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Abstract—In this paper, we consider a distributed detection sce-
nario where a number of remote sensors is linked to a decision fu-
sion center by a fading multiaccess channel. The communication
is assumed to be noncoherent meaning that channel gains are un-
known at both sensors and the fusion center. Each sensor makes
a binary local decision and communicates it to the fusion center
simultaneously. We investigate the detection performance of the
system in terms of error probability and error exponent under
both Rayleigh and Rician fading scenarios. We reveal that ON–OFF
keying is the most energy efficient modulation scheme when the
channel is subject to Rayleigh fading and that optimizing the mod-
ulation scheme can lead to a gain in error exponent under Rician
fading scenario. Under both fading scenarios, optimal decision fu-
sion rules can be reduced to simple threshold tests.

Index Terms—Distributed detection, fading channels, multiac-
cess communication, multisensor systems, signal processing for
communications.

I. INTRODUCTION

I N this paper, we focus on distributed detection using geo-
graphically dispersed wireless sensors. The state of nature

to be detected, for example, could be the presence of an enemy
target or the leakage of poisonous gas. Intelligent sensors will
make observations, which are dependent on the true state of na-
ture, locally process their observations and communicate the re-
sults to a fusion center where a final decision will be made with
regard to which hypothesis is true.

Classical distributed detection has been studied exten-
sively [1]–[3]. However, to implement distributed detection
in wireless sensor networks (WSNs), we meet some new
challenges. One challenge is the stringent energy constraint.
Normally, wireless sensors are powered by small batteries
and it is often hard or not economic to replace those batteries
when they run out. As a result, WSNs call for energy efficient
computing and transmission schemes to extend the service
time of the battery. To save transmission power, WSNs may
sometimes be forced to operate with low SNR. Techniques to
improve the detection performance in the low SNR region will
then be a problem of interest.
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A. Related Works

When local sensors communicate with the fusion center, dis-
tributed data compression could be performed to reduce the
communication bandwidth and to conserve energy (e.g., [4] and
[5]). When designing distributed detection schemes for WSNs,
we should also take into account the effect of unreliable wireless
channels to yield a better performance. Disregarding the unreli-
ability of the transmission channel will result in degradation of
performance [6].

For a binary hypothesis testing problem, distributed detection
schemes utilizing intelligent sensors with each of them making
a local binary decision and communicating the uncoded binary
decision to the fusion center have attracted considerable atten-
tion. Local decisions are normally transmitted in parallel to the
fusion center without interfering with each other. Such simple
schemes can dramatically reduce the communication bandwidth
and the transmission power [7]–[11]. Reference [7] investigates
the case where the channel state information is known, while [8]
considers the case where only the knowledge of channel statis-
tics is available. If necessary, local decisions may be transmitted
to the fusion center via multiple hops [9]. In [10], however, a
serial distributed detection structure is considered. The fusion
of censored decisions is proposed in [11] which is motivated
by [12].

Recently, the idea of distributed detection over multiaccess
channels has emerged. For a set of discrete or quantized ob-
servations, Mergen, Naware, and Tong [13] as well as Liu and
Sayeed [14] proposed type-based multiple access (TBMA)
scheme. The TBMA scheme requires a number of orthogonal
multiaccess channels. The actual number is equal to the car-
dinality of the set of all possible observations (or quantized
observations). Each multiaccess channel is associated with a
particular observation and each sensor will transmit a pulse
over the multiaccess channel that corresponds to its obser-
vation type. Obviously, at least two orthogonal multiaccess
channels are needed for a detection problem. The TBMA
scheme is further developed by Anandkumar and Tong in [15].
For continuous sensor observations, several schemes that fuse
analog signals (or soft decisions) over multiaccess channels are
proposed and shown to be asymptotically optimal [14], [16]
(i.e., could achieve the same error exponent as a centralized
system can). Unlike the TBMA scheme, all the sensors transmit
simultaneously over the same multiaccess channel in those
schemes, no matter what their observations are. To achieve the
asymptotic optimality, we need a nonfading channel or at least
channel gains to be known at local sensors. However, wireless
channels are always subject to fading and a lot of overhead
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will be introduced for local sensors to obtain the channel state
information. Another related reference is [17] where amplified
local observations are communicated to the fusion center via
code division multiple access.

