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The primary aim of this article is to extend the bipolar fuzzy N-soft sets with the concern of pursuing the periodicity involved real-
world problems and introduce a new multiskilled hybrid model, namely, complex bipolar fuzzy N-soft sets. The novel model
possesses the parametric characteristics of the versatile N-soft set and enjoys the distinguished attributes of a complex bipolar
fuzzy set to handle the double-sided periodic vague data. We illustrate that the innovative model assists as a proficient mechanism
for grading-based parameterized two-dimensional bipolar fuzzy information. We present some elementary operations and results
for a complex bipolar fuzzy N-soft environment. Further, we establish the three dexterous algorithms to find the optimal solution
to multiattribute decision-making problems. Moreover, the algorithms are supported with the robust assessment of a real-world
application. Lastly, a comparison with existent decision-making techniques, such as choice values, weighted choice values, and
D-choice of values of bipolar fuzzy N-soft sets, is also conducted to manifest the phenomenal accountability and authenticity of

the presented decision-making approaches.

1. Introduction

The primary concept of fuzzy set (F &) theory was presented
by Zadeh [1] in 1965, which is a generalization of classical set
theory to handle vague and uncertain information. In (¥ ),
the value of membership degree (MD) lies in [0, 1]. In 1983,
Atanassov [2] suggested the intuitionistic fuzzy set (S F &) by
adding the nonmembership degree (NMD) having the prop-
erty that the sum of MD and NMD should be less than or equal
to 1. Among many generalizations of & theory, our main
focus is on the bipolar fuzzy set put forward by Zhang [3].
The traditional models of & are incapable of dealing
with the periodic information in any meaningful way.
Hence, another ground-breaking model was established by
Ramot et al. [4] that can tackle the two-dimensional un-
certain information. Among many other extensions of CFS,

our focus is on complex bipolar fuzzy sets (€ BF §), which
was initiated by Akram et al. [5]. The rationale of B F S is
to represent the bipolar information having vagueness and
periodicity in complex geometry, as shown in Figures 1 and
2. By implementing the concept of bipolar fuzzy set in
complex geometry to portray diverse phenomena at various
phases, the notion of complex bipolar fuzzy set expresses
bipolar behavior of uncertainty and periodicity
simultaneously.

It has been a dilemma for researchers, as well as decision
makers, to deal with the imprecision and ambiguity as it
shows up in every discipline of life including social sciences,
information technology, economics, business management,
and so forth. Many attempts have been made to confront this
concern. Molodtsov [6, 7] gave the idea of a soft set (& ¥ &) in
1999. Maji et al. [8] illustrated the application of & (S for
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FIGURE 1: Phase term in BFS.
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FIGURE 2: Graphical representation of ¢BF S.

choosing the best house. Maji et al. [9] introduced the fuzzy
§' ;S and investigated its basic properties. Maji et al. [10]
presented the intuitionistic fuzzy § ;& Bipolar &' ;& was
proposed by Shabir and Naz [11]. Later, Karaaslan and
Karatag [12] redefined the bipolar & fS and worked for the
decision-making method along with the application. Aslam
et al. [13] put forth the idea of a hybrid model, namely,
bipolar fuzzy § ;& and defined its fundamental operations.
Alghamdi et al. [14] used the various multicriteria decision
techniques under a bipolar fuzzy environment. Later,
Akram et al. [15] applied the TOPSIS and ELECTRE I
approaches to diagnose medical diseases with the help of
bipolar fuzzy data.

& +& theory is used to evaluate the binary evaluation
based information. It is not helpful for nonbinary discreet
evaluation based systems. Nowadays, mostly systems are
being assessed on the basis of rating. In these systems, the
rating of the alternatives is done by a number of stars, check
marks, dots, numbers, et cetera. To overcome these
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obstacles, Fatimah et al. [16] developed the stimulated
concept of N-soft set (NS ¢8) along with set-theoretic
operations and decision-making algorithms which are useful
to capture the ordered graded information. Furthermore,
Akram et al. [17] merged the novel models of #§ and
N<Sfc5’ to introduce the fuzzy NS S (?Né’fé’). Akram
et al. also proposed the intuitionistic fuzzy NS ;& [18],
complex Pythagorean fuzzy N& ;S [19], complex spherical
tuzzy Né’foS’ [20], complex neutrosophic NoS’ch’ [21], and
bipolar fuzzy NS ;& (BFNS ;) [22]. Pythagorean fuzzy
N& ;S was initiated by Zhang et al. [23]. Fatimah and
Alcantud [24] put forward the multifuzzy N§ fof . Kamaci
and Petchimuthu [25] introduced the hybrid model of bi-
polar N&' ;& along with practical applications.

To sum up, the motivation of this article is given as
follows:

Although the traditional N§' ;&' can capture the graded
evaluation of parameters and is superior than & S
nevertheless it can not handle the fuzziness involved in
the information.

The B F S is beneficial to tackle the two-dimensional
bipolar information, but it can not cope with the rating/
ranking based parameterized information.

BFNS (S can deal with graded parameterized dou-
ble-side({ ambiguous information, but still it has the
inadequacy of phase term.

Motivated by the aforementioned concerns, this research
article introduced a new hybrid model with multiple charac-
teristics, namely, complex bipolar fuzzy N-soft sets. This
methodology is designed to capture and interpret the two-
dimensional bipolar fuzzy graded parameterized information.
This article also describes the fundamental operations of the
proposed model. Moreover, complex bipolar fuzzy N-soft
number along with some algebraic operations and properties is
also defined. Three algorithms for decision-making have been
defined and ingeniously implemented on real-life problems.
The rationality and applicability have been illustrated through
comparative analysis with existing methodologies.

This research paper is organized as follows: Section 2
defines some preliminary concepts for the development of
the new hybrid model. Section 3 describes the mathematical
framework of the proposed complex bipolar fuzzy N-soft
sets models and develops its operations. Section 4 provides
the three algorithms for decision-making purposes. Section
5 illustrates the applicability of the presented novel algo-
rithms. Section 6 demonstrates the comparative analysis of
proposed techniques with existing decision-making
methods. Section 7 sums up this article with some con-
cluding remarks.

2. Preliminaries

Now, we will present some fundamental definitions that are
essential for further developments.

Definition 2.1 (see [1]). Let V be a nonempty set. A fuzzy set
u over V is an object of the form:
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u={(natm)lvev}, (1)
where (xﬁ: V — [0, 1] denotes the degree of membership.

Definition 2.2 (see [3]) Let V be a nonempty set. A bipolar
fuzzy set B over V is of the form:

B ={(v, b (v), By (v)) |ve V}, (2)

where ocg: V — [0,1] and B5: V — [-1,0] represent the
satisfaction function and dissatisfaction function, respec-
tively. The satisfaction value o (v) indicates the strength of
belongingness of element v to a certain property and the
dissatisfaction value fj(v) indicates the belongingness of
element v to some counter property of bipolar fuzzy set B.

Definition 2.3 (see [26]). Let b= (af, ") be a bipolar fuzzy
number. Then, the bipolar fuzzy score function f and ac-
curacy function g are formulated as follows:

o l+al+p"
.. _ap—ﬁn
gb)=——

where f(b), g(b) € [0,1].

Definition 2.4 (see [5]). Let V be a universal set. A BF S
C, on a nonempty set V is an object of the form:
C, ={(naf, e e, gt ¥ vev), (@)

wherei = V-1, oc‘gb: V — [0,1]and B, : V — [~1,0] are
mappings, wc, (v) € [0,7] and yg, (v) € [-7,0]. For any

(S, 2N) ={L (WD), ZOD e L, (W 1), ZD) € 27 x BF V]

elementv € V, af. (v)and B¢, (v) are known to be amplitude
terms; w, (v) an I//Cb(v) are phase terms.

Definition 2.5 (see [6]). Let V be a universe of discourse
under consideration and A be the set of all attributes, LCA. A
pair (9,L) is called S¢S over V if 9: L — P (V) where 9 is
a set-valued function.

Definition 2.6 (see [16]). Let V be a universe of discourse
and A be the set of all attributes, LCA. Consider
R ={0,1,...,N -1} be a set of ordered grades where
N e€{2,3,...}. A triple (U,L,N) is an N§;& on V if
U: L — 2V*%, with the property that for each'k ; € L, there
exists a unique v r;-) eEVXA such that
(vt,r;.) eU(k)), v €V, r; €.

Definition 2.7 (see [13]). Let V be a universe of discourse
under consideration and A be the set of all attributes, . CA. A
pair (g, L) is called BF S & over Vifo: L — BFY, where
BFY is the collection of all bipolar fuzzy subsets of V. It is
defined as follows:

(L) ={(vaf ,f/()I¥v e VandleL}.  (5)

Definition 2.8 (see [22]). Let V be a universe of discourse
and A be the set of all attributes under consideration, LCA.
Let #=1{0,1,2,...,N — 1} be a set of ordered grades where
N €{2,3,...}. A triple (J,%,N) is called a BFNS S,

when %= (U,L,N) is an NcS’ch’ on V  where
U:L—2"% and S is a mapping such that
S L — 2V x BF Y, which is as follows:

(6)

:{<l, (v, r}'),af,ﬁ?>|l el,veV,r e 99},

where

ZUW: K — BFY, (7)

and BF V" represents the collection of all bipolar fuzzy
values on V.
Here, o € [0,1] and B} € [-1,0] for all v € V.

3. Theoretical Structure of Complex Bipolar
Fuzzy N-Soft Set

Definition 3.1. Let V be the universal set and A be the set of
parameters under examination, LcA. Let
R ={0,1,2,...,N — 1} be the set of ordered grades with
N €{2,3,...}. A triple y = (Y4, T, N) is called a complex
bipolar fuzzy N-soft set (EBFNS;S) on V, if

T=(d,L,N) possessing O: L — 2V*# is an N-soft set
(N<§°f<§°) onV and Yg: L — 2V« @BF Y, which is
described as follows:

x =@ @), Y(I))I; e L}
={{L ((»r)upy))l e LveV,r| € R} (8)
:{(l, (v, r}'),ocfeiw’,ﬁ;leiw’>|l elLveV,r e %},
where

Y: L — CBFY, 9)

G RBF YV indicates the collection of all complex bipolar fuzzy
values on V.

