ML approach to derive the proposed
speech PSD matrix estimate. Since the complex speech PSD matrix estimate could be
used to obtain not only the multichannel noise suppression gain but also the

a)Author to whom correspondence should be addressed.
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multichannel speech presence probability (SPP), the proposed method can also improve
the performance of various noise estimators and speech enhancement modules which
requires SPP, such as Refs. 8 and 12–14. From a number of experiments on multichan-
nel speech enhancement, the proposed DD speech PSD matrix estimator showed better
performances compared with the conventional ML estimator.

2. Multichannel speech enhancement techniques

Compared with single microphone-based techniques, multichannel speech enhancement
approaches could achieve more effective noise reduction without much speech distor-
tion as spatial diversity can also be exploited. Classical beamformers such as the
MVDR beamformer2 and the GSC (Ref. 3) that reduce interfering components by
steering the array to the direction of signals of interest require the estimation of the
direction of the desired speaker with respect to the microphone locations or the chan-
nel transfer functions, which may be quite difficult in real environments.

In Refs. 1 and 7, an optimal multichannel filtering technique which depends
only on the statistics of the speech and noise signals at the microphones was proposed
with new simplified expressions of the SDW-MWF, the MVDR filter, and the GSC.
These are dependent on the channel transfer functions only through the multichannel
speech and noise PSD matrices, and it was further extended to a spectro-temporal fil-
tering to exploit temporal and spectral correlations.9

Let y k; tð Þ; x k; tð Þ, and v k; tð Þ denote the N-dimensional vectors which consist
of the short-time Fourier transform coefficients of the noisy speech, clean speech, and
additive noise signal, respectively, for the kth frequency bin at frame t observed from
N microphones. The output signal x̂ k; tð Þ, which is an estimate of x k; tð Þ is then
obtained by applying a noise suppression gain g k; tð Þ to y k; tð Þ in the following way:

x̂ k; tð Þ ¼ gH k; tð Þy k; tð Þ ¼ gH k; tð Þ x k; tð Þ þ v k; tð Þð Þ; (1)

where the superscript H denotes the transpose-conjugate operator. When the N�N
dimensional multichannel complex PSD matrices of the noisy speech, clean speech,
and noise are defined as Uyy k; tð Þ¢Efy k; tð ÞyH k; tð Þg; Uxx k; tð Þ¢Efx k; tð ÞxH k; tð Þg,
and Uvv k; tð Þ¢Efv k; tð ÞvH k; tð Þg, respectively, the gain g k; tð Þ in Eq. (1) can be derived
while depending only on the PSD matrix estimates Ûyy k; tð Þ; Ûxx k; tð Þ, and Ûvv k; tð Þ. In
this work, we adopted the gain function for the SDW-MWF incorporating the SPP
p(k, t)15 given by

g k; tð Þ ¼ Ûxx k; tð Þ þ Ûvv k; tð Þ=p̂ k; tð Þ
� ��1

Ûxx k; tð Þ: (2)

p(k, t) can be estimated based on a Gaussian model16 as p̂ k; tð Þ ¼ K k; tð Þ=½1þ K k; tð Þ�
in which

K k; tð Þ ¼ 1=q̂ k; tð Þ � 1

1þ tr Û
�1
vv k; tð ÞÛxx k; tð Þ

h i exp
y k; tð ÞÛ�1

vv k; tð ÞÛxx k; tð ÞÛ�1
vv k; tð ÞyH k; tð Þ

1þ tr Û
�1
vv k; tð ÞÛxx k; tð Þ

h i
8<
:

9=
;;

(3)

where tr½ � is a trace of a matrix and the a priori probability of speech absence q(k, t) is
estimated as in Ref. 8.

3. DD speech PSD matrix estimation

Accurate estimation of the multichannel speech and noise PSD matrices is crucial for
successful noise reduction and SPP estimation as can be seen from Eqs. (2) and (3).
The estimated SPP can also be utilized for other noise tracking or speech enhancement
modules. For the noise statistics estimation, it is common to recursively average past
statistics of the noisy input signal depending on the SPP estimates as given by

Ûvv k; tð Þ ¼ ~av k; tð ÞÛvv k; t� 1ð Þ þ 1� ~av k; tð Þð Þ y k; tð ÞyH k; tð Þ
� �

; (4)

where ~av k; tð Þ ¼ av þ 1� avð Þp̂ k; tð Þ is a time-varying frequency-dependent smoothing
parameter which is a function of the SPP estimate p̂ k; tð Þ and 0 < av < 1. In this work,
a multichannel version8 of the MCRA algorithm17 which is popular for single channel
speech enhancement was applied to estimate the SPP and noise PSD matrix.

For the estimation of clean speech statistics, the simple ML method has been
commonly used in Refs. 7–10 as given by Ûxx k; tð Þ ¼ Ûyy k; tð Þ � Ûvv k; tð Þ, where
Ûyy k; tð Þ can be obtained by a temporal smoothing of y k; tð ÞyH k; tð Þ. However, the
ML-based estimation techniques occasionally incur musical noises18 when Ûyy k; tð Þ is
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not smoothed enough, and cannot track the rapidly varying speech statistics when
Ûyy k; tð Þ is smoothed too much.