Given nonfading channel, we have considered the design of
local mapping rules, which map sensor observations to signals
to be transmitted to the fusion center, for multiaccess schemes in
our previous work [18], [19]. The multiaccess communication
scheme also finds its application in distributed inference prob-
lems. The authors of [20] investigate a linear Gaussian sensor
network for distributed estimation purpose, where sensors com-
municate with base stations over multiaccess channels, and de-
rive a lower bound on the best achievable end-to-end distortion.

B. Our Contributions

In this paper, we consider the fusion of local binary decisions
over a noncoherent fading multiaccess channel. When the com-
munication channel is not subject to fading or channel gains are
known at sensors, having all sensors transmit simultaneously
over the same multiaccess channel will not only reduce the com-
munication bandwidth but also effectively suppress the channel
noise and hence lead to good performance [14], [16]. How-
ever, the assumption of nonfading channel is often too strong for
WSNs and it may take a lot of efforts for sensors to estimate the
channel gain. As a result, we relax the assumption of nonfading
channel or known channel gains, but instead assume that local
decisions are simultaneously transmitted to the fusion center
over a noncoherent fading multiaccess channel. Channel gains
are not known at local sensors or the fusion center. The use of
noncoherent detection can lift the burden caused by channel es-
timation, greatly reduce the computational load at sensor nodes
and help to conserve energy.

Two types of fading multiaccess channels are considered,
namely Rayleigh and Rician fading channels. For each fading
scenario, we do the following:

• analyze the detection performance in terms of error prob-
ability;

• investigate the error exponent of the system with the help
of the Continuity Theorem and Large Deviation Principle
(LDP);

• and design energy efficient modulation scheme for local
sensors.

Although the error probability is a special case of the Bayes
risk, our results can be easily extended to general Bayesian and
Neyman–Pearson tests. The performance of TBMA scheme
over fading channel is investigated in [13], where channel
gains are assumed to be real random variables. In this work,
channel gains are complex and this makes the analysis more
complicated.

The main results are summarized in the following.
As the number of sensors increases, the system demonstrates

an error floor under Rayleigh fading scenario, but can achieve
an exponentially decreasing error probability under Rician
fading scenario. When the communication channel is subject
to Rayleigh fading, the error probability can not be made ar-
bitrarily small by increasing the number of sensors. We derive
the closed-form expression of the error floor. This error floor

is due to the noncoherent addition of signals transmitted by
different sensors. We also find that the multiaccess scheme can
achieve an exponentially decreasing error probability when
the communication channel is subject to Rician fading. We
calculate the error exponent using LDP.

Even under Rayleigh fading scenario, the multiaccess scheme
can assist decision fusion when the system operates in the low
SNR region. Due to Rayleigh fading, signals transmitted by dif-
ferent sensors may cancel out each other. Surprisingly enough,
we observe that the multiaccess scheme still outperforms the
traditional parallel access scheme when there is a small number
of sensors with low transmission power. We explain the intu-
ition behind that in Section V. A short discussion on approaches
to further improve the performance of the multiaccess scheme
under Rayleigh fading scenario can be found in Section VI.

Under Rayleigh fading scenario, ON–OFF keying (OOK) is the
most energy efficient modulation scheme for local sensors to
communicate their binary decisions; under Rician fading sce-
nario, optimizing local sensors’ modulation scheme will lead
to a larger error exponent. Given a certain energy budget per
sensor, we find that OOK can provide the smallest error proba-
bility under Rayleigh fading scenario. However, OOK is in gen-
eral not the optimal choice when Rician fading is considered.
Under Rician fading scenario, a gain in error exponent can be
achieved by optimizing the modulation scheme. In contrast, we
can not obtain a larger error exponent by optimizing the mod-
ulation scheme when the communication channel is not subject
to fading [19].

Under both Rayleigh and Rician fading scenarios, both
optimal and asymptotically optimal decision fusion rules can
be reduced to threshold tests, which appear in much simpler
forms than the likelihood ratio test. Use and to denote the
in-phase and quadrature components of the received signal. At
the fusion center, the likelihood ratio test is an optimal decision
fusion rule. However, the expression of the likelihood ratio

becomes more and more complicated when the
number of sensors increases. Under both Rayleigh and Rician
fading scenarios, we show that the optimal decision fusion rule
can be reduced to the following threshold test:

(1)

which means that the fusion center will decide hypothesis
to be true if the left-hand side of (1) is greater than and de-
cide hypothesis otherwise. If the type of fading channel, the
number of sensors and the modulation scheme are known, then

and are all constants ( under Rayleigh fading sce-
nario). Asymptotically optimal decision fusion rule under Ri-
cian fading scenario has a similar form to (1) and is given by

(2)

where and are scaled versions of and , and
does not depend on the number of sensors deployed. These dis-
coveries allow us to simplify the implementation at the fusion
center, and obtain the system performance through very simple
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numerical calculation. Utilizing (2), we can even obtain the ex-
pression for the error exponent under Rician fading scenario,
which is given by

(3)

in (3) is some convex function (see Section IV for more
information).