Here, i = V-1, ocf € [0,1], B/ € [-1,0], w; € [0, 7] and
y € [-m,0] forall ve V.



Remark.  Let x(I,) = <(Vy:7’y) ap e, B, el//y,> be a
CRBFNS ;S. Then, the complex blpolar fuzzy N-soft
number (%939N S f/V ) is defined as follows:

<r1 ,( ab.e', ﬁzie%"». (10)

The following example of decision-making demonstrates
the importance and significance of the proposed hybrid
model. This example elaborates the shortcomings of the
hybrid model BF NS ¢S, put forward by Akram et al. [22],
and illustrates the proficiency of the presented hybrid model
in decision-making problems.

Example 3.2. Multiattribute decision-making procedures
are considered as a primary tool for examining the patient’s
medical history in the medical symptomatic system and
suggest the required tests. But most of the time, syndromes
are not apparent and show bipolar behavior. In such cir-
cumstances, bipolar fuzzy sets are more capable of applying
because it deals with positive along with negative behavior of
an object towards a certain property. Suppose that a person
with brain disorder visits a neurologist. A neurologist ex-
amines the symptoms first. The symptoms are as follows:

I,: headache
I,: seizures
I5: fatigue
I,: mood swings
The doctor examines the patient’s history, but still, there

is confusion about whether it is a traumatic brain injury or
brain tumor. Hence, the doctor wants to suggest one of the
following brain scans for clear examination.

v,: computed tomography (CT) scan

v,: magnetic resonance imaging (MRI)

v5: positron emission tomography (PET)

v,: single photon emission computed tomography

(SPECT)

The neurologist will assign the 48, grades to the al-
ternatives in order to find out the best option for brain

={
={

( (
(v1,2),0.71,-0.44), ((
(v1,1),0.42,-0.57), {(
( (

The tabular representation of BF4S  decision matrix is
given in Table 3.

The doctor assigns the BF N's corresponding to each
grade value of the alternatives. Now, suppose that the doctor
observes “Initially, almost 3 months the headache was bearable,
but from the last 8 months it is severe.” Then the bipolar fuzzy
framework is ambiguous and fails to handle the complete

v,,3),0.89,-0.13), (
v,,3),0.86,-0.08), (
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TaBLE 1: Rating of brain scanning tests.

VL I, 1, I I,
Vy 2 = ee 2 = ee l1=e 2 = ee
vy 3 = eoe 3 = eee 3 = eoe 3 = eoe
V3 l=e 2 =eo l=e l1=e
Vy 2 = ee 3 = eoe 0=" l1=e

scanning according to the symptoms. The rating and as-
sociated 48 (S of alternatives are given in Table 1, where
Three e represent outstanding
Two e represent superb
One e represents good

° represents average
The corresponding 88 ;S can be associated as follows:

< indicates 0
<®’ indicates 1
<e@’ indicates 2
<eee’ indicates 3
Corresponding to the grades, B F8S (/s is assigned

to the criteria of vaccines by utilizing the following grading
criteria:

0.0Sf(by,) < 0.25 whengrade0,
0.25< f(b,;) < 0.50 whengradel, o
0. 50<f(b},1) < 0.75 whengrade?2,
0. 75<f(by,) < 1.00 when grade 3.

where b, = (ocyi,ﬂ;i), f(by,)

y=1,2,3,4;i=1,2,3,4
According to the aforementioned criteria, the corre-

sponding grading criteria are represented in Table 2.
Thereby, the BF4S ;& can be defined as follows:

= “51’ +B +1/2 and

={((v,2),0.55,-0.33), {(v,,3),0.81,-0.15), ((v3, 1), 0.46, ~0.52), {(v,, 2), 0.65,-0.29),}

(

v3,2),0.68,-0.31), (v, 3),0.91,-0.17)}, -
12

v;,1),0.39,-0.64), ((v,,0),0.15,-0.89)},

(

(
(
(vs
(

={((v,2),0.69,-0.45), {(v,,3),0.79,-0.05), {(v3, 1), 0.31,-0.59), {(v,, 1),0.27, =0.68) .

situation. Hence, it is necessary to use the complex bipolar
fuzzy environment in order to deal with the periodicity of the
data. Therefore, we set up the CBFNS ;S instead of
BFNS S for the assessment of such problems. The phase
term in data will indicate the information related to the ref-
erence frame of time under consideration. Now, the grading
criteria are redefined according to the framework of ¢ BF S.
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TaBLE 2: Grading criteria.

Grades Positive membership Negative membership

r o, B

=0 [0, 0.25) [-1,-0.75)

r =1 [0.25, 0.50) [~0.75,-0.50)

rl’-v =2 [0.50, 0.75) [-0.50, -0.25)

1) =3 [0.75, 1.00] [-0.25,-0.00]
TasLE 3: Tabular form of the BF4S (S

(ch: T, 4) ll lZ 13 14

v, (2, (0.55,-0.33)) (2, (0.71,-0.44)) (1, (0.42,-0.57)) (2, (0.69,-0.45))

v, (3, (0.81,-0.15)) (3, (0.89,-0.13)) (3, (0.86,-0.08)) (3, (0.79,-0.05))

Vs (1, (0.46,-0.52)) (2, (0.68,-0.31)) (1, (0.39, -0.64)) (1, (0.31,-0.59))

v, <2, (0.65,-0.29)% (3, (0.91,-0.17)) €0, (0.15, -0.89)) (1, (0.27,-0.68))

<0.50 whengradeO,
<1.00 whengradel,

(13)
<1.50 whengrade2,

<2.00 when grade3.

Y, (L) = {((Vp 2),0.5561'0.6271)_0.33e—i0.2971>, <(V2, 3),0.81¢%¥7, 0

<(v4, 2),0.65¢ %", ~0.29¢" i0.3471> })

Y, (1) :{<(V1,2)’0'7lei0.63n,_0'44e—i0.38n>) <(v2’3),0.896i0.81n’_

<(V4) 3)) 0.9161'0‘78”, —0.17¢ i0.11n>}’

Yo (1) = {((Vp 1),0.4zei0.38n)_0.57e—i0.6571>, <(V2, 3),0.86ei°'93”, _

<(V4, 0), 0. 15€i0'21", —0.89¢ i0.92;1> })

Yo (1) ={{(v1,2),0.69¢"%", ~0.45¢~ 7, ((v,, 3),0.79¢"*", ~0.0

((vy1),027¢°%17,-0.68¢ "' )}.

The tabular representation of €% %4 ; decision matrix
is depicted in Table 5.

Definition  3.3. Let x ;= <r1, (ocp e, B e%r)> be a
CBFNS ;N over V. The score functzon is defined as
follows:

r] 0‘51' + ﬁ;i +1 1w, vy,
() =gty () 09
where S(Xyi) € [0,3].

Definition  3.4. Let x ;= <r1 ) (ocp e, B e"’}r)> be a
CBFNS ;N over V. The accuracy functzon is defined as
follows:

where %, = (oc O™ /5 e¥), S(%,) = +ﬁ + 1/2+
1/2(w, /7'[+1//y1/71+1) andy— 1,2, 3 4; 1—1 2, 3 4.
Accordlng to the aforementioned criteria, the corre-
sponding grading criteria are represented in Table 4.
Hence, %8 F4S ;& can be obtained by applying Def-
inition 3.1 as follows:

—10 127r> <(V3,

0466104371 -0 526—1'()46271>

—i0. 07n> <(V3, 0 68610 66n, ~0.31e” i0.37n>’

. (14)

—10. 177r> <(V 0 39610 34m -0 646—1045771>

3> > . >

5efi0A21n>’ <(v3, 1),0.31¢%%7, ~0.59¢ i0.72n>,
A _ p Wyi_ Vyi (16)

O =gt Bt 5=
where A(Xyi) € [0,4].

Definition 3.5. For any two distinct
%%’9NS NS Xy = <r 56”"% By e”’y*)> and

;= <r1 , ((xp e“"ﬂ B e“’x')> we have the following:
(1) If S(x,:) <S(xx)> then x,;<x,; (x,; is superiortoy ;)
(2) It S(x,1) > S(Xxi)> then x,; > x,; (x,; isinferiortox,,)
(3) If S(x,) = S(Xxi)» then

@If  Ax,)>A(g),  then  x.<xy (xy
is superiorto y ;)
b)If Ay, < Alyy)»  then Xyi > Xxi (Xni

isinferiortoy ;)
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TaBLE 4: Grading criteria.

Grades Amplitude terms Phase terms
r! "‘Iy)i ﬁ; Wy Vyi
rf=0 [0, 0.25) [-1,-0.75) [0,0.257) [-m,—0.757)
rl =1 [0.25, 0.50) [-0.75,-0.50) [0.257,0.507) [-0.757, —0.507)
r{ =2 [0.50, 0.75) [-0.50, -0.25) [0.507, 0.757) [-0.507, —0.257)
r] =3 [0.75, 1.00] [-0.25,-0.00] [0.757, 7] [-0.25m, —0.00]
TasLe 5: Tabular representation of the €BF4S ;S.

(Y, T,4) I I, I Iy
v (2, (0.5569%7, —0.33¢”02m)) - (2, (0.71€677, ~0.44e~07)) - (1, (0.42¢"7%7,-0.57e"5T)) (2, (0.69¢"*%", ~0.45¢~"427))
v, <3, (0.81610‘897[, _0_156—10.1271» <3’ (0.89610'81”, —0.138_10'0771)) <3, (0.86610'9371, —0.086_10'177[)) <3, (0.7981048271, _0_056—1042171»
Vs (1, (0.46€0437, —0.52¢062m)) (2, (0.68€™0™, —0.31e~037™)) (1, (0.39¢"34", —0.64e*7™)) (1, (0.31e"27, —0.59¢~0727))
vy <2’ (0.6531‘0‘58”, —0.296_1‘0‘34”)) <3’ (O.91€i0'78ﬂ, —0.17¢e” iO.llﬂ)) <O, (0.15€i0'21ﬂ, —0.89€_i0'92ﬂ)> <1: (0.2761.0‘31”, —0.68€_i0‘61”)>

(c) If A(th) = A(Xxi)’ then Xyi ~ Xxi (Xyi YED (li) - <(v r (1 — ap,)ei(l_(“’yi/”))”, (_1 — ﬁ”,)e"('l'(v’yi/”))”>.

is equivalent to y,;) y vi i
(17)

Remark. 1t can be observed that

(1) For N =2, CBFNS (S becomes CRBFS;S.

