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Abstract. In hyperspectral anomaly detection, the dual-window-based detector is a widely used

technique that employs two windows to capture nonstationary statistics of anomalies and back-

ground. However, its detection performance is usually sensitive to the choice of window sizes

and suffers from inappropriate window settings. In this work, a decision-fusion approach is pro-

posed to alleviate such sensitivity by merging the results from multiple detectors with different

window sizes. The proposed approach is compared with the classic Reed-Xiaoli (RX) algorithm

as well as kernel RX (KRX) using two real hyperspectral data. Experimental results demonstrate

that it outperforms the existing detectors, such as RX, KRX, and multiple-window-based RX.

The overall detection framework is suitable for parallel computing, which can greatly reduce

computational time when processing large-scale remote sensing image data. © The Authors.
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1 Introduction

Hyperspectral imagery (HSI) contains hundreds of contiguous spectral bands which enable the

discrimination of different materials and make a variety of potential civilian and military appli-

cations possible.1,2 Target detection is the ability to detect a low-probability target with a known

signature from an unknown background.3–5When the target spectral signature is unknown, unsu-

pervised anomaly detection has to be applied, which is a method used to find anomalous pixels

whose spectral signatures are different from their surroundings.6,7 As a classic anomaly detector,

the Reed-Xiaoli (RX) algorithm8–10 was developed under a hypothesis testing where the condi-

tional probability density functions under the two hypotheses (without and with anomaly) are

assumed to be Gaussian. The solution turns out to be an adaptive Mahalanobis distance between

the pixel under test and the local background. It is preferred to use local background to capture

nonstationary statistics, and its advantage of using a global background covariance matrix has

been demonstrated in the literature.11–13

The RX detector has become the benchmark of anomaly detection algorithms in HSI.

Obviously, the key to success is an appropriate estimate of a local background covariance matrix

for effective background suppression. An adaptive RX detector employs a dual-window strategy:

the inner window is slightly larger than the pixel size, the outer window is even larger than the

inner one, and only the samples in the outer region (i.e., between the frames of inner and outer

windows) are used to estimate the background covariance matrix to avoid the use of the potential

anomalous pixels. Intuitively, the number of pixels in the outer region (related to the sizes

of inner and outer windows) should be more than the number of bands so that the resulting

covariance matrix can be full-rank for inverse matrix operation. However, even when the

covariance matrix is ill-rank, its inversion can still be computed by several strategies, such
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as eigen-decomposition and reconstruction of nonzero eigenvalues and eigenvectors, data

dimensionality reduction, or simply matrix regularization. Thus, in this work, we do not

limit our discussion to the case of a full-rank local covariance matrix.

In addition to the classical RX detector, a number of extensions and other anomaly detection

algorithms have also been proposed for hyperspectral data. A time-efficient method has been

introduced for anomaly detection in Ref. 14, the kurtosis maximization-based anomaly detection

was improved in Ref. 15, the subpixel anomaly detection was discussed in Ref. 16, a random-

selection-based anomaly detector was introduced in Ref. 17, weighted and linear filter-based RX

was analyzed in Ref. 18, subspace-projection-based detectors were proposed in Ref. 19, and

discriminative metric learning was applied to anomaly detection in Ref. 20. In particular, ker-

nel-based detectors, such as kernel RX (KRX),21 kernel eigenspace separation transform,22 and

kernel regression analysis23 for anomaly detection were introduced. In addition, different back-

ground modeling approaches were proposed, such as support vector data description,24 auto-

mated modeling methods in Ref. 25, and the collaborative-representation-based method.26

However, the dual-window-based RX algorithm remains the benchmark due to its relative

robustness and easy implementation.

A multiple-window-based RX (MW-RX) detector was recently discussed in Ref. 27, whose

final output is independent of the window sizes. In MW-RX, RX was implemented several times

with different dual windows, but for each pixel, only the maximum RX output was used to

generate the final detection map. In this paper, we propose a decision-fusion approach for hyper-

spectral anomaly detection using multiple windows, where a decision map is produced for each

dual-window detector and the final decision map is generated with a voting strategy.

Experimental results will demonstrate that the proposed strategy can reduce the false alarm

rates when maintaining the same true positive rates.