The rest of the paper is organized as follows. The problem for-
mulation will be introduced in the next section. In Section III,
we analyze the error probability of the system under both
Rayleigh and Rician fading scenarios. The asymptotic behavior
of the system under two fading scenarios is investigated in
Section IV. Section V provides some numerical results, and we
conclude in Section VI.

II. PROBLEM FORMULATION

Consider the testing of two hypotheses and with the
help of distributed sensors. Let be the observation obtained
by the th sensor. We do not assume any specific distribution for
observations but do assume the observations are conditionally
independent and identically-distributed (i.i.d.) given or .
The prior probabilities of and are denoted by and

. When observations are obtained, sensors will make local
decisions according to a common local decision rule. As a result,
all the sensors will have the same detection probability (denoted
by ) and the same false alarm probability (denoted by ). We
assume that . A sensor will transmit a baseband symbol

(i.e., ) to inform the fusion center that it decides
to be true and will transmit a baseband symbol

(we assume ) to indicate that it decides to be true.
Unlike the parallel access communication scheme where each
sensor communicates with the fusion center through a dedicated
channel, the multiaccess communication scheme allows all the
sensors to transmit simultaneously over the same channel. The
signal received by the fusion center will be the superposition of
all the transmitted signals.

The assumption that channel gains are known at local sen-
sors will sometimes be too strong. Additional training overhead
will be introduced to estimate the channel gain, which could be
costly for energy-limited sensors. Here, we consider the non-
coherent case. We assume that signals sent by different sensors
are subject to independent but identical fading and channel gains
are not known at the fusion center or local sensors. The received
baseband symbol can be expressed as

(4)

where

is the local decision made by the th sensor (
indicates that the th sensor decides ), are i.i.d. com-
plex channel gains and is the complex Gaussian noise with
zero mean and . Such a model is illustrated in
Fig. 1. Two fading scenarios will be considered. Under Rayleigh

Fig. 1. System model.

fading scenario, the real and imaginary parts of follow a joint
Gaussian distribution with mean zero and covariance matrix

, where is a 2 2 identity matrix. Under Rician fading sce-
nario, the real and imaginary parts of follow a joint Gaussian
distribution with mean (note that we don’t lose any gen-
erality by making this assumption and a detailed explanation can
be found in Appendix A) and covariance matrix . Channel
statistics and are assumed to be known at the fusion center.
These channel statistics can be obtained via training or field
measurements. For example, a sensor could transmit a series
of pilot signals with pre-determined power to the fusion center.
The fusion center could then calculate the channel statistics
based on the received signals.

Based on the complex symbol , the fusion center will make a
final decision (where indicates that the fusion
center decides ). We are interested in the error probability

and the error
exponent of the system.

III. PERFORMANCE ANALYSIS

In this section, we investigate system’s error probability
under the two fading scenarios.

A. Rayleigh Fading

Under Rayleigh fading scenario, we can prove that OOK is
the most energy efficient modulation scheme. A simplified proof
can be found in Appendix B. For simplicity, we assume
and throughout this sub-section (under this assumption,
we have ). So a sensor will transmit a pulse to inform
the fusion center that it decides and will remain silent when
it decides .

1) Sufficient Statistic: We first establish the fact that the re-
ceived signal power is a sufficient statistic for final decision
making. Decompose the complex symbol into in-phase and
quadrature components (denoted by and , respectively)

(5)

where and are real and imaginary parts of ; and
and are i.i.d. Gaussian random variables with mean zero and
variance . Define a random variable (i.e., the
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Fig. 2. Conditional probability density function of � given the number of si-
multaneously transmitting sensors.

total number of sensors that decide to transmit). Under , we
have

(6)

Define which is the received signal power.
Note that depends on and only through

[see (6)]. Hence, the received signal power is a sufficient
statistic. In quite a few detection problems, we find that the re-
ceived signal power turns out to be a sufficient statistic [21].