(2) When N =2 and |L| =1, CRBFNS ;S becomes
CRBFS.

Now, we will investigate the notions of complemen-
tarities of EBFNS (S

Definition 3.6. Let (Y, T,N) be a %Q‘??Né}& over
nonempty set V, where T = (®,L,N) is an N&' S, then
(Y, T¢, N) is called weak complement if T° = (@, L, N) isa
weak complement of T = (®,L,N). In consequence,
O (I)ND () = for all [; € L.

Remember that a weak compliment is not peculiar.

Definition 3.7. Let (Y4, T, N) bea %%?Né’fé’ over V, such
that T = (O,L,N) is an NS ;& then a complex bipolar fuzzy
complement is represented by (Yg,T,N), such that
Y5 L — BBF VP, which is conveyed by the following:

o) =((v,,N- ocp e,
(Yd))—[l—t:N):{Y ()_(( yN p)tw, noiy,;
Yq,(li)—«v, )(x e ﬁ e y>,

Y, T, N) =
(Y6, T5N)

Example 3.11. The top weak complement and the top weak
complex bipolar fuzzy complement of the €BF4S S,
defined by Table 5 in Example 3.2, are shown in Tables 9 and
10, respectively.

/3 eWy,

Y, (1) = <v N—l l—ocy) i(1-wm) (—

Yo (1) =((1,0). (1 - @) U=, (-1

Definition 3.8. Let (Y4, T,N) be a %ggngcS’ch’ over V,
such that T = (®,L,N) is an NSfcf, then (Y§, TS N) is
stated as weak complex bipolar fuzzy complement
& (Y4, TY, N) is a weak complement and (Y, T,N) is a
complex bipolar fuzzy complement.

Example 3.9. Consider a € BF4S ;S (Y, T,4) as arranged
in Example 3.2. A weak complement (Y, T, 4), complex
bipolar fuzzy complement (Yg, T,4) , and weak complex
bipolar fuzzy complement (Y§g,T¢,4) are calculated and
organized by Tables 6-8, respectively.

Definition 3.10. For a %%’97Nc5’fc$’(Y(D,T, N), where T =
(O,L,N) is an N& S, the top weak complement of
(Yq, T, N) is (Y, T, N), also the top weak complex bipolar
fuzzy complement of (Y, T, N)is (Y5, T/, N) and defined as
follows:

), ifr] <N-1,
ifr) =N-1.

. 18
—ﬁ'yli)e’(_l_%"/”)”>, ifr] <N -1, (18)

B )ei(— 1—y/y,./7r)n>)

ifr] =N-1.

Definition 3.12. For a €BFNS ;S (Yo, T, N), where T =
(0,0, N) is an N& foS’, the bottom weak complement of
(Yo, T,N)is (Y, TP, N) also the bottom weak complex bipolar
fuzzy complement of (Y4, T, N) is (Y , T, N) and defined as
follows:
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TABLE 6: A weak complement of. (Y, T, 4).

(Yo, T%,4)

L L L

ly

V1
V)
V3
V4

<3) (0.55610'62”, _0.3367i0.29n)> <3 0 7lei0 6371 —0. 44€7i0 3871 > <2 (0 426i0 38n 0. 57671'0 65n)>
(0, (0'8161’0.8971’ —0.15€_i0'12ﬂ)) <1 (0 896’0 817r —0. 136—10 077r)> <1 (0 86610 9371 —0.08¢ i0. 1771)>
<2) (0.46610'43”, —0.52¢" i0.6271)> <0 0 68610 667r —0 3le” i0. 377‘[ ) <0 (0 39610 3471 _0 648710 5771))
<1) (0.65€i0'58ﬂ, _0.29e—i0.34ﬂ)> <2 0 91ei0478ﬂ) _0.176—1'04117'[)) <3’ (0.1561'0.217[)_0.896—1'0,9271))

<1’ (0.6961'0657{) —0.45¢~ i0A427T)>
<O, (0.79@1.0‘82”, _0'056—i0421n)>
<3’ (0.318i0‘29ﬂ, —0.59¢™ i0.727r)>
<2) (0.2761'043171) _0'686—i0461ﬂ)>

TaBLE 7: Complex bipolar fuzzy complement.

(Ys, T,4)

L L L

ly

V1
V)
V3
Vy

(2, (0.45¢%7, —0.67¢~07'7)) (2, (0.29¢"377, ~0.56e~*7)) (1, (0.58¢"%>",~0.43¢~"37))
(3, (0.19¢117, -0.85¢0857)) (3, (0.11¢1197, ~0.87¢07)) (3, (0.14¢™077, ~0.92¢~0-537))
> (0.54e7°77, -0.48e” ™ , (0.32e7°%, -0.69¢™ ™ , (0.61e™°°7, -0.36e™ ™
1 (0 54, i0.577 0.48 10387‘[) 2 (0 32 i0.34m 0.69 106371) 1 (0 61 i0.667 0.36 104371)
<2’ (0.3531‘0‘42”, —0.716_i0‘66”)> <3’ (0.09€i0'22ﬂ, —0.83¢e” i0.897l)> <O, (0.856i0'79ﬂ, —O.lle_i0'08ﬂ)>

<2’ (0.3161'043571) _0.556—i0458ﬂ)>
<3, (0.2181'041871, —0.956_i0‘79n)>
<1) (0.698i0‘71ﬂ, —0.41e i0.287r)>
<1: (0.7361.0‘69”, —0.326_i0‘39”)>

TaBLE 8: Weak complex bipolar fuzzy complement.

(Yo, T%,4)

L L L

ly

V1
vy
V3
V4

<3) (0.456i0'38ﬂ, —0.67¢~ i0.7171)> <3’ (0.2961'043771) —0.56e™ i04627'[)> <2’ (0.5861'0.6271) —0.43¢" i0.35ﬂ)>
<0) (0.19€i0'11ﬂ, _0.85671'0.8871)) <1, (O.lleio'19”, _0.87efi0.937r)> <1’ (0.14€i0'07ﬂ, _0.92871’0.8371))
<2’ (0.5461'0.577{’ —0.48¢™ i0.38n)> <O, (0.326140‘34”, —0.69¢™ iOA637T)> <0) (0.6161'0,6671” _0.36efi0,43n)>
<1, (0.35€i0'42ﬂ, —0.71e” i0.6671)> <2, (0‘0981.0‘22”, —0.83¢" i0,897‘[)> <3’ (0.85€i0'79ﬂ, —0.11e” i0.0Sﬂ))

<1) (0.31€i0‘35ﬂ, —0.55€_i0‘58”)>
<0, (0.2181'0,187!) —0.95¢™ i0,797t)>
<3) (0.698i0‘71n, —0.41e” iOA28n)>
<2, (0.7361'046971, _0.326—i0439n)>

Y,, T, N) =
(Yo, T".N)

Yo () = <(Vy N
Yo (1) = {(v,,0).(

(Y5, T, N) =
Yo (1) = <v N-1),

Example 3.13. The bottom weak complement and the
bottom weak complex bipolar fuzzy complement of the
CRBF4S ¢S, defined by Table 5 in Example 3.2, are given by
Tables 11 and 12, respectively.

Definition 3.14. Let V be a nonempty set and (Yo, , Ty, N,)
and (Yo, T5, N;) be two EBFNS ;S's over V, where T, =
(®,L,Ny)and T, = (®,,L,,N,) are NS Ss over V, then
their restricted intersection is defined as follows:

(0T, N T,, N3) :(Yal’Tle)nm(chf—"—z’Nz), (20)

where, N; = min(N,N,) and T, n,T, = (2, L, NL,,N;)
ie. Vel nl,v, eV, <(Vy,ry) ab) € p(l)er] =
min(r}’l,rl?’z), a= min(ocgp, o )e'mln wg07) b = max
%%ﬁ;kmuWM@Xif<0%n)¢%dWJ%dW>eLﬂm

Yo (1) =((v,,0), ab; e, ;’,ieiw”' ,
) ocp e, By "’y">, ifr] =
i/n)ﬂ, (_1

1 3 “yl)ei(l—wy

)ei(l—wy,-/n)n) (_1

ifr! >0,

19
ifr} >0, (19)

e,
gt 1-wy,»/n)n> ifr! = 0.

and <(vy, ), abeivs, ﬁ;ei“’7> €el,(),& and F are
complex bipolar fuzzy sets on @, (I;) and @, (I;), respectively.

Example 3.15. Let (Y, T,,5) be a €RF5S5 ;S and
(Yo,, T5,4) be a €BF4S ¢S given by Tables 13 and 14,
respectively, ~ then  their  restricted  intersection
(0T, N, Ty4) = (Yo, T1,5) Nk (Yo, Tp,4), is presented
in Table 15.

Definition 3.16. Let V' be a universe of discourse and
(Yo, Ty, Ny) and (Y, T5, Ny) be two €BFNS ;S's over
V, where T, =(d,L,,N;) and T, = (D,,L,,N,) are
N& (S8's on V; then their extended intersection is given as
(T N TNy = (Yo, T, NN (Yo, T5,N,),  where
N, =max(N,,N,), T,n T, = (B,L,UL,,N,) defined by
the following:
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TaBLE 9: Top weak complement of the €BF4S (S

(Yq, T, 4) N I I Iy

v (3, (0.55¢™7, —0.33¢=027)) (3, (0.71€"*%7, ~0.44¢”"357)) (3, (0.42¢"%7, ~0.57¢=07)) (3, (0.69¢"7, ~0.45¢”"427))

v, (O, (0.8161.0‘8971, —O.lSe"lO‘IZ”» <O, (0.89e’l0'81", _0‘136_1.0'0771)) <O, (0.866’.0‘93”, —O.OSe"lO‘””)) <O, (0.79e’l0‘82”, —0.056'{0‘21”)>

V3 (3, (0.46e’_°'43”, —0.526"_0'62”)) <3, (0.68e’_°'66”, —0.316”_0'37”)) <3, (0.396’_0'34”, —0.64e~ ’_0'57”)) (3, (0.31e'_0‘29”, —0.5%¢~ ’_0'72”))

vy <3) (0'656104587{’ —0.296_10‘34ﬂ)> <0) (0.91@10'7871, —0. 176—10.11ﬂ)> <3’ (0 1561042171) _0.896—1049Zﬂ)> <3) (0.2761043171) _0'686—10461ﬂ)>

TaBLE 10: Top weak complex bipolar fuzzy complement.

