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)e primary aim of this article is to extend the bipolar fuzzy N-soft sets with the concern of pursuing the periodicity involved real-
world problems and introduce a new multiskilled hybrid model, namely, complex bipolar fuzzy N-soft sets. )e novel model
possesses the parametric characteristics of the versatile N-soft set and enjoys the distinguished attributes of a complex bipolar
fuzzy set to handle the double-sided periodic vague data. We illustrate that the innovative model assists as a proficient mechanism
for grading-based parameterized two-dimensional bipolar fuzzy information. We present some elementary operations and results
for a complex bipolar fuzzy N-soft environment. Further, we establish the three dexterous algorithms to find the optimal solution
to multiattribute decision-making problems. Moreover, the algorithms are supported with the robust assessment of a real-world
application. Lastly, a comparison with existent decision-making techniques, such as choice values, weighted choice values, and
D-choice of values of bipolar fuzzy N-soft sets, is also conducted to manifest the phenomenal accountability and authenticity of
the presented decision-making approaches.

1. Introduction

)e primary concept of fuzzy set (FS) theory was presented
by Zadeh [1] in 1965, which is a generalization of classical set
theory to handle vague and uncertain information. In (FS),
the value of membership degree (MD) lies in [0, 1]. In 1983,
Atanassov [2] suggested the intuitionistic fuzzy set (IFS) by
adding the nonmembership degree (NMD) having the prop-
erty that the sum ofMD andNMD should be less than or equal
to 1. Among many generalizations of FS theory, our main
focus is on the bipolar fuzzy set put forward by Zhang [3].

)e traditional models of FS are incapable of dealing
with the periodic information in any meaningful way.
Hence, another ground-breaking model was established by
Ramot et al. [4] that can tackle the two-dimensional un-
certain information. Among many other extensions of CFS,

our focus is on complex bipolar fuzzy sets (CBFS), which
was initiated by Akram et al. [5]. )e rationale ofCBFS is
to represent the bipolar information having vagueness and
periodicity in complex geometry, as shown in Figures 1 and
2. By implementing the concept of bipolar fuzzy set in
complex geometry to portray diverse phenomena at various
phases, the notion of complex bipolar fuzzy set expresses
bipolar behavior of uncertainty and periodicity
simultaneously.

It has been a dilemma for researchers, as well as decision
makers, to deal with the imprecision and ambiguity as it
shows up in every discipline of life including social sciences,
information technology, economics, business management,
and so forth. Many attempts have beenmade to confront this
concern.Molodtsov [6, 7] gave the idea of a soft set (SfS) in
1999. Maji et al. [8] illustrated the application of SfS for
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choosing the best house. Maji et al. [9] introduced the fuzzy
SfS and investigated its basic properties. Maji et al. [10]
presented the intuitionistic fuzzy SfS. Bipolar SfS was
proposed by Shabir and Naz [11]. Later, Karaaslan and
Karataş [12] redefined the bipolar SfS and worked for the
decision-making method along with the application. Aslam
et al. [13] put forth the idea of a hybrid model, namely,
bipolar fuzzy SfS and defined its fundamental operations.
Alghamdi et al. [14] used the various multicriteria decision
techniques under a bipolar fuzzy environment. Later,
Akram et al. [15] applied the TOPSIS and ELECTRE I
approaches to diagnose medical diseases with the help of
bipolar fuzzy data.

SfS theory is used to evaluate the binary evaluation
based information. It is not helpful for nonbinary discreet
evaluation based systems. Nowadays, mostly systems are
being assessed on the basis of rating. In these systems, the
rating of the alternatives is done by a number of stars, check
marks, dots, numbers, et cetera. To overcome these

obstacles, Fatimah et al. [16] developed the stimulated
concept of N-soft set (NSfS) along with set-theoretic
operations and decision-making algorithms which are useful
to capture the ordered graded information. Furthermore,
Akram et al. [17] merged the novel models of FS and
NSfS to introduce the fuzzy NSfS (FNSfS). Akram
et al. also proposed the intuitionistic fuzzy NSfS [18],
complex Pythagorean fuzzy NSfS [19], complex spherical
fuzzy NSfS [20], complex neutrosophic NSfS [21], and
bipolar fuzzy NSfS (BFNSfS) [22]. Pythagorean fuzzy
NSfS was initiated by Zhang et al. [23]. Fatimah and
Alcantud [24] put forward the multifuzzy NSfS. Kamaci
and Petchimuthu [25] introduced the hybrid model of bi-
polar NSfS along with practical applications.

To sum up, the motivation of this article is given as
follows:

Although the traditional NSfS can capture the graded
evaluation of parameters and is superior than SfS;
nevertheless it can not handle the fuzziness involved in
the information.
)eCBFS is beneficial to tackle the two-dimensional
bipolar information, but it can not cope with the rating/
ranking based parameterized information.
BFNSfS can deal with graded parameterized dou-
ble-sided ambiguous information, but still it has the
inadequacy of phase term.