Since is a sufficient statistic, we are able to turn the detec-
tion problem in to a detection problem in . Given

, will be a random variable that follows a Chi-
square distribution with two degrees of freedom. By performing
a linear transformation to the Chi-square distributed random
variable, we can obtain [22]

(7)
The probability density function of given different values of

is plotted in Fig. 2.
Due to Rayleigh fading and the adoption of multiaccess com-

munication scheme, the fusion center receives a mix of zero-
mean faded signals that are transmitted by local sensors. At first
glance, it seems to be difficult for the fusion center to retrieve
useful information from the received signal. However, the ul-
timate goal of the fusion center is to distinguish between the
two hypotheses based on the signal that it receives. For homo-
geneous sensors, it is more important for the fusion center to
know how many sensors have decided rather than to know

which sensors have decided . Since a sensor will transmit
only if it decides , the more sensors that decide , the more
likely it is for the received signal power to be large as shown
in Fig. 2. Although not precise, the superposed signal does pro-
vide the fusion center with some information about how many
sensors have decided .

2) Optimal Decision Fusion Rule: It is well known that the
decision fusion rule that minimizes the error probability will be
the following likelihood ratio test

(8)

which means that the fusion center will make a decision in favor
of when the likelihood ratio on the left-hand side of (8) is
larger than and make a decision in favor of otherwise. As
the number of sensors increases, the expression of the likelihood
ratio becomes more and more complicated [see (10)].

Starting from (8), we shall now show how the optimal deci-
sion fusion rule can be reduced to a threshold test on the received
signal power step by step. The distribution of under can
be expressed as

(9)

We have ; and if
we replace with in the right-hand side of the equation we
get . Substituting (9) into (8), we get

(10)

Define to be the set in the domain of which contains all
that will make the left-hand side of (10) greater than its right-

hand side and to be the complement set of . and are
also known as the decision regions for and respectively.
The boundaries of and can be found by solving

(11)

because will not change its sign when lies in between
the two adjacent roots of due to the continuity of (or
in other words, the set of all that lie in between two adjacent
roots of is a subset of either or ). Substitute (9) into
(11) and we get

(12)

where . Since , we require .
Before exploring the property of the optimal decision fusion

rule, we provide one lemma and one theorem.
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Lemma 1: Let and be two positive real numbers,
be a positive integer, and . The sequence

with
will change its sign at most once.

Proof: The proof can be found in Appendix C.
Theorem 1: Let

and . If the sequence
changes its sign only once, then has exactly one

positive root.
Proof: The proof can be found in Appendix D.

Based on Lemma 1 and Theorem 1, we have
Theorem 2: Under Rayleigh fading scenario, the optimal de-

cision fusion rule can be reduced to a threshold test on

(13)

Proof: The proof can be found in Appendix E.
Remark 1: Let and be the real and imaginary parts

of . We can show that

for any such that

. However, this monotone likelihood ratio
property is not a sufficient condition for a threshold test on
as shown in (13) (i.e., we can not derive Theorem 2 purely
based on the monotone likelihood ratio property). This should
convince the reader that Theorem 2 is a nontrivial result.

Suppose (12) has one positive root . Then the threshold
for the test on is given by . Due to the unique-

ness of the positive root, can be numerically calculated using
bisection method.

3) Error Probability: With the help of Theorem 2, we can
derive the error probability

(14)

(15)

We can easily obtain by numerically calculating and
substituting it into (15). Fig. 3 shows the numerically calculated
error probabilities for two different cases. The two cases have
the same but different . A larger implies a better chance
to see a large channel gain and hence a smaller error probability.

Fig. 3. Detection performance.

B. Rician Fading

Under Rician fading scenario, we assume that the real and
imaginary parts of follow a joint Gaussian distribution with
mean and covariance matrix .

1) Sufficient Statistic and Optimal Decision Fusion Rule:
Under Rician fading scenario, the conditional joint distribution

is given by

(16)

By replacing with in (16), we get . At the
fusion center, the optimal fusion rule will be the following like-
lihood ratio test

(17)

Again, we use and to denote the decision regions for
and respectively. Due to the continuity of and

, the boundaries of and can be found by
solving

(18)

Substituting (16) and the expression of into (18),
we get

(19)

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 15,2021 at 15:21:42 UTC from IEEE Xplore.  Restrictions apply. 



4372 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

where and

. Based on the above result, we can establish the
following theorem.

Theorem 3: Under Rician fading scenario, the optimal deci-
sion fusion rule can be reduced to the following threshold test:

(20)

Proof: The approach used to prove Theorem 2 can be ap-
plied to prove this theorem.