2 Proposed Anomaly Detection Method

2.1 Dual-Window RX Detector

Consider a three-dimensional hyperspectral cube with resized samples X ¼ fxig
n
i¼1 in R

d (d is

the number of spectral bands) and n is the total number of samples. For each pixel y (of size

d × 1), surrounding data are collected inside the outer window (of size wout × wout) while outside

the inner window (of size win × win), centered at the pixel y. The selected data are resized into

a two-dimensional matrix Xs ¼ fxig
s
i¼1 (s is the number of chosen samples,

s ¼ wout × wout − win × win). Hence, the matrix Xs (of size d × s) is obtained for every pixel

y on its own local window.

A single pixel form of the RX algorithm is often approximated by the following

equation:6,13,28

rðyÞ ¼ ðy − μlocalÞ
T
X

−1

local

ðy − μlocalÞ; (1)

where
P

local is the d × d covariance matrix of the background data, and mean vector

μlocal ¼
P

s
i¼1 xi. The test statistic rðyÞ is compared with the prescribed threshold η—if

rðyÞ > η, the pixel is an anomaly, otherwise it is a normal pixel.

In Ref. 21, KRX has been investigated via projecting data into a high-dimensional feature

space in which the data become more separable. In the kernel-induced feature space, the map-

ping functionΦmaps the pixel y → ΦðyÞ ∈ Rd 0
×1 (d 0 ≫ d is the dimension of the kernel feature

space) and Φ ¼ Φðx1Þ, Φðx2Þ; · · · ;ΦðxsÞ ∈ R
d 0
×s. The corresponding output of KRX is rep-

resented as

rΦðyÞ ¼ ½ΦðyÞ − μΦlocal
�T
X

−1

Φlocal

½ΦðyÞ − μΦlocal
�; (2)

where
P

Φlocal
and μΦlocal

are the estimated covariance matrix and mean vector of the background

data in the kernel feature space. More implementation details can be found in Ref. 21.
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2.2 Proposed Decision-Fusion Detector

Adaptive anomaly detection is used to detect anomalies whose spectral signatures are different

from the local background; depending upon the definition of local, the resulting anomaly detec-

tion performance will be different. In the setting of dual-window implementation, the pixels

between the inner and outer windows are considered as local background; of course, the change

Fig. 1 (a) Pseudocolor image of hyperspectral digital imagery collection experiment (HYDICE)

urban scene, (b) ground-truth map of 21 anomalous pixels.

Fig. 2 Pseudocolor image of HyMap image; and ground-truth map of total seven types of targets

(F1: 3 m red cotton target; F2: 3 m yellow nylon target; F3: 1 and 2 m blue cotton target; F4: 1 and

2m red nylon target; V1: 1993 Chevy Blazer; V2: 1997 Toyota T100; V3: 1985 Subaru GLWagon).
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of dual-window sizes will end up with different anomaly detection performances. Note that the

purpose of the inner window is to prevent the background from being contaminated by the cen-

tral pixel when it is a target; thus, the size of the inner window should be slightly larger than the

target size; under a complete unknown environment, this information is unknown as well.

Inspired by multiclassifier fusion,29 such difficulty in appropriate window setting may be miti-

gated by detector fusion.

In the proposed decision-fusion approach, detection outputs for a pixel y using m detectors

with m different windows are expressed as friðyÞ; i ¼ 1;2; · · · ; mg, where riðyÞ represents the
i’th output using the i’th pair ðwin; woutÞ via Eq. (1) or Eq. (2). The outputs of an entire image are

normalized to have a range of [0, 1] and compared with a prescribed threshold η. A pixel will be

claimed to an anomaly if the output is larger than η. The number of times that the pixel y is

assigned to be an anomaly will be counted:

NðyÞ ¼ fCountjriðyÞ − η > 0; i ¼ 1;2; · · · ; mg: (3)

The final class-label decision follows a voting process expressed as

DRX−FusionðyÞ ¼

�

1 if NðyÞ >¼ t

0 if NðyÞ < t
; (4)

where 1 ≤ t ≤ m, 1 means y is an anomaly, and 0 means y is normal.

In MW-RX, for a pixel y, after obtaining RX outputs with multiple dual windows, the maxi-

mum value will be taken27

rMW−RXðyÞ ¼ max
1≤i≤m

riðyÞ; (5)

which will be compared with a threshold for the decision. The differences between MW-RX and

the proposed RX-Fusion approach are apparent. On one hand, the former one solely considers

the maximal value while ignoring others, whereas the latter one conducts multiple detection
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Fig. 3 Spectral signatures of the seven types of targets and the mean of the background in the

HyMap data.