(YS,, T, 4) N I I Iy

v (3, (0.45¢7%7, —0.67¢~7'7)) (3, (0.29¢"*777, ~0.56e"*%>7)) (3, (0.58¢"*", ~0.43¢” ")) (3, (0.31€"*7°7, ~0.55¢” 7))

v, <0, (0.19810‘1171, —0.856_10‘887[)) <O, (0.11810'197[, _0_876—10.9371)) <0, (0.146’0‘077[, —0.926_10‘83”» <0, (0.218’0‘187[, —0.956_10‘797[»

Vs (3, (0.54€™77, -0.48¢703%7)) - (3, (0.32¢">*7,-0.69¢ 7)) (3, (0.61€™", ~0.36¢~"47)) (3, (0.69¢"7'7, ~0.41e”"0257))

V4 <3’ (0.35610‘427[, —0.716_10‘667[» <0, (0.09610'227[, —0.836_10'89ﬂ)> <3’ (0.85610‘79”, —0.1 16—10408ﬂ)> <3’ (0.73610‘69”, —0.326_10‘39”»

TasLe 11: Bottom weak complement of the ¥BF4S ;S

(Yq, T, 4) I 1, I I

v (0, (0.55¢6%7, -0.33¢=027)) (0, (0.71€"*%7", ~0.44¢”"757)) (0, (0.42¢"7%7, ~0.57¢~ 7)) (0, (0.69¢"°7", ~0.45¢~*47) )

v, <0’ (0.81610'8971, _0.158710.1271» <0’ (0.89610.8171, —0.13¢~ 10.077T)> <0, (0.868'0‘93n, _0.086710.1771» <0, (0.798'0‘82”, _0_056710,2171»

v, (0, (0.46€47, —0.52¢= 1)) (0, (0.68¢"%7,~0.31e~"*77)) (0, (0.39¢3*", ~0.64e~ ™)) (0, (0.31€"%2, ~0.59¢~*77) )

V4 <0) (0‘65610'58”, _0.298—10.3471)) <0’ (0‘91610‘7871, _0_176—10,1171)) <3, (0.1561'042171, —0.89¢~ i0492n)> <O, (0.278i0‘31”, —0.686_i0‘61n)>
TaBLE 12: Bottom weak complex bipolar fuzzy complement.

(Y5, T, 4) I I I I

v <0’ (0.456%0’387{, —0.67¢" i0A717T)> <O, (0.29@’40‘3771, —0.56e™ i0A627T)> <0’ (0.58ei0A627T) —0.43e™ i0A35n)> <0) (0.3161'043571) —0.55¢~ i0.5871)>

v, (0, (O.l9ef0'11”, —-0.85e~ ’:0'88”)> (O, (O.lle’:o‘w”, —0.876_’:0‘93"» (0, (0.143’:0‘07”, —O.92e'f0‘83”)> <O, (0.216’:0‘18”, —0.956_1:0‘79”»

v, <0) (0.546105771’) —0.48¢~ 10A387T)> <O, (0.326103471) —0.69¢™ 10A637T)> <0) (0.616106671) _0.366710437[)) <0) (0.69610717{’ _0.4167102871))

vy <0’ (0‘3561'0.4271’ —0.71e” i0A66ﬂ)> <O, (0.096i0'22ﬂ, —0.83¢e™ i0.897'[)> <3’ (0'85ei0479ﬂ’ —0.11e” i0.087‘[)> <O, (0'7361'046971, _0'326—i0439ﬂ)>
TasLe 13: Tabular representation of €BF58 ;S (Yo, T}, 5).

(le,'I]'l,S) I L I

12 <3, (0.65e’:0‘72”, —0.336_’:0‘29”» (4, (0.92e’:0‘83”, —0.03e":0‘15”)> (1, (0.256’:0‘32”, —0.636_1:0‘72”»

v, <2, (0.43810.5271) _0.526710.4371» <4, (0.878'0‘93n, 0. 136710.0971» <2, (0.578'0‘457[, _0_456710,5171»

v, <1’ (0'27ei0.21ﬂ, —0.65¢~ i0.757‘t)> <3’ (0.7561'04697‘[, _0‘256—i0433ﬂ)> <0’ (0.1261'04077‘[, _0'926—i0483ﬂ)>
TasLE 14: Tabular representation of €BF4S ;S (Yo, T5,4).

(Yo, T5,4) I [N Iy

v <3, (0.81€i0'92ﬂ, —0.17¢ i0.097r)> <2, (0.56810'67”, ~0.29¢™ i0.327r)> <1, (0.31810'37”, —0.65¢~ i0,597r)>

vy (2, (0.6177, —0.35¢~1041m)) (3, (0.89¢"9°7, —0.13¢~71°m)) (2, (0.71°67, —0.38¢7042m))

Vs <0, (0.098’0‘2“, _0_896—10,9171» <1, (0.43810,4771, —0.586_’0‘61n)> <0, (0.1281041771, —0.866_10‘79n)>
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TABLE 15: Restricted intersection.

(0T, N, T,4) A L
v (3, (0.65¢™77, —0.17¢~700m)) (2, (0.56¢™77, —0.03¢™"1>7))
v, (2, (0.43¢"27, -0.35¢” 0417)) (3, (0.87¢%°7, ~0.13¢~07))
vy (0, (0.09¢"217, —0.65¢~075m)) (1, (0.43¢"0477, —0.25¢~033m)}
| Yo, (,), ifliel, -1,
Yo, (L), iflel,-L,,

| respectively.

Example 3.17. Let (Y4 ,T,,5) and (Y4, T,,4) be two
CRBF5S ¢S and CHF4S (S, respectively, arranged by
Tables 13 and 14, respectively. Then their extended inter-
section (7, TN T,,5) = (Yo, 1,5 N (Yo, T5,4) is given
in Table 16.

Definition 3.18. Let V be a universal set and (Yo, T}, N)
and (Y4, T5, N;) be two EBFNS ;S's over V, where T, =
(®,L;,Ny) and T, = (®,,1,,N,) are N§ ;S's on V; then
their restricted union is defined as follows:

(Yo, TN ) Ug(Ye, T N,) = (0, T, U, T, Ny),  (22)
where N, = max(N,,N,), T, U, T, = (€,L,nL,,N,), ie.
Vi, e LinL,, v, € V,{(v,,)),a, by € a(l)or] = max

(711»,7"1}2); a= max(a%, a;)eimax(wg,wg)’ b = min (ﬁ%aﬁng)
eimin(wg,wg), if <(V),,T:~’l), a}éeiwig) ﬁ%eill/fg> € I]—l (lz) and

(Yo, (1)
Yo, (1)

ifl; el -L,,
ifl; el,-L,,

| respectively.

<(Vy>r?/)) a, b>, SuCh that T;:V = min(rf,rf),
(l ) a= min((xlé, “Pg)eimin(wnga)’ b = max (ﬁ%,ﬁny)eimax(\y(g,wy),
]1 ) =< 4 .

L R P P

and <<vy, r’ ), a;eiw’”,[}"geiw> e, ()

& and F are complex bipolar fuzzy sets on @, (I;) and @, (1;),

(21)

<(vy,rf2),oc;ei“’9,ﬂ”ge"‘/’9> € 1,(L), & and F are complex
bipolar fuzzy sets on @, (I;) and @, (I;), respectively.

Example 3.19. Let (Yq,T,,5) and (Yq,T,,4) be two
CRBF5S8 fé’ and €RBF4S (S, respectively, defined by
Tables 13 and 14, respectively; then their restricted union
Yo, T1,5)Ug (Y, T5,4) = (0,T; U, T,,5) is defined in
Table 17.

Definition 3.20. Let V be a nonempty and (Y, , Ty, N;) and
(Yo, T,Ny) be two GCRHBFNS;Ss on V, where
T, = (P,L, Ny and T, = (@,, L, N,) are NS ¢ S's over V;
then  their  extended union is  described as
(YCI>1’ T,LN)DUg (YCDZ’ T,,N,) =T, u.T,,N,), where
N, =max(N,N,), T,U,T, = (&, L, UL,,N,),and 9(];) is
given by the following:

((v,>r]),a,b), suchthatr = max(r?, rf),

a-= max(oc%,oc;)eimax(w%%), b = min (ﬁ%)ﬂ;)eimin(v/f)wg))
1 . X

where <<vy, r >, a}éelw$’ﬁ%efwg> el (1)

v? P iwg pn iyg
and <<vy,r1 ),ocge 7, Boe ’> e, (1)

& and F are complex bipolar fuzzy sets on @, (I;)and @, (I;),

(23)
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TaBLE 16: Extended intersection.

(7, T, N, T,,5) L I

v (3, (0.65¢"77, —0.17¢~ ™)) (2, (0.56¢™77, —0.03¢™"1°7))
v, <2, (0.43610'5271, —0.356_10'41ﬂ)> <3’ (0.87€i0‘93n, —0.136_10‘097[»
Vs <0) (0.09€i0'21ﬂ, _0.65671'0.7571)) <1) (0.4381'0,4777) _0.25671'0.3377))
v (1, (0.25¢37, —0.63¢~72")) (1, (0.31€037", —0.65¢™1*-5m))
v, <2, (0.57610'4571, _0.456—10.51ﬂ)> <2, (0.7181'046371, —0.386_i0‘42n)>
v, <0) (0.1261'0,0771’ _0.9267i0,837r)> <0’ (0.12310'17”, —0.86e™ i0A797T)>

TABLE 17: Restricted union.