In order to alleviate this difficulty, we propose a novel estimation method for
the complex speech PSD matrix, which can be considered to be an extension of the
DD approach11 to the multichannel case. For single channel speech enhancement, the
DD approach was proposed11 to estimate the a priori signal-to-noise ratio (SNR),
which has been proven to provide the improved subjective quality of the output
speech. However, the estimation of the multichannel counterpart of the a priori SNR
U�1

vv k; tð ÞUxx k; tð Þ may not be reliable enough since the complex noise PSD matrix
becomes almost singular when one or a few strong noise sources produce highly direc-
tional noise fields. Therefore, a time-varying multichannel speech PSD matrix Uxx k; tð Þ
is estimated instead based on the DD scheme as follows:

Ûxx k; tð Þ ¼ axx̂ k; t� 1ð Þx̂H k; t� 1ð Þ þ 1� axð Þ y k; tð ÞyH k; tð Þ � Ûvv k; tð Þ
� �

�0; (5)

where 0 < ax < 1 is a smoothing parameter and U½ ��0 denotes the positive semi-
definite matrix closest to U. In our implementation, however, we just replace U½ ��0 by
U simply because we found that the matrix modification by eigendecomposition did
not show any notable improvement of overall speech quality while requiring heavy
computation of the eigen analysis. It is noted that the spectral amplitudes in the for-
mulation of the single channel DD estimation approach are replaced by complex spec-
tral vectors.

In Eq. (5), the speech PSD matrix Uxx k; tð Þ is estimated by a weighted sum of
two different terms. It is clear that the first one x̂ k; t� 1ð Þx̂H k; t� 1ð Þ is an instanta-
neous estimate of Uxx k; tð Þ derived from the previous frame. The other term comes
from the ML estimation approach except the current input power spectrum matrix is
used instead of the temporally smoothed noisy PSD matrix. As a result, the proposed
multichannel DD approach for the speech PSD matrix estimation reflects the enhanced
speech components of the previous frame and the current input components in a more
direct way, which may lead to a rapid tracking of the time-varying speech PSD matrix
without introducing much artifact. Since the accurate complex speech PSD matrix esti-
mate is helpful not only to obtain the proper noise suppression gain but also to esti-
mate the SPP as in Ref. 16 and consequentially the noise PSD matrix in Eq. (4) more
precisely, the proposed multichannel DD approach can provide enhanced speech sig-
nals with very little musical noise even in a quite noisy environment.

4. Experimental results

In order to show the effectiveness of the proposed multichannel DD approach for speech
PSD matrix estimation, the quality of output speech enhanced by SDW-MWF in
Eq. (2) using the speech PSD matrix estimated by the proposed or conventional method
was evaluated under various noise conditions. We have recorded spoken utterances and
interference signals with a commercial smartphone, Samsung Galaxy S4, SHV-E300L
(Samsung Electronics Co., Ltd., Suwon, Korea) which has two microphones about
140 mm away from each other. Overall geographical placement of the sound sources
and receiver is illustrated in Fig. 1. One person stood in the center of a reverberant
room with size 3119� 3232� 2080 mm3 holding a phone with the right hand, exactly in
the same way as in a usual telecommunication scenario with the handset mode. Twenty
sentences spoken by the person and interference signals played by loudspeakers from
eight different locations at the distance of 1000 mm were recorded individually, and then
mixed with 0, 5, 10, and 15 dB SNR. The interference signals used for the experiments
were destroyer, F-16, and factory noise from NOISEX-92 database. Each signal was
sampled at 16 kHz and a half-overlapped Hann window of length 512 was applied. In
this work, we set av ¼ 0:92, the same as in Ref. 8, and ax ¼ 0:95 which was experimen-
tally determined.

We have measured the quality of the output signals in terms of the perceptual
evaluation of speech quality (PESQ) score.19 The PESQ scores for eight different direc-
tions of noise which are averaged over all types of interferences are shown in Fig. 2
for each SNR. With any angles and levels of the interfering noise signals, the SDW-
MWF utilizing the proposed multichannel DD method for the speech PSD estimation
consistently outperformed that utilizing the ML method in terms of PESQ scores.

We have also measured the improvement of the speech quality by the pro-
posed technique in terms of the SNR improvement, the difference between the input
and output SNRs,17 in dB scale. The SNR improvements for each noise type averaged
over all loudspeaker positions are summarized in Table 1. From the results, we can see
that the proposed multichannel DD approach for speech PSD matrix estimation
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Fig. 1. The geographical placement of the noise sources and receivers.

Fig. 2. The PESQ scores by the ML and the DD speech PSD matrix estimation approaches.
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outperformed the conventional ML approach in terms of both the PESQ scores and
SNR improvements for all types and locations of interference signals.

5. Conclusions

In this letter, we have proposed a multichannel DD approach to estimate the complex
speech PSD matrix for multichannel speech enhancement. In contrast to the conven-
tional ML estimation, the proposed DD method takes the processed output of the pre-
vious frame into account and interpolated it with the estimate by the ML approach,
which enables an effective tracking of the time-varying speech statistics. A number of
experiments have confirmed that the proposed DD estimation approach for the multi-
channel speech PSD matrix considerably improved the speech quality of signals when
applied to the SDW-MWF compared with the ML estimation technique under various
noisy environments.
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