Table 1 General choices for sizes of windows ðw in; woutÞ.

w in wout

3 5 7 9

5 7 9 11

7 9 11 13

9 11 13 15
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Fig. 4 Detection performance with varying sizes of windows ðw in; woutÞ for the dual-window-based

Reed-Xiaoli (RX) using the HYDICE urban data.

Fig. 5 (a) AUC for RX and KRX with different windows; (b) AUC for RX-Fusion and KRX-Fusion

with varying t.
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(thresholding) processes for an actual fusion of multiple decisions. On the other hand, the win-

ner-take-all concept in MW-RX may have an advantage over anomalies but not background,

which is prone to a high false alarm rate, whereas the latter one exploits an additional parameter

t to adaptively control the issue. In the experiments, we will show that the parameter t can be

easily selected for a suboptimal performance status which is close to the best one. This means the

proposed RX-Fusion and KRX-Fusion can be operated as parameter-free.

3 Experimental Results

3.1 Hyperspectral Data

The first experimental data we employed are the hyperspectral digital imagery collection experi-

ment (HYDICE) image30 This scene consists of 80 × 100 pixels for an urban area. The spatial

resolution is approximately 1 m. 175 bands of spectral coverage 0.4 to 2.5 μm remain after

removal of water vapor absorption bands. There are approximately 21 anomalous pixels, rep-

resenting cars and roof. The scene and the ground-truth map of anomalies are shown in Fig. 1.

The second dataset was acquired by the HyMap airborne hyperspectral imaging sensor,31

which provides 126 spectral bands spanning the wavelength interval 0.4 to 2.5 μm. The

Fig. 6 (a) AUC for RX and KRX with different windows; (b) AUC for RX-Fusion and KRX-Fusion

with varying t.
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image dataset, covering one area of Cooke City, Montana, was collected on July 4, 2006, with

the spatial size 200 × 800 pixels. Each pixel has approximately 3 m of ground resolution. Seven

types of targets, including four fabric panel targets, and three vehicle targets, were deployed in

the region of interest. In our experiment, we crop a subimage of size 100 × 300 pixels, including

all these targets (anomalies) as depicted in Fig. 2. Figure 3 further illustrates the spectral sig-

natures of the seven targets, which are significantly different from the mean of background.

3.2 Detection Performance

We investigate the effectiveness of the proposed RX-Fusion and KRX-Fusion. For KRX, a com-

monly used Gaussian radial basis function kernel is adopted.21 In this work, the kernel parameter

is set to 50 for these two data according to our experimental study. As for windows ðwin; woutÞ,
since the size of anomalies is usually small, we set the general choices as listed in Table 1, which

includes 12 pairs in total. Figure 4 first illustrates the performance with varying sizes of windows

ðwin; woutÞ using the HYDICE urban data. The receiver-operating-characteristic (ROC) curve is

employed to quantitatively evaluate the detection ability. The results clearly show that the per-

formance of the detector changes significantly with different ðwin; woutÞ and indicate that it dete-
riorates if an inappropriate window is chosen, which motivates us to design a window-

independent detector. The proposed RX-Fusion and KRX-Fusion, based on the decision-fusion

strategy, simultaneously adopt multiple windows and produce the final decision map via a voting

process.

Fig. 7 Receiver-operating-characteristic (ROC) performance of the proposed (a) RX-Fusion and

(b) KRX-Fusion for the HYDICE urban data.
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Figures 5 to 6 illustrate the area under ROC (AUC) performance of RX, KRX, RX-Fusion,

and KRX-Fusion. In Fig. 5(a), the best ðwin; woutÞ for both RX and KRX is (7, 9); moreover, we

observe that the AUC performance of RX and KRX is sensitive to the choice of sizes of win-

dows, which is consistent with the performance in Fig. 4. In Fig. 5(b), the optimal t values (out of

12) for RX-Fusion and KRX-Fusion are 5 and 4, respectively. Note that when t ¼ 6, the per-

formance of RX-Fusion and KRX-Fusion is very similar to the best ones, which are also close to

the case with the best window settings as shown in Fig. 5(b). In Fig. 6, for the HyMap data, the

best ðwin; woutÞ for both RX and KRX is (7, 11), and the best t values for RX-Fusion and KRX-

Fusion are 9 and 8, respectively. In Fig. 6(b), if t ¼ 6, the performance of both RX-Fusion and

KRX-Fusion is slightly worse, but much better than the cases with inappropriate window sizes as

shown in Fig. 6(a).