(0,T, N, T,5) I I

v <3, (0.8161092”, _0.33efi0.297r)> <4, (0.92810'83”, ~0.29¢™ i0,327t)>
v, <2) (0.616140‘57”, —0.5267140‘43”)) <4) (0.8961'049571) —0.13e™ i041971)>
Vs <1) (042761‘0.217!’ —0.89€_i0'91n)> <3, (0.7561.0‘69”, —0.586_i0‘61”)>

Example 3.21. Let (Yq,T,,5) and (Yq,T,,4) be two
CRBF5S ¢S and CABF4S ¢S, respectively, shown by Ta-
bles 13 and 14, respectively; then their extended union
Yo, 11,5 Ue(Yo, 15,4 = (0, T, U T,,5) is given in
Table 18.

Definition 3.22. Consider that (Y4, T, N) bea ‘g%?NcS’ch’
over nonempty set V, where T = (O,L, N) is an N& (S on
V. Let 0< D <N be a threshold. A €BFS{_f}S related
with (Y, T, N) and 9, denoted by (Y%, L), is defined as
follows:

(“gieiwﬂ’ ;ieiwy,-)’ if Y, (li):«"y’r?,)’“geiwﬂ’ ﬁiei‘”yi>’

Yo () =1r'>2,

yi
(24)

(0.0eion, —l.Oe_i”), otherwise.

Particularly, (Y§,L), and (Yg’l, L), are known as
bottom €RBF S{_f}S and top EBF S{_f}S, respectively.

Definition 3.23. Let 0<2<N and pe€ [0,2] be the
threshold. Then the & fé’ on V associated with (Y, T, N)
and (92, p) denoted by (beg’p ), L) is defined as follows:

Yc(D@,p) (lz) — {)’ cV: S(Y% (l,)) >p,Vi; € [L}, (25)

where, S(Y%(g»)) is represented as the score value of

Y2 (1) = (ab 7 en, i),

p.
v
Example 3.24. Consider the B F4S ;S defined in Ex-
ample 3.2. By employing Definition 3.22, the associated
CRBFS;Ss with CRF4S S can be found out. Let
0<2<4 be the thresholds. The possible associated
CBF S ;Ss with threshold values 1,2 and 3 are given by
Tables 19-21. Moreover, by taking (2, p) = (2,0.9), asso-
ciated & ;& (Yg’o'9), L) is arranged by Table 22.

It is clear from above analysis that @BF NS ;& can be
converted into ¥BF S ;& and §S. Hence, it is a gener-
alization of both these models. The following properties are
stated without proofs.

Theorem 3.25. Let (Yo, T,N) be a CBFNS ;S over V.
Then:

(1) (Y, ,N)N g (Y, T,N) = (Y, T, N)

2) (Yo, TN)N (Y, T, N) = (Y T, N)
3) (Yo, T,N)Ug (Y, T,N) = (Y, T,N)
4 (Yo, T,N)Ug (Yo, T,N) = (Yo, T, N)

Theorem 3.26. Let (Y4, T,,N,) and (Yo, T,, N,) be two
CRBFNS (Ss over V. Then the absorption properties are
preserved:

(1) ((Y(Dl,Tl)N])U@(YQ)Z,—U_Z’N2))nfR(Y(Dl)-H_lle) =
(YCI)la—D—])Nl)

2) (Yo T NDUe(Yo, ToNy) Ny (Yo, T N))) =
(YCI)I)—D—I)Nl)

(3) ((chla-n_l;Nl)nfR(Y(I)zx—I]—Z)Nz))U@(Yq)l)—l]—lle):
(YCI)I)—D—I)Nl)

(4) (Yo, T, N)Ng (Yo, Ty, Ny)Ug (Yo, T1, NY)) =
(Y(I)I)—D—I)Nl)

Theorem 3.27. Let (Y4, T, Ny), (Yo, T, N,) and
(Yo, T35, N;) be three CBFNS ;S's over V, then the fol-
lowing properties hold:

(1) (YCI)I)—I]—I)Nl)UER(Y(I)Z:—I]—ZyNZ) = (Y(I)Zy—I]—Z’NZ)UER
(Yd)l)—ﬂ_])Nl)

(2) (Yd)la—[l—])Nl)U@(Y@Z)—I]—Z)NZ) = (Y(I)2>—[|—2)N2)UG
(Yd)l)—ﬂ_]aNl)
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TaBLE 18: Extended union.

11

(9T, N tT,,5) 1, 1,

v (3, (0.81€927, -0.33¢~027)) (4, (0.92¢87, -0.29¢7027))

v, <2’ (0.616’0‘577[, —0.526_10‘437[» <4’ (0.896’0‘957[, —0.136_10‘197[»

Vs <1’ (0.2781'0.2177’ _0.89671'0.9177)) <3) (0.7581'0,6977) _0.58671'0.6177))

I, I,

v <1’ (0.2561'04327‘[’ _0.636—1:04727T)> <1) (0.3161'04377‘[) _0.656—i0459ﬂ)>

v, <2) (0.5781'044571, —0.456_10‘517[)) <2, (0.7181'046371, —0.386_i0‘42n)>

v, <0’ (0.123i0'07ﬂ, ~0.92¢™ i0A83ﬂ)> <0’ (0.123i0'17ﬂ, —0.86e™ i0A797T)>
TaBLE 19: €BF S ;S associated with €BF4S ;S and threshold & = 1.

(YL, 1), I, 1, I, I,

v (0.55€i0'62”, _0.33871’0.2971) (0.71€i0'63”, _0.44871’0.3871) (0.426i0.38ﬂ’ _0.57871’0.6571) (0.69€i0'65ﬂ, _0.45871’0.4271)

vy (0.81€%97, -0.15¢~127) (0.89¢"817, —0.13¢~007") (0.86€"%37, ~0.08¢~177) (0.79€"527, —0.05¢~0-217)

i (0.46610'43”, —0.52¢~ 10.6271) (0.68610'66”, ~0.31e” 10.3771) (0.39610'3471, —0.64e~ 10.5771) (0.31610'29”, —0.59¢ 10.7271)

vy (0.65¢"387, —0.29¢™ 0-34) (0.91€787, —0.17¢~ ©-11m) (0e°7, ~1e"') (0.27¢"31m, —0.68¢~ ')
TaBLE 20: CBF S ;S associated with €A F4S ;S and threshold P = 2.

(Y2,L), L N I I,

v (0.5561‘0‘6271) _0.33871402971) (0.716140‘63”, —0.4437140‘38”) (Oei()ﬂ, —le iﬂ) (0.6961'0,6571, _0.45e7i0,42n)

v, (O.81€i0'89n, _0‘158—1'0.1271) (O.89€i0'81n, _0‘138—1'0.0771) (0.86€i0'93ﬂ, —0.08¢e™ i0.177l) (0.7961'0.8271’ —0.05e~ iO.Zlﬂ)

i (Oeion, _lefiﬂ) (0.68€i0'66ﬂ, _0.31871’0.3771) (OeiOH, _1671'7!) (OeiOﬂ, _1671'7!)

vy (0.6561'0‘58”, —0.296_1'0‘34”) (0.9161'0‘78”, —0.176_1'0‘11”) (Oei()ﬂ, _le—iﬂ) (Oei()ﬂ, _le—iﬂ)
TABLE 21: €BF S ;S associated with €HBF4S (S and threshold P = 3.

(3, L), I I I I

v (Oei()ﬂ)_le—iﬂ) (Oei()ﬂ,—le_iﬂ) (Oei()ﬂ)_le—iﬂ) (OeiOH’_le—iﬂ)

v, (0.81€i0'89”, _0.15871’0.1271) (0.89€i0'81”, _0.13871’0.0771) (0.86€i0'93ﬂ, _0.08871’0.1771) (0.796i0.82ﬂ, _0.05871’0.2171)

V3 (Oe‘:o”, —le":”) (Qeio”, —le"'”)A (Oe‘:O”, ~le” ‘:”) (Oe‘:o", —le” ‘:”)

vy (Oeioﬂ,_le—iﬂ) (0.91610'78”, —0.178_10'11”) (Oexon’_le—m) (081071,_16—171)

TaBLE 22: §;& associated with €HF4S ;S and thresholds 2 =2, p = 0.9.

(Y3 L), L Ly L L

v 1 1 0 1

v, 1 1 1 1

Vs 0 1 0 0

v, 1 1 0 0

(3) (Yd)l)—[l—l)Nl)ﬂ}R(YQ)z)—[l—27N2) = (Yd)zy—I]—Z)NZ)n}R
(4) (YCI)I)—I]—I:NI)H(E(YCDZ)—U—Z)NZ) = (Y(I)Z)—I]—Z)Nz)m(f

(5) (Yo, T, N)UR (Y, T5,Ny))Ug (Yo, T5,N3) =
(Y(I)lr—[rl’Nl)Uﬂi((YCI)Z:—I]—2>N2)U9{ (Y([)3)—I]—3:N3))

(YQI’Tl)Nl)

(Yd)la—[l—l) N])

(6) ((Y(Dla—l]—l)Nl)U@ (Y(Dz)—H_ZaNz))U(E (Y(I)3)—U_3)N3) =

(Y®1>T13N1)U@((Y(Dz)—[I—ZsNz)U@(Y(D3;—|]—3)N3))

(7) ((Yd)l)—l]—laNl)nm(YQ)Z’—I]—Z)NZ))OS{ (Y®3>T3)N3) =
(Yd)l)—ﬂ-l’Nl)nm((Y(I)Z)T]—Z;NZ)mm (Yd)3a—|]—3)N3))

(8) ((Yc[)]>—|]—])N1)n(f (YQZ)TZ)NZ))OG (Y(D3’—[|—3>N3) =

(Y(DI)TI)N])n(E ((YQZ’TZ)NZ)QG (Y®3)T37N3))