2) Error Probability: Once the threshold is obtained, we
can calculate the error probability as

(21)

When the channel is subject to Rician fading, OOK is in general
not the most energy efficient modulation scheme. Notice that
the transmission power per sensor is given by

. We may wish to optimize
and subject to the power constraint . The fact that the
error probability associated with a particular pair of and can
be numerically calculated via (21) makes it a lot easier for us
to design an energy efficient modulation scheme under Rician
fading scenario.

IV. ASYMPTOTIC BEHAVIOR

In this section, we will evaluate large system performance
under both Rayleigh and Rician fading scenarios.

A. Rayleigh Fading

As can be observed from Fig. 3, the curves of error proba-
bility flatten out as the number of sensors grows. Will similar
phenomenon be observed when parameters such as and
change? We will answer the question in this subsection. Again,
we assume that and .

To evaluate the system performance as the number of sensors
goes large, we construct

which is merely a scaled version of . When the number
of sensors goes to infinity, we have

Theorem 4: If both and are finite, then

and as , where
denotes convergence in distribution.

Proof: The detailed proof can be found in Appendix F.
Since and can not be separated without

error, an error floor occurs (similar results are reported in the
study of type-based schemes [13], [15] when the channel gain

has zero mean). The error that results from distinguishing be-
tween the two joint Gaussian distributions (or the error floor) is
given by

(22)

where

or equivalently

and is the complement set of . Under the assumption of
, if , will be the entire plane and

the error probability will be equal to . Otherwise, is given
by

(23)

where

Note that the integrals in (22) are calculated in polar coordinates
in (23). The error floor is plotted in Fig. 4 as a function of
for different values of while is kept unchanged.
Since the error probability can not be driven arbitrarily close to
zero by increasing the number of sensors, the error exponent is
zero.

B. Rician Fading

Unlike the Rayleigh fading channel, a Rician fading channel
can lead to a positive error exponent. This can be understood by
closely examining (4). Under Rayleigh fading scenario, the law
of large numbers suggests that

(24)

will converge to under both hypotheses as the number
of sensors increases (because of the fact that the mean of
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Fig. 4. Limitations in performance.

equals to under both and ).
However, under Rician fading scenario, the vector in (24)
will converge to different vectors under and . In the
following, we shall evaluate the asymptotic behavior of the
system under Rician fading scenario.

We start by examining the asymptotic behavior of a
simple scheme. Define the scaled received symbol as

. Use and to denote the real and
imaginary parts of . Consider the following threshold test:

(25)

where the threshold is a constant (i.e., not a function of ) and
. The error exponent associated with the decision

fusion rule (25) can be written as

(26)

where and are exponents of false alarm and miss
probabilities. When there are sensors deployed, the loga-
rithmic moment generating function associated with
under is defined as

We further define

We can show that

(27)

The detailed derivation can be found in Appendix G. By
replacing with in (27), we get . Let

and be the Fenchel–Legendra trans-
form of and , i.e.,

(28)

Both and are convex functions [23]. Since
and are essentially smooth and lower

semicontinuous functions, we can apply Gartner–Ellis theorem
[23] to show that

(29)

(30)

where

The mean of the real and imaginary parts of under
is and 0, respectively. The mean of
the real and imaginary parts of under is

and 0, respectively. Hence, as goes to infinity,
will converge to under and

under . To make sure that neither nor is
zero (or equivalently ), we need and ,
or equivalently . Let

.
As increases, the area of becomes larger and the

area of becomes smaller. Hence, is
a nondecreasing function of and is
a nonincreasing function of for . We gradually increase

until . Let be the value of such that
. We have the following theorem.

Theorem 5: The following decision fusion rule with a con-
stant threshold

(31)

can achieve the same error exponent as the optimal decision
fusion rule (20) can.

Proof: The detailed proof can be found in Appendix H.
Theorem 5 suggests that the decision fusion rule (31) is

asymptotically optimal. It is also worth noting that in the
optimal decision fusion rule (20) is a function of while
in (31) is not.

Based on the convexity of and , we
have the following theorem.

Theorem 6: For any , we have

(32)

(33)
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where

(34)

Proof: The detailed proof can be found in Appendix I.
For any given and , can obtained by solving

a convex optimization problem. This is because of the concavity
of . So for any given , can be
obtained by solving a convex optimization problem as suggested
by (33). Given , we can calculate by performing a one-
dimensional search (because feasible and are dependent
as shown in (34)). To find , we only need to gradually increase

until . Once we find , the error exponent is
given by

According to Theorem 5, this error exponent is also the error
exponent associated with the optimal decision fusion rule (20).