Under the best parameters, Figs. 7 to 8 illustrate the ROC performance of the proposed RX-

Fusion and KRX-Fusion compared with RX, KRX, MW-RX, and MW-KRX. For better visu-

alization, we separate the cases of RX-Fusion and KRX-Fusion. From the results, it is obvious

that the proposed RX-Fusion is always superior to RX and MW-RX, and the proposed KRX-

Fusion outperforms KRX and MW-KRX. For the HYDICE urban data, MW-KRX exhibits a

better performance than KRX; however, this is not true for the HyMap data. To further inves-

tigate the detection performance in the HYDICE urban data, Fig. 9 illustrates the detection maps

when Pf is fixed to a small value (e.g., 0.005) and Pd is the maximum. The proposed RX-Fusion

and KRX-Fusion still perform the best with the largest Pd, which is consistent with the results

in Fig. 7.

Fig. 8 ROC performance of the proposed (a) RX-Fusion and (b) KRX-Fusion for the HyMap data.
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Table 2 further summarizes the AUC performance. From the AUC values shown in Figs. 5 to

6, we can see that although the performances of suboptimal RX-Fusion and KRX-Fusion (i.e.,

t ¼ 6 when m ¼ 12) are slightly worse than the best RX and KRX (which are practically

unknown), respectively, they are much better than their worst and average performances.

This means, in reality, we can empirically choose t to equal 50% of the total number of detectors;

in other words, if half of detectors claim a pixel to be an anomaly, then it will be an anomaly in

the final decision.

Fig. 9 Detection maps for HYDICE urban data when P f is fixed to 0.005. (a) RX: Pd ¼ 0.7143;

(b) MW-RX: Pd ¼ 0.6667; (c) RX-Fusion: Pd ¼ 0.8571; (d) KRX: Pd ¼ 0.8095; (e) MW-KRX:

Pd ¼ 0.8571.

Table 2 Area under ROC (AUC) for several anomaly detectors using the two experimental data.

HYDICE HyMap

RX (best) 0.9964 0.7304

RX (worst) 0.9030 0.5857

RX (average) 0.9512 0.6665

MW-RX 0.9944 0.6243

RX-Fusion (best) 0.9973 0.7343

RX-Fusion (suboptimal) 0.9953 0.7024

KRX (best) 0.9968 0.8694

KRX (worst) 0.9079 0.5876

KRX (average) 0.9516 0.7622

MW-KRX 0.9974 0.7661

KRX-Fusion (best) 0.9976 0.8738

KRX-Fusion (suboptimal) 0.9959 0.8638

The bold values represent the maximum values.
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4 Conclusions

In this work, we proposed an effective decision-fusion strategy for dual-window-based anomaly

detection in HSI. For each testing sample, the detection outputs of a detector with multiple win-

dows were first obtained. The final detection was achieved through a voting process.

Experimental results of two hyperspectral data demonstrated that the proposed RX-Fusion/

KRX-Fusion outperformed the existing RX, KRX, MW-RX, and MW-KRX. Although the

final decision is dependent on a voting parameter, we find out that 50% voting can generate

a suboptimal (and close to optimal) performance, which is significantly better than a single

detector with unfortunately poor window settings. The base detector utilizes the fashion of spa-

tial convolution with a sliding dual window, which is suitable for parallel computing,32,33

because the output of one pixel is irrelevant to the output of another. In the proposed deci-

sion-fusion framework, the multiple dual windows can also be simultaneously implemented,

which will be investigated as the future work.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under

(Grant No. NSFC-61302164), and in part by the Fundamental Research Funds for the Central

Universities under (Grant No. YS-1404).

References

1. B. Du and L. Zhang, “Target detection based on a dynamic subspace,” Pattern Recognit.

47(1), 344–358 (2014).

2. W. Li, K. Liu, and H. Su, “Wavelet-based nearest-regularized subspace for noise-robust

hyperspectral image classification,” J. Appl. Remote Sens. 8, 083665 (2014).

3. D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imaging applications,”

IEEE Signal Process. Mag. 19(1), 29–43 (2002).

4. Q. Du and H. Ren, “Real-time constrainted linear discriminant analysis to target detection

and classification in hyperspectral imagery,” Pattern Recognit. 36(1), 1–12 (2003).