(9) (Y®1)T1)N])UG((Y(I)Z)‘I]—Z)Nz)ﬂ% (Y®37T3)N3)) =

((Y(I>la-ﬂ_1>N1)U(f, (Y(Dz) —I]—Z)Nz))nm((YCI)l)-ﬂ_]) Nl)

U(§ (Y(I)3>—I]—3:N3))

(10) (Yo, T NN (Yo, Ty N)Uy (Yo, T5N3) =
((Y([)l)—[l—lle)n@ (YCI)Z)

—I]—z)NZ))Uﬂ{((YQ)I)—[I—I)Nl)n(E(Y(I)3’—I]—3>N3))

(11) (Y(I)ly—ﬂ—laN])UﬁR((YCDZ:—I]—Z)NZ) n@ (Y(I)S)—I]—33N3)) =

((YcD])—I]—])Nl)U?{(YcDZ: —D—Z)N2))n(§((y<])l)—[|—1)N1)

UfR (Y®3)T3)N3))
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(12) (Y®1>T1)N1)n%((Y(I)Z:—I]—Z)NZ)U@ (Y(I)S)—I]—3)N3))=
(Yo, T, NNy (Yo, T5Ny))Ue (Yo, T,N,)
ﬂm(y®3)-ﬂ—3sN3))

Now, we will define some fundamental operations on
complex bipolar fuzzy N-soft numbers.

e
o) = {7 ((a) ¢ (1o

p

b0 s, (o
|1//x,-/71|)71)

min (riy, ), ((“Piaii)ei (wyilm) (wxi/ﬂ)ﬂ) <_

|wxi/n|)n),

|8 >e_ i(|w”/ﬂ

G

By

y

<ei(|‘4’yi/”||wxi/”|*|‘4/yi/”

Theorem 3.29. Let y= ég, (a?,B"))s Xyi = <r?’, (aiie"wyi,
Be")y and x,; = <rl’-‘, (ocx,»,ﬁf’ci)> be three CBFNS s Ns
and T, Ty Ty > 0 be any real numbers; then

(1) Xyi ® Xxi = Xi ® Xyi

(2) Xyi®Xxi = Xxi ® Xyi

(3) X ®TXxi = T(X,i D Xxi)
(4 X3 ® X = (Xyi ® X"
O) ryx@rx = (1, + 1)

T,+T

(6) x» ®x™ =x"""

4. Formation of Decision-Making
Algorithms under B F NS ;& Framework

In this section, we will present the three Algorithms 1, 2, and
3 in order to deal with MADM problems in the framework of
CRBFNS ; model that will help to choose the best opt.
Consider V = {v},v,,v5,..., v} to be the universal set of
alternatives and L = {I;,1,,15,...,1,} the set of criteria that
will be used to solve the decision-making problems. Let 7 =
{r),75,75,...,7,} be the weight vector of criteria repre-
senting the importance of the parameters in the MADM
problem, where Y 7, =1 and 7; € [0,1].

5. Selection of the Best COVID-19 Vaccine

COVID-19 is a contagious disease that has heavily influ-
enced globally, leading to the pandemic. COVID-19 vaccine
is a vaccine designed to provide acquired immunity against
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus that causes COVID-19. COVID-19 vac-
cine is being formulated in various advanced countries, but
underdeveloped countries have not been able to invent their

,(wyi/n))r)ﬂ) _|ﬂ;l
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Definition 3.28. Let x; = <rf’, (aiie"“’y‘,ﬁzie“’y*’)> and x,; =
<rj‘, ((xii,ﬁzi» be two €BF NS . N's and 7> 0. Then, some

operations for €BF NS ;. Ns are as follows:

T>ef,-(f 141%{/"'1)”) >

ol o) ),

(26)

1] +

[ Bilel))

own vaccine. So they have to import it from the developed
countries. Suppose that a developing country wants to
import the vaccine with the highest urgency for the sake of
saving the lives of citizens, but due to the low GDP and
budget, the government can import only one vaccine at a
time. The following are the available options of the vaccines:

v,: Sinopharm,

v,: AstraZeneca,

v5: Sinovac,

v4: Novavax,

v5: SANOFIL.

The attributes on the basis of which the decision-maker
will assess the alternatives and assign them grades are as
follows:

[,: age factor

I,: cost

I5: efficacy

I,: manufacturer,
I: administration

Each expert will assign the 8§’ grade in order to find out
the best alternative with respect to the parameters. The rating

and associated 88 ;& of alternatives are given in Table 23,
where

Seven % symbolize < Exceptional’
Six * symbolize < Superb’

Five x symbolize < Impressive’
Four » symbolize < Excellent’
Three x symbolize < Good’
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Input:V = {v},v,,...,%}: Universal set of objects,
L=1{l,h,...,1.}: Set of parameters,
(O,L,N):NS ;& with £ ={0,1,2,...,N - 1} where N € {2,3,4,.. },
(Ye, T,N): %%QNSFS’ where T = ((D LN).
Compute 9, = @7 x,; where x,,; = <r , (cxp e, B)ie "”y‘)>, and sum of two
CRABFNS f/V sxy and x,,. is Galeulated as follows:

_ y P P i((w/m)+t (w,,/mn—q(w,;/mh(w,,/m)"
Xyie)Xyg —max(r,,r ) ((0‘ +0¢yg—0£y ayg)e Y yg y y9 ’>

<( |ﬁyi||ﬂyg e (Wil lmhmy

Compute the choice values of each v,

Reckon all the indices y for which S, = max S, .
y

if Sy =S, for arbitrary y,x € {1,2,3,...,k}, then
apply accuracy function given in (16) and find out the alternative that has the highest
accuracy value;

else
Determine the alternative with the highest score value.

output: The alternative having highest score or accuracy value will be the optimal solution.

€ V by employing the Ss,» using @15), Vy ={1,2,...,k}.

ALGoriTHM 1: The algorithm of choice values of EBF NS (S’s.

Input:V = {v;,v,,...,v}: Universal set of objects,
L={l,L,...,1}: Set of parameters,
(O,L,N):NS ;8 with # = {0,1,2,..., N — 1} where N € {2,3,4,.. .},
(Yg, T,N): %99.97Nc9fc5’, where T = (O,L, N),

T= (T, 75, T3 ..., T,): weight vector for attributes.

Compute 9, = &, 7;x,; wherery,, = <rty, ((1-(1- oci-) )e! (1= (A-wy/mim,

|ﬂ |T —ily,/nl* 71)>
Sum of two weighted ¥BF NS ;s xy; and xj, is calculated as follows

_ J’(T ( P(7) p(1) P (@ p(1)y (@] /m)+t (0], /m)n=q (@] /m)h (@], /7))
TNy ®TXyy = max(r] ", r) T) () +ocygT ocyl PT)e’ Wyl @y min=q (@), Imh (@)e M)

<( Vg"(T)”ﬁ"(T De *T(W/y,/ﬂﬂ‘l’,g”ﬂ)ﬂ)

Compute the weighted choice values of each v, € V' by employing the Sg:» using (15), Vy = {1,2,.
Determine all indices y for which S, = max Ssr.

y
if Sy =8, for some y,x € {1,2,3,...,k}, then

-k}

utilize accuracy function defined in (16) and find out the alternative that has the extreme accuracy value;

else
Specify the alternative with the greatest score value.
output: The alternative having greatest score or accuracy value will be the optimum solution.

AvrGoriTHM 2: The algorithm of weighted choice values of €BF NS ;Ss.

13

Two * symbolize < Average’
One * symbolizes < Subpar’,2009
<& symbolizes < Substandard’

Corresponding to the grades, the @B F8S ;. N's are
assigned to the criteria of vaccines by utilizing the following
grading criteria:

The corresponding 88 ;S can be associated as follows: 0.0< S(ggyl) <025 whengrade0,
<& refers to 0 0.25< S(ngl) < 0.50 whengradel,
<’ refers to 1 0.50< S(,%yl) < 0.75 whengrade?2,
<x*” refers to 2 0.75<S(%B,;) < 1.00 whengrade3, o
<xx*’ ref 27
xorxrelers to 3 1.00<8(%,,) < 1.25 when grade4,
<k*** refers to 4
<xxxxk Tefers to 5 1.25 <S(93J,,) < 1.50 whengrade5,
<kx*kx**x refers to 6 1. 50<S(93y,) < 1.75 when grade6,
kxxxokkx” refers to 7 1.75 <S(93y1) 2.00 whengrade?7.
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Input: V = {v},v,,...,v}: Universal set of objects,
L={l,L,...,1,}: Set of parameters,
(D,L,N): NoS’foS’ with £ ={0,1,2,...
(Yg, T, N): %(%PFN(S’]CS’, where
T=(D,L,N), 0<D < N: threshold value.

Compute Y2 (I,) = .
pute Yo (1) {(0050” ~1.0e”™),

Pp(2)
Xyz ®X g (((X + “}’9
Compute t

S9 = “p(g) +ﬁ"(“z +1/2 + 1/2(w9/n+ w9/ﬂ+ 1)

Determme all indices y for which Sy = max 893
if S7 = S7, for some y,x € {1,2,3,...,k},then

yi yg

else
Find out the alternative with maximum score value.

,N — 1} where N € {2,3,4,.. .},

(Jspan)(/p) (alye'", Be™), Yo () = (v,
otherwise.

Compute 9‘“2 = eBk 1)(),1, where Xy, = (a, (g)e“"w ﬂ"(g)e"’/ﬁ) and sum of two EABFNS /sty, and X is calculated as follows:
p(D) (g)a}’(g)) z(w-”/nw /n—(w'”/n)(m /)T ( |/3yl@)”ﬁn(9)|) 7t(|w)l/n||1yyg/n|)n)

e D- ch01ce values of each v, € V by employing the SSJ, Vy={L2,.

utilize accuracy function and ﬁnd out the alternative that has the extreme accuracy value;

output: The alternative having maximum accuracy or score value will be the best solution.

7 ) ocp & ﬁ;ieiv’ﬂ >, and r; >,

., k}. Here,

ALGORITHM 3: The algorithm of P-choice values of EBF NS (S’s.

where %, = (ocﬁ e, ﬁy V), S(A,,) = ocyl +ﬁ + 1/2+

1/2(w /7T+1//y1/7r+1) and y = 1,2, 3 4,5;i=1, 2 3,4,5.
Accordlng to the above-mentioned conditions, the

corresponding grading criteria are represented in Table 24.