Given a certain energy constraint, we can optimize and
such that the largest error exponent is achieved. An example is
given in Section V.

V. NUMERICAL RESULTS

In this section we show some simulation results. We first
focus on the Rayleigh fading scenario. As before, we assume
that and when Rayleigh fading is considered. It is
pointed out in Section IV that the error probability will not con-
verge to zero even when we deploy a large number of sensors.
So we are interested in the performance when a small number
of sensors is deployed. In the following, we shall compare the
multiaccess scheme with the traditional parallel access scheme,
where we assume different sensors communicate with the fu-
sion center at different time slots, in order to understand the
pros and cons of the multiaccess scheme. Define . In-
creasing transmission power at local sensors is equivalent to in-
creasing . So can be viewed as a measure of effective trans-
mission power level. Fig. 5 shows the simulated performance of
the two access schemes for and . As increases,
both schemes will achieve a better performance. We can also
observe that the multiaccess scheme outperforms the parallel
access scheme when is small and loses superiority when is
large.

There are two major reasons why the multiaccess scheme per-
forms better when sensors’ transmission power is low. First, the
multiaccess scheme will provide a higher SNR at the receiver of
the fusion center than the parallel access scheme can. Suppose
there are sensors transmitting. The SNR at the fusion
center will be

(35)

In the parallel access scheme, one time slot will be assigned to
only one sensor. If it transmits, then the SNR will be which
is only of (35). Such an increment in the SNR is extremely
beneficial when the noise power at the fusion center is large. The

Fig. 5. Comparisons between two schemes with � � ���, � � ��� and
� � ����.

Fig. 6. Comparisons between two schemes with � � ���, � � ��� and
� � ����.

second reason, which is already stated in Section III, is that the
fusion center will still be able to roughly infer the total number
of sensors that decide based on the received signal power.
When the transmission power is extremely large, we could tell
almost surely how many sensors have decided if the parallel
access scheme is used. Due to the fading channel, transmitted
pulses may cancel out each other in the multiaccess scheme.
Although the SNR is high, it is still difficult to tell exactly how
many sensors have decided . This suggests that the multiac-
cess scheme will be a good choice when the sensor’s transmis-
sion power is low but not a good choice when the transmission
power is high.

In Fig. 6, we find that the parallel access scheme has a better
performance when the number of sensors is large. Also no-
tice that the number of sensors required for the parallel access
scheme to beat the multiaccess scheme increases when de-
creases.
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Fig. 7. Error exponent as � varies (� � � � �, � � �, � � ���, � �

����, � � ���).

Fig. 8. Error probabilities of different modulation schemes.

Next, we focus on the Rician fading scenario and show how
the design of modulation scheme could affect the performance.
The transmission power per sensor is given by

. We are free to choose and
as long as the constraint

(36)

is satisfied (i.e., each sensor has unit transmission power). For
different values of [notice that for any given , can be deter-
mined from (36)], Fig. 7 shows the corresponding error expo-
nent. It can be observed from Fig. 7 that by choosing
we can achieve the maximum error exponent. In Fig. 8, Monte
Carlo simulations are used to examine the performance of three
modulation schemes. In the first scheme, (which corre-
sponds to OOK); in the second scheme, (which
corresponds to BPSK); in the third scheme, . As can
be observed, the third scheme offers the best performance.

Fig. 9. Multiaccess scheme with multiple time slots with� � ���,� � ���,
� � ����, and � � 0 dB.

VI. CONCLUSION AND DISCUSSION

In this work, we consider the fusion of local binary deci-
sions over multiaccess channels. Under Rayleigh fading sce-
nario, although the system exhibits an error floor, the multiac-
cess scheme still outperforms the parallel access scheme when
a small number of sensors is deployed and each sensor’s trans-
mission power is low. Under Rician fading scenario, an expo-
nentially decreasing error probability can be achieved. Under
both fading scenarios, we optimize local sensors’ modulation
schemes and simplify decision fusion rules at the fusion center.