5. Q. Du and C. I. Chang, “A signal decomposed and interference annihilated approach to

hyperspectral target detection,” IEEE Trans. Geosci. Remote Sens. 42(4), 892–906 (2004).

6. D. W. J. Stein et al., “Anomaly detection from hyperspectral imagery,” IEEE Signal Process.

Mag. 19(1), 58–69 (2002).

7. N. M. Nasrabadi, “Hyperspectral target detection: an overview of current and future chal-

lenges,” IEEE Signal Process. Mag. 31(1), 34–44 (2014).

8. I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with

unknown spectral distribution,” IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–

1770 (1990).

9. X. Yu, I. S. Reed, and A. D. Stocker, “Comparative performance analysis of adaptive multi-

spectral detectors,” IEEE Trans. Signal Process. 41(8), 2639–2656 (1993).

10. X. Yu et al., “Automatic target detection and recognition in multiband imagery: a unified

ML detection and estimation approach,” IEEE Trans. Image Process. 6(1), 143–156 (1997).

11. N. M. Nasrabadi, “Regularized spectral matched filter for target recognition in hyperspectral

imagery,” IEEE Signal Process. Lett. 15, 317–320 (2008).

12. J. M. Molero et al., “Analysis and optimizations of global and local versions of the RX

algorithms for anomaly detection in hyperspectral data,” ‘IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens. 6(2), 801–814 (2013).

13. M. T. Eismann, Hyperspectral Remote Sensing, SPIE Press, Bellingham, Washington

(2012).

14. O. Duran and M. Petrou, “A time-efficient method for anomaly detection in hyperspectral

images,” IEEE Trans. Geosci. Remote Sens. 45(12), 3894–3904 (2007).

15. Q. Du and I. Kopriva, “Automated target detection and discrimination using constrained

kurtosis maximization,” IEEE Geosci. Remote Sens. Lett. 5(1), 38–42 (2008).

Li and Du: Decision fusion for dual-window-based hyperspectral anomaly detector

Journal of Applied Remote Sensing 097297-10 Vol. 9, 2015

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 02/26/2015 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1016/j.patcog.2013.07.005
http://dx.doi.org/10.1117/1.JRS.8.083665
http://dx.doi.org/10.1109/79.974724
http://dx.doi.org/10.1016/S0031-3203(02)00065-1
http://dx.doi.org/10.1109/TGRS.2003.821887
http://dx.doi.org/10.1109/79.974730
http://dx.doi.org/10.1109/79.974730
http://dx.doi.org/10.1109/MSP.2013.2278992
http://dx.doi.org/10.1109/29.60107
http://dx.doi.org/10.1109/78.229895
http://dx.doi.org/10.1109/83.552103
http://dx.doi.org/10.1109/LSP.2008.917805
http://dx.doi.org/10.1109/JSTARS.2013.2238609
http://dx.doi.org/10.1109/JSTARS.2013.2238609
http://dx.doi.org/10.1109/TGRS.2007.909205
http://dx.doi.org/10.1109/LGRS.2007.907300


16. S. Khazai et al., “An approach for subpixel anomaly detection in hyperspectral images,”

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6(2), 769–778 (2013).

17. B. Du and L. Zhang, “Random-selection-based anomaly detector for hyperspectral

imagery,” IEEE Trans. Geosci. Remote Sens. 49(5), 1578–1589 (2011).

18. Q. Guo et al., “Weighted-RXD and linear filter-based RXD: improving background statis-

tics estimation for anomaly detection in hyperspectral imagery,” IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens. 7(6), 2351–2366 (2014).

19. K. I. Ranney and M. Soumekh, “Hyperspectral anomaly detection within the signal sub-

space,” IEEE Geosci. Remote Sens. Lett. 3(3), 312–316 (2006).

20. B. Du and L. Zhang, “A discriminative metric learning based anomaly detection method,”

IEEE Trans. Geosci. Remote Sens. 52(11), 6844–6857 (2014).

21. H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: a nonlinear anomaly detector for

hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(2) 388–397 (2005).

22. H. Goldberg, H. Kwon, and N. M. Nasrabadi, “Kernel eigenspace separation transform for

subspace anomaly detection in hyperspectral imagery,” IEEE Geosci. Remote Sens. Lett.

4(4), 581–585 (2007).

23. R. Zhao, B. Du, and L. Zhang, “Robust nonlinear hyperspectral anomaly detection

approach,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 7(4), 1227–1234 (2014).