Y, {((v1,6) 0.77¢"%" —0.13e "”7"> <v2,5) 0.71"%*" ~0.35¢ ’032”> <(v3,

Thereby, the €% F8S ;& can be determined by using
Definition 3.1 as follows:

0 69610 721 ~0.32¢” i0426n>

((v4,4),0.52¢™>,-0.42¢77), ((v5, 3),0.38¢ 47, ~0.53¢™ ")},

) ={((1,6),0.79¢**", —0.14¢™ "), {(v,,4),0.59¢"*", ~0.43¢” "), (13, 5)

),0.39¢" 47, —0.55¢" 1) ((v5,2),0.26¢ 17, -0.71e” )],

),0.92¢ %7, -0.07¢” %), {(v,,6),0.81¢"77", ~0.18¢”"*1*7), ((v3, 5)
((v43),0.45¢"417, -0.52¢” "), (5, 1), 0.15¢™77, ~0.79¢” 7,

) ={{(1,6),0.82¢"*7,~0.15¢""1*"), ((v,,5),0.63¢"**", ~0.35¢ "), {(v,,3)

5),0.64¢" 7, -0.29¢” "), {(vs,4),0.53¢™°", -0.39¢” 7)1,

Yo (1) ={{(v1,5),0.74¢7%", ~0.28¢”**'"), {(v,,4), 0.61e"**", 039~ ™), ((vs,

<(V4)
) ={((.7)

<(V4’

0 67610 667 -0 31€7i0‘29n>
0 65610 71m _0 34e” i0427n>
(28)

0 43ei0.397r -0 57e—i0.557r>

3)) 0.4161'0‘39”, —0.61e” i()45971>)

((v4,4), 05467, -0.44¢” %7, ((v5,2),0.32¢"%", ~0.71e” ") .

The €% F8S ; decision matrix is organized in Table 25.

5.1. Choice Values of € B F8S ;S. By employing Algorithm
1, choice values of @B F8S  decision matrix are computed
for the purpose of choosing the best vaccine to import, and
the results are arranged in Table 26.

According to the results of Table 26, the vaccines of
COVID-19 are ranked as follows:

VISV >V >V, > Vs, (29)

Hence, the government will import the v,
on the urgent basis.

= Sinopharm

5.2. Weighted Choice Values of €BF8S (S. In order to
apply Algorithm 2 on the ¥BF8S , decision matrix, the
expert will assign the weight vector

7=(0.170.230.250.150.20)7, (30)

to the attributes. The results are accumulated in Table 27.
According to the results of Table 27, the descending
order ranking of COVID-19 vaccines is given as follows:

VISV, > V3> V> Vs (31)

Hence, it is concluded that the government will import
the v, = Sinopharm.
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TaBLE 23: Grading of vaccinations and associated 85 ;.

VIL I I, I3 Iy I

Vy 6 = *kkkkk 6 = kkkkk*k 7 = kkkkkkKk 6 = kkkkk*k 5= kkkk%x

vy 5= kkxx*x 4 = KKKk 6 = **k*kxx% 5= kkkk*x 4 = KKKk

V3 5= %%xx*x% 5= xxxxx* 5= kkk*x% 3= xxx% 3= %%%

Vy 4 = kxkk 3= kx%x 3= %x*x 5= %kx*%* 4 = xkk*

Vs 3= xxx% 2= %% 4 = xkk* 2= %%
TaBLE 24: Grading criteria.

Grades Amplitude terms Phase terms

rl?/ “51’ ﬂ;: wyi 1l/yi

rf) =0 [0, 0.125) [-1,-0.875) [0,0.1257) [-7,-0.8757)

r?’ =1 [0.125, 0.250) [-0.875,-0.750) [0.1257, 0.2507) [-0.8757, —0.7507)

r?} =2 [0.250, 0.375) [-0.750,-0.625) [0.2507, 0.3757) [-0.7507, —0.6257)

rf/ =3 [0.375, 0.500) [-0.625,-0.500) [0.3757,0.5007) [-0.6257, —0.50077)

rl =3 [0.500, 0.625) [-0.500,-0.375) [0.5007, 0.6257) [-0.5007, —0.3757)

rf/ =3 [0.625, 0.750) [-0.375,-0.250) [0.6257,0.7507) [-0.3757, —0.2507)

rlfv =3 [0.750, 0.875) [-0.250,-0.125) [0.7507, 0.8757) [-0.2507, —0.1257)

rf) =3 [0.875,1.00] [-0.125,0] [0.875m, 7] [-0.1257, 0]

TaBLE 25: %@98§f decision matrix.

)

I

(6, (0.79¢"47, —0.14¢~0197))
<4> (0.598{0‘55”, —0.43¢~ 1l044771)>
(5, (0.67¢™%7, 0,31~ 02°m) )
(3, (0.39¢"0447, —0.55¢~0517))
(2, (0.26¢3'7, —0.71¢=657))

<7) (0.9261095”, —0.07¢" i04057'r)>
(6, (0.81¢1°777, -0.18¢~10147))
<5, (0.658'0‘71”, _0.346710.277r)>
(3, (04560417, ~0.52¢~10-557))
<1, (0.158'0‘21”, _0_796710,8171»

(Yq,T,8) L
v, (6, (0.7760827, —0.13e'i0‘17’7)>
v, <5, (0.718i0‘64ﬂ, —0.35€_i0‘32n)>
vy (5, (0.69¢10727, _0.326—:'0,2671))
vy <4’ (0.5281.0‘54”, —0.42€_i0‘48ﬂ)>
v (3, (0.38¢10-487, _0.536—:'0,5571))
ly
v (6, (0.82¢70857 —0,15¢™10-187))
v, <5’ (0.63@1‘0‘68”, —0.35€_i0‘33n)>
vy <3’ (0.43¢10397, _0.57e—i0,557r)>
v, (5, (0.64¢1°97, _0,29¢~10287))
v (4, (0.53¢10617, _0.396—:'0,4371))

lS
(5, (0.74€"0727, -0.28¢~10317))
<4, (0.61610‘55", —0.396_10‘4371))
3, (0.41¢0-397 _(.61¢~10-59m)
24, (0.54¢-387, —0.44e‘i°-49")§
(2, (0.326°337, —0.71e~106))

5.3. 2-Choice Values of €BF8S ;§. The P-choice values
of EBF8S ; decision matrix are evaluated by utilizing
Algorithm 3, where & = 5. The results are shown in Table 28.

From Table 28, it is summarized that the ranking of
COVID-19 vaccines is as follows:

VISV > V>V, > Vs (32)

Hence, the government will import v, = Sinopharm
without further delay.

6. Comparison

In this section, a comparison of the proposed MADM
techniques with previous methodologies, namely, choice
values, weighted choices values, and Z-choice values of
BFNS ;S is demonstrated, which is presented by Akram
et al. [22]. This comparison will demonstrate the proficiency
and authenticity of our proposed techniques by examining
the numerical application of “Selection of the best COVID-
19 vaccine” in the environment of BFNJS (S

6.1. Choice Value of BF8S ¢§. In order to apply the Choice
value of BFNS (&, firstly, we arranged the BF8S (S
from Table 23 by taking all phase terms of €BFNS (N's
equal to zero. The grading criteria and the grades given by
the expert will remain the same. The BF8S ; decision
matrix is arranged in Table 29.

Moreover, compute the 8y as follows:

8}/ = 6::1)()/1" (33)

where  y ;= <r§,, (aii,ﬂzi», and sum of two
BFNS Nsy, and x,, is calculated as follows:

(34)

_ Y N A+ —olab g
Xyi®Xyg = <max(ri ry) (“yi &y T 8% —|/3yi

n
ﬁ)’ﬂ

Further, the choice value of BF N & N5 is calculated by
using the score function as follows:

P 7
r x; +ﬂyi +1

fo, =~

. (35)
y N-1 2
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TaBLE 28: 5-Choice values of %%98§f5.
(Y3,T,8) I I, I I,
v (0.77610'82”, _0.13671'0.1771) (0.796108471) —0.14e™ i0A197T) (0.926140‘95”, —0.0787140‘05”) (0.8261.0‘85”, _0.15671'0,1871)

v, (0.716i0'64ﬂ,—0.356_i0'32ﬂ) (oeiOn, _le—iln)

(0.816i0'77” —0.18€_i0'14”) (0.63ei0'68ﬂ _0'35e—i0.3371)

Vs (0.69610'7271, —0.32¢" i0.2671) (0.6781'0.6677) —0.31e” i0.297r) (0.65€i0.71ﬂ’ —0.34¢e i0.277r) (Oeio”, _le” ilTl)
vy (Oei()ﬂ’_le—ilﬂ) (OeiO”,—le_iI”) (OeiOH’_le—ilﬂ) (0.6461'0,697[)_0'296—1'0.287[)
Vs (OeiOH’_le—iln) (OeiOH)_le—iln) (OeiOn _Ie—iln) (Oei()n,_le—ilﬂ)

I 97 Sg
v (0.74€0727, 20,28¢=0317) (0999861299997, 5,35 x 10~ S~ 90110 °r) 1.9998
v, (0e7, —1¢~11m) (0.9796¢™0-97357, 0.0221e"°°148”) 1.9581
i (007, —1¢~117) (0.9642¢07247 | _().0337¢~10-02047) 1.9413
vy (0e7, —1e~'7) (0.64€/9°7, —0.29¢~10-287) 1.38
Vs (OeiOH’ile—iln) (OeiOH,ile—iln) 0

TaBLE 29: 95’97805} decision matrix.