Motivated by the aforementioned concerns, this research
article introduced a new hybrid model with multiple charac-
teristics, namely, complex bipolar fuzzy N-soft sets. )is
methodology is designed to capture and interpret the two-
dimensional bipolar fuzzy graded parameterized information.
)is article also describes the fundamental operations of the
proposed model. Moreover, complex bipolar fuzzy N-soft
number along with some algebraic operations and properties is
also defined. )ree algorithms for decision-making have been
defined and ingeniously implemented on real-life problems.
)e rationality and applicability have been illustrated through
comparative analysis with existing methodologies.

)is research paper is organized as follows: Section 2
defines some preliminary concepts for the development of
the new hybrid model. Section 3 describes the mathematical
framework of the proposed complex bipolar fuzzy N-soft
sets models and develops its operations. Section 4 provides
the three algorithms for decision-making purposes. Section
5 illustrates the applicability of the presented novel algo-
rithms. Section 6 demonstrates the comparative analysis of
proposed techniques with existing decision-making
methods. Section 7 sums up this article with some con-
cluding remarks.

2. Preliminaries

Now, we will present some fundamental definitions that are
essential for further developments.

Definition 2.1 (see [1]). Let V be a nonempty set. A fuzzy set
μ over V is an object of the form:

ψCb (υ) = 0
ωCb (υ) = 0

Figure 1: Phase term in BFS.
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Figure 2: Graphical representation of CBFS.
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μ � v, αp
μ(v)􏼐 􏼑 | v ∈ V􏽮 􏽯, (1)

where αp
μ : V⟶ [0, 1] denotes the degree of membership.

Definition 2.2 (see [3]) Let V be a nonempty set. A bipolar
fuzzy set B over V is of the form:

B � v, αp
B(v), βn

B(v)􏼐 􏼑 | v ∈ V􏽮 􏽯, (2)

where αp

B: V⟶ [0, 1] and βn
B: V⟶ [− 1, 0] represent the

satisfaction function and dissatisfaction function, respec-
tively. )e satisfaction value αp

B(v) indicates the strength of
belongingness of element v to a certain property and the
dissatisfaction value βn

B(v) indicates the belongingness of
element v to some counter property of bipolar fuzzy set B.

Definition 2.3 (see [26]). Let €b � (αp, βn) be a bipolar fuzzy
number. )en, the bipolar fuzzy score function f and ac-
curacy function g are formulated as follows:

f(€b) �
1 + αp

+ βn

2
,

g(€b) �
αp

− βn

2
,

(3)

where f(€b), g(€b) ∈ [0, 1].

Definition 2.4 (see [5]). Let V be a universal set. A CBFS

Cb on a nonempty set V is an object of the form:

Cb � v, αp

Cb
(v)e

iωCb
(v)

, βn
Cb

(v)e
iψCb

(v)
􏼐 􏼑|v ∈ V􏽮 􏽯, (4)

where i �
���
− 1

√
, αp

Cb
: V⟶ [0, 1] and βn

Cb
: V⟶ [− 1, 0] are

mappings, ωCb
(v) ∈ [0, π] and ψCb

(v) ∈ [− π, 0]. For any

element v ∈ V, αp

Cb
(v) and βn

Cb
(v) are known to be amplitude

terms; ωCb
(v) and ψCb

(v) are phase terms.

Definition 2.5 (see [6]). Let V be a universe of discourse
under consideration and A be the set of all attributes, L⊆A. A
pair (ϑ,L) is called SfS over V if ϑ: L⟶ P(V) where ϑ is
a set-valued function.

Definition 2.6 (see [16]). Let V be a universe of discourse
and A be the set of all attributes, L⊆A. Consider
R � 0, 1, . . . , N − 1{ } be a set of ordered grades where
N ∈ 2, 3, . . .{ }. A triple (U,L, N) is an NSfS on V if
U: L⟶ 2V×R, with the property that for each kj ∈ L, there
exists a unique (vt, rt

j) ∈ V × R such that
(vt, rt

j) ∈ U(kj), vt ∈ V, rt
j ∈R.

Definition 2.7 (see [13]). Let V be a universe of discourse
under consideration and A be the set of all attributes, L⊆A. A
pair (℘,L) is calledBFSfS over V if ℘: L⟶ BFV, where
BFV is the collection of all bipolar fuzzy subsets of V. It is
defined as follows:

(℘,L) � v, αp

l (v), βn
l (v)􏼐 􏼑|∀v ∈ V and l ∈ L􏽮 􏽯. (5)

Definition 2.8 (see [22]). Let V be a universe of discourse
and A be the set of all attributes under consideration, L⊆A.
LetR � 0, 1, 2, . . . , N − 1{ } be a set of ordered grades where
N ∈ 2, 3, . . .{ }. A triple (I,P, N) is called a BFNSfS,
when P � (U,L, N) is an NSfS on V where
U: L⟶ 2V×R and I is a mapping such that
I: L⟶ 2V×R × BFV, which is as follows:

(I,P, N) � l, (W(l),Z(l))〈 〉|l ∈ L, (