Finally, we wish to say a few words about how to improve the
performance of the multiaccess scheme when we have a large
number of sensors and the channel is subject to Rayleigh fading.
One solution is to divide sensors into several groups and allo-
cate each group a dedicated time slot to communicate with the
fusion center. A group of sensors can transmit simultaneously
in the time slot allocated to that group. The number of groups
grows as the total number of sensors increases. Such a multi-
access scheme can achieve an exponentially decreasing error
probability. Fig. 9 compares the performance of multiaccess
schemes with group size of two, three and four (“group size of

” means that each group will consist of sensors) with that of
the parallel access scheme. According to our simulation results,
the multiaccess scheme described above can perform better than
the parallel access scheme when sensors’ transmission power is
low. Moreover, the multiaccess scheme requires less bandwidth.

APPENDIX A
AN ASSUMPTION WITHOUT LOSS OF GENERALITY

Use and to denote the real and imaginary parts of .
Suppose and follow a joint Gaussian distribution with

mean and covariance matrix and
. The real and imaginary parts of the received complex symbol
(denoted by and , respectively) are given by

(37)
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where and are the real and imaginary parts of the noise
and follow a joint Gaussian distribution with mean and co-

variance matrix . Multiplying both sides of (37) by a rotation
matrix, we get

(38)

where and . Let the left-hand side of
(38) be . Equation (38) now becomes

(39)

where and follow a joint Gaussian distribution with
mean and covariance matrix , and and follow
a joint Gaussian distribution with mean and covariance matrix

. We can write (39) in a more compact form as follows:

(40)

It is obvious that (40) and (4) are two identical models, because
the distributions of and in (4) are exactly the same as the
distributions of and in (40). As a result, we do not lose
generality by assuming that the real and imaginary parts of
in (4) follow a joint Gaussian distribution with mean .

APPENDIX B
OPTIMALITY OF OOK

Suppose sensors have the capability to transmit quadrature
amplitude modulation (QAM) signals. We now consider a more
generalized scheme. A sensor will send a complex baseband
symbol instead of staying silent when it decides

to be true. When is decided, (we assume
that ) is sent. The average transmission power per
sensor is .
However, for any , we can always construct an OOK
modulation scheme (e.g., each sensor sends
(or ) when (or ) is decided), which consumes less
power but offers better or equivalent performance.

APPENDIX C
PROOF OF LEMMA 1

Rewrite as

. Without loss of generality, we assume .
We have . Suppose for a given we have

, then for all , we have . This can be proved
by induction. First, we examine . implies that

. Due to the fact

that , we have

As a result, is also smaller than zero. Similarly, we can
prove that must be negative and so on. From the above
results, we know that will be always nonnegative, or always
negative, or first nonnegative and then negative. So the sign of

will change at most once.

APPENDIX D
PROOF OF THEOREM 1

Suppose has more than one positive root. Arbitrarily
pick two positive roots and denote them by and . Without
loss of generality, we assume . Since the sequence

changes its sign only once, we can assume that
and (the reason is that by multiplying by ,

the case where and can be treated in a similar
way). Then there exists an integer such that and

. Since , we have
and . Combining these results, we get

(41)
Since is the root of , we have

or equivalently
. Similarly, we have

. But these contradict (41). Now we only
have to show that has at least one positive root. When

is sufficiently small, the sign of is determined by
which is positive. When is sufficiently large, the

sign of is determined by which is negative. Due to
the continuity of on , will have at least one
positive root. The theorem follows.

APPENDIX E
PROOF OF THEOREM 2

Since , the coefficients of
on the left-hand side of (12) will change signs at most once
according to Lemma 1. If the signs don’t change, the fusion
center will either always decide or always decide . So
the threshold of the test will be either or 0. If the signs of the
coefficients change once, then (12) will have one positive root
according to Theorem 1. If the positive root is smaller than 1,

will only have one positive root, which is due to the fact
that is a strictly decreasing function of . The sign of
changes at this unique root and this results in a threshold test
on . If the positive root is no smaller than 1, then the fusion
center will always decide one hypothesis to be true (because

for ).
Suppose (12) has one positive root . Due to the

assumption of one positive root , the sign of the sequence
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changes once.
Let in Lemma 1. Since

, the signs of
will first be positive and then be negative as

increases, which can be easily understood from the proof of
Lemma 1. For sufficiently small, the sign of the left-hand
side of (12) will be the same as the sign of the coefficient of

. The coefficient of is negative, because
is negative. Therefore, for all

sufficiently large . The theorem follows.