(S, T,8) L I I 1,
v {6, (0.77,-0.13)) {6, (0.79,-0.14)) {7, (0.92,-0.07)) {6, (0.82,-0.15))

{4, (0.59, -0.43))

<6, (0.81,-0.18))
(5, (0.65,-0.34))
(3, (0.45,-0.52))
(1, (0.15,-0.79))

¢5, (0.63,-0.35))
(3, (0.43,-0.57))
{5, (0.64,-0.29))
{4, (0.53,-0.39))

v, (5, (0.71,-0.35))
v, (5, (0.69,-0.32)) {5, (0.67,-0.31))
vy (4, (0.52,-0.42)) (3, (0.39,-0.55))
v (3, (0.38,-0.53)) (2, (0.26,-0.71))
I
v (5, (0.74,-0.28))
v (4, (0.61,-0.39))
vy (3, (0.41,-0.61))
v, (4, (0.54,-0.44))
v (2, (0.32,-0.71))

The results are given by Table 30.
According to the results of Table 30, the vaccines of
COVID-19 are ranked as follows:

VISV > V>V > Vs (36)

Hence, the government will import the v; = Sinopharm on
an urgent basis.

6.2. Weighted Choice Values of BF8S ;S. In order to apply
the weighted choice values of BFNS (S, we used the
BFBS ¢ decision matrix given by Table 29, where phase

_ y(r) _y() p(7)
TXyi®TXyg—<maX(7’i ,7’; )(yz

Further, the weighted choice values of BFNS (N's is
calculated by using the score function as follows:

y LU
r; +ay1+ﬁyt+ 1. (40)

fo =N 2

The results are arranged by Table 31.
According to the results of Table 31, the descending
order ranking of COVID-19 vaccines is given as follows:

VISV, >V >V, > Vs (41)

terms are taken zero. The weight vector of criteria is given
below:

7=(0.170.230.250.150.20)". (37)
Further, compute the 6; as follows:
8, = &1 Thyp (38)
where Xyi = <ry, (ocyl,/)’yl)> TXyi = <rl , (1= (1- oc IR

—Iﬁy,l Y. and the sum of two weighted BFNS ( Ns Xy; and
Xyq 1s calculated as follows:

p(r) _  p(@) p(‘r n(r)
+(X)’g }V’ <|ﬁ

)> (39)

Hence, it is concluded that the government will import
the v, = Sinopharm.

6.3. D-Choice Values of BF8S ;§. In order to apply the
P-choice values of BFNS (S, we used the BF8S, de-
cision matrix, given by Table 29, where phase terms are taken
zero. The threshold & = 5.

Further, calculate
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TaBLE 30: Choice values of 939‘786’f&

(3, T,8) L I, Iy 1
v (6, (0.77,-0.13)) (6, (0.79,-0.14)) (7, (0.92,-0.07)) <6, (0.82,-0.15))
v, (5, (0.71,-0.35)) (4, (0.59,-0.43)) ¢6, (0.81,-0.18)} (5, (0.63,-0.35))
v, (5, (0.69,-0.32)) (5, (0.67,-0.31)) (5, (0.65,-0.34)) (3, (0.43,-0.57))
v, (4, (0.52,-0.42)) (3, (0.39,-0.55)) (3, (0.45,-0.52)) (5, (0.64,-0.29))
v (3, (0.38,-0.53)) (2, (0.26,-0.71)} (1, (0.15,-0.79)) (4, (0.53,-0.39))
I5 5, s,
v (5, (0.74,-0.28)) (7, (0.9998,5.35 x 10~%)) 1.8749
vy (4, (0.61,-0.39)) (6, (0.9967,-0.0037)) 1.7465
v, (3, (0.41,-0.61)) (5, (0.9880, -0.0117)) 1.6131
v, (4, (0.54,-0.44)) (5, (0.9733,-0.0153)) 1.6040
v (2, (0.32,-0.71)) (4, (0.8754,-0.0823)) 1.3965
TaBLE 31: Weighted choice value of BF8S .
(3, T,8) I I I I
v, €6, (0.2211,-0.7069)) €6, (0.3016, -0.6362)) (7, (0.4682, -0.5144)) €6, (0.2268,-0.7523))
v (5, (0.1898, -0.8365)) (4, (0.1854, -0.8236)) (6, (0.3398, -0.6514)) {5, (0.1385, -0.8543))
v, {5, (0.1805, -0.8239)) (5, (0.2251,-0.7639)) (5, (0.2308, -0.7636)) (3, (0.0809, -0.9191))
Vy {4, (0.1173,-0.8629)) {3, (0.1075,-0.8715)) (3, (0.1388,-0.8492)) {5, (0.1421,-0.8305))
v (3, (0.0781,-0.8977)) (2, (0.0669, -0.9242)} (1, (0.0398, —0.9428)) (4, (0.1071, -0.8683))
Is 3 fsr
V (5, (0.2362,-0.7752)) {7, (0.8291,-0.1349)) 1.7221
v, (4, (0.1717,-0.8283)) (6, (0.6891,-0.3176)) 1.4357
v, (3, (0.1001, -0.9059)) {5, (0.5960, —0.4001)) 1.2229
v, (4, (0.1438, -0.8486)) (5, (0.5017, —0.4501)) 1.1508
Vs {2, (0.0742,-0.9338)) {4, (0.3172,-0.6342)) 0.8415

(0.0,-1.0), otherwise.

57 (1) = { (“gi’ﬁ;i)’ if Yo () = <(Vy r

Moreover, compute the 8;2 as follows:
) %)
8}/ = EB::IXyi’ (43)

where, Xyl = ((xp(@) /3"(9))) and the sum of two
BFNS ¢ Ns Xyz and Xyg 1s calculated as follows:

(D) |> )

(44)

DD _ [ p(D P(D) _ (P (D) p(9)
Xyi@Xyg_(“yi Ty T _{ﬁyl '

Further, the 5-choice values of BF NS . N's is calculated
by using the score function as follows:

P n
a+ .+ 1

iRyt (45)
fs2 5 .

The results are arranged by Table 32.
From Table 32, it is summarized that the ranking of
COVID-19 vaccines is as follows:

VISV > V>V, > Vs (46)

Hence, the government will import v, = Sinopharm
without further delay.

) yz’ﬁy1> andriyZQZ, (42)

6.4. Discussion

(1) Now, the results of the presented MADM method-
ologies in the framework of THFNS S are
compared with MADM methods, namely, choice
values of BFNS S, weighted choice values of
35’97No§fc5° and D-choice values of %’9No§’fc5’,
presented by Akram et al. [22], to show the au-
thenticity and veracity of the proposed decision-
making algorithms.

(2) Moreover, we have also applied the decision-making
methods of ENS, § [17] in order to find the best
available COVID-19 vaccine to import. The results of
the proposed and existing methods, including the
final ranking and best alternatives, are arranged in
Table 33 as follows:

(3) Itis clear from Table 33 that the v, is the best vaccine
in all environments. Moreover, the ranking of vac-
cines is also similar in all methodologies, which il-
lustrates the reliability and accuracy of the presented
MADM techniques.

(4) The comparative analysis of the results is also
demonstrated in Figure 3 through the bar chart
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TABLE 32: 5-choice value of %985f§.

(S.T.8) I, I, I I
v (0.77,-0.13) (0.79, —0.14) (0.92,-0.07) (0.82,—-0.15)
v, (0.71,-0.35) (0,-1) (0.81,-0.18) (0.63,-0.35)
v, (0.69, —0.32) (0.67,-0.31) (0.65, —0.34) (0,-1)
Vy (0,-1) (0,-1) (0,-1) (0.64,-0.29)
Vs (0,-1) (0,-1) (0,-1) (0,-1)

I 55 fs
v (0.74,—0.28) (0.9998,-5.35 x 107?) 0.9999
v (0,-1) (0.9796,-0.0221) 0.9788
v, (0,-1) (0.9642,-0.0337) 0.9652
Vy (0,-1) (0.64,-0.29) 0.6750
Vs (0,-1) 0,-1) 0

TaBLE 33: Comparative analysis.

Methods Ranking of COVID-19 vaccines Best vaccine
Choice value of BFNS (S (proposed) VISV > V3>V > Vs 2
Weighted choice value of €BFNS ;& (proposed) VISV > V3>V > Vs v,
5-Choice value of EBFNS ;S (proposed) VISV > V3>V > Vs 2
Choice value of BFNS (S [22] VISV > V3>V > Vs 2
Weighted choice value of #FNS ;& [22] VI >V > V3>V, > Vs v,
5-Choice value of BFNS (& [22] VISV > V3>V > Vs 2
Choice value of FNS, § [17] VISV > V3>V > Vs v,
3-Choice value of FNS, S [17] VISV > V3>V, > Vs v,
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FiGure 3: Comparative analysis.
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between the ranking and COVID-19 vaccines, which
shows the proficiency of the proposed decision-
making techniques.

(5) The proposed hybrid model of BFNS ;& can
effectively handle the information in the environ-
ment of €BFNS S, BFS;S and BFS by
taking N = 2 and |L| = 1 respectively.

(6) The proposed decision-making methods of
CABFNS ;S can handle the environment of NS S
by taking negative membership values and phase
terms equal to zero.

(7) The presented €HBFNS ;S is a parameterized
framework that is used to deal with the bipolar
fuzziness of the information. It has the capability to
handle two-dimensional vague information; i.e., it
can deal with the periodicity involved in the bipolar
information. Particularly, it can efficiently deal with
the ranking based assessment of imprecise infor-
mation that involves effects along with side effects.

7. Conclusion

In this paper, an innovative hybrid model, namely, complex
bipolar fuzzy N-soft sets has been set up by integrating the
CRBFSs with N§ ch’ s. The generalized, more efficient
theory is useful to handle the two-dimensional bipolar fuzzy
information. It is superior to the existing ZFNS (S as it
deals with periodic information. Firstly, we have presented
the conventional definition of ¥BF NS ;S's in addition to
its fundamental operations and related results. We have
defined elementary algebraic operations for EBFNS (N's.
We have also developed three algorithms for MADM
problems in order to choose the favorable parameter under
the environment of ¥BFNS (S. We have illustrated the
significance of proposed algorithms by applying them to
practical applications. Finally, to demonstrate their validity
and applicability, we have shown a comparison with existing
MADM approaches. In the future, we intend to establish
more decision-making approaches, including ELECTRE 1,
ELECTRE II, and TOPSIS methods under the aforemen-
tioned abundant and multifaceted model of EBFNS ;.
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