24. W. Sakla et al., “An SVDD-based algorithm for target detection in hyperspectral imagery,”

IEEE Geosci. Remote Sens. Lett. 8(2), 384–388 (2011).

25. S. Matteoli, M. Diani, and J. Theiler, “An overview of background modeling for detection of

targets and anomalies in hyperspectral remotely sensing imagery,” IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens. 7(6), 2317–2336 (2014).

26. W. Li and Q. Du, “Collaborative representation for hyperspectral anomaly detection,” IEEE

Trans. Geosci. Remote Sens. 53(3), 1463–1474 (2015).

27. W. Liu and C. I. Chang, “Multiple-window anomaly detection for hyperspectral imagery,”

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6(2), 644–658 (2013).

28. C.-I. Chang and S.-S. Chiang, “Anomaly detection and classification for hyperspectral

imagery,” IEEE Trans. Geosci. Remote Sens. 40(6), 1314–1325 (2002).

29. M. Petrakos, J. A. Benediktsson, and I. Kanellopoulos, “The effect of classifier agreement

on the accuracy of the combined classifier in decision level fusion,” IEEE Trans. Geosci.

Remote Sens. 39(11), 2539–2546 (2001).

30. P. A. Mitchell, “Hyperspectral digital imagery collection experiment (HYDICE),” Proc.

SPIE 2587, 70–95 (1995).

31. D. Snyder et al., “Development of a web-based application to evaluate target finding algo-

rithms,” in Proc. Int. Geoscience and Remote Sensing Symp., pp. 915–918, IEEE, Boston,

Massachusetts (2008).

32. K. Liu et al., “Fast motion detection from airborne videos using graphics processing unit,” J.

Appl. Remote Sens. 6(1), 061505 (2012).

33. J. M. Molero et al., “Efficient implementation of hyperspectral anomaly detection tech-

niques on GPUs and multicore processors,” IEEE J. Sel. Topics Appl. Earth Observ.

Remote Sens. 7(6), 2256–2266 (2014).

Wei Li received his PhD degree in electrical and computer engineering from Mississippi State

University, Starkville, in 2012. Subsequently, he spent 1 year as a postdoctoral researcher at the

University of California, Davis. Currently, he is with the College of Information Science and

Technology at Beijing University of Chemical Technology, Beijing, China. His research interests

include statistical pattern recognition, hyperspectral image analysis, and data compression.

Qian Du received her PhD degree in electrical engineering from the University of Maryland

Baltimore County, Baltimore, Maryland, in 2000. Currently, she is the Bobby Shackouls pro-

fessor with the Department of Electrical and Computer Engineering at Mississippi State

University, Mississippi. Her research interests include hyperspectral remote sensing image

analysis, pattern classification, data compression, and neural networks. She serves as an asso-

ciate editor for the Journal of Applied Remote Sensing. She is a fellow of SPIE.

Li and Du: Decision fusion for dual-window-based hyperspectral anomaly detector

Journal of Applied Remote Sensing 097297-11 Vol. 9, 2015

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 02/26/2015 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1109/JSTARS.2012.2210277
http://dx.doi.org/10.1109/TGRS.2010.2081677
http://dx.doi.org/10.1109/JSTARS.2014.2302446
http://dx.doi.org/10.1109/JSTARS.2014.2302446
http://dx.doi.org/10.1109/LGRS.2006.870833
http://dx.doi.org/10.1109/TGRS.2014.2303895
http://dx.doi.org/10.1109/TGRS.2004.841487
http://dx.doi.org/10.1109/LGRS.2007.903083
http://dx.doi.org/10.1109/JSTARS.4609443
http://dx.doi.org/10.1109/LGRS.2010.2078795
http://dx.doi.org/10.1109/JSTARS.2014.2315772
http://dx.doi.org/10.1109/JSTARS.2014.2315772
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1109/JSTARS.2013.2239959
http://dx.doi.org/10.1109/TGRS.2002.800280
http://dx.doi.org/10.1109/36.964992
http://dx.doi.org/10.1109/36.964992
http://dx.doi.org/10.1117/12.226807
http://dx.doi.org/10.1117/12.226807
http://dx.doi.org/10.1117/1.JRS.6.061505
http://dx.doi.org/10.1117/1.JRS.6.061505
http://dx.doi.org/10.1109/JSTARS.2014.2328614
http://dx.doi.org/10.1109/JSTARS.2014.2328614