APPENDIX F
PROOF OF THEOREM 4

Here, we only prove the case when is true. The result for
the case when is true can be derived by a similar approach.
Under , the joint characteristic function of and is given
by

(42)

The last equality is due to the fact that and are condi-
tionally independent given . For any particular , is the
sum of independent Gaussian random variables with
of them contributed by sensors which are transmitting and 1 of
them contributed by the noise. So is . Thus, we have

(43)

and

(44)

where is the characteristic function of

the Gaussian distribution with mean zero and variance and

is the characteristic function of the

Gaussian distribution with mean zero and variance . Substi-
tuting (43) and (44) into (42), we get

For any , we have

(45)

(46)

Due to (45) and (46), we eventually have
. Applying

the Continuity Theorem [24], we have .

APPENDIX G
DERIVATION OF EQUATION (27)

Let and be the real and imaginary parts of . We
have

(47)
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The joint distribution of and is a Gaussian distribution
with mean zero and covariance matrix . If we take the limit
as , disappears. Since
the joint distribution of and under is

we can easily show that equals
to (27).

APPENDIX H
PROOF OF THEOREM 5

We first consider a noise-free case (i.e., ). If we set
, then in (20) becomes . Hence, the optimal

decision fusion rule for the noise-free case becomes

(48)

Let and , which are scaled versions of
and . Decision rule (48) then becomes

(49)

Instead of using the optimal decision fusion rule (49), we con-
sider the following decision fusion rule for the noise-free case:

(50)

Notice that in the noise-free case, is the empirical
mean of i.i.d. random vectors ,
where and are the real and imaginary parts of .
The logarithmic moment generating function associated with

under is given by

(51)

And , the logarithmic moment generating function
associated with under , can be obtained by re-
placing with in (51).

Due to the fact that logarithmic moment generating func-
tions and have identical expressions as

and and that (50) is identical to (31) (be-
cause ), the error exponent achieved by decision fu-
sion rule (31) in the noise-free case is equal to the error exponent
achieved by decision fusion rule (31) in the noisy case.

Based on the above result, we next prove that the error
exponent achieved by the optimal decision fusion rule (49) in
the noise-free case is equal to the error exponent achieved by
the decision fusion rule (31) in the noisy case. We prove this by
showing that in the noise-free case the error exponent achieved
by decision fusion rule (50) is equal to the error exponent
achieved by the optimal decision fusion rule (49). Notice that

will make equal to , where is the expo-
nent of false alarm probability associated with decision fusion
rule (50) in the noise-free case and is the exponent of
miss probability associated with decision fusion rule (50) in the
noise-free case. For any given , the optimal decision fusion
rule (49) is a threshold test with optimal threshold , which is
a function of . When (49) is used, the false alarm probability
and the miss probability can be expressed as

Use and to denote the false alarm probability and
the miss probability associated with the decision rule (50). If

, we will have . If , we will
have . Hence

Use to denote the error exponent of the optimal scheme. We
have

(52)

where the last equality is due to the fact that .
Equation (52) suggests that is less than or equal to the error
exponent associated with decision fusion rule (50). However,
the optimal decision fusion rule should always have the largest
error exponent. As a result, we can conclude that is equal to
the error exponent associated with the decision fusion rule (50).

Finally, notice that the error exponent achieved by the optimal
decision fusion rule (49) in the noise-free case should be greater
than or equal to the error exponent achieved by the optimal de-
cision fusion rule (20) in the noisy case. So in the noisy case,
the error exponent achieved by the decision fusion rule (31) is
greater than or equal to the error exponent achieved by the op-
timal decision fusion rule (20). Obviously, we cannot see the
error exponent achieved by the decision fusion rule (31) to be
greater than the error exponent achieved by the optimal decision
fusion rule (20). This finishes the proof.

APPENDIX I
PROOF OF THEOREM 6

From definition (28), it is easy to see that

(53)
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Let and be the real and imaginary parts of . Equa-
tions (27) and (51) suggest that

(54)

(55)

where (54) is due to Jensen’s inequality. Due to (55), we have
for any and

(56)

Inequality (56) together with the definition (28) suggests that
. However, (53) suggests that .

Hence, . Similarly, we can prove that
.

We prove (32) by showing that for any point
we can always find such that

. Use a straight line to connect with .
The resulting line segment will intersect with at a certain point

. We can write
for some . Due to (53) and , we know

. Due to the convexity of , we
have

To prove (33), we show that for any point
we have

. For any given , is symmetric about .
So it is not difficult to see that . Due
to the convexity of , we have .

can be written as
for some . Thus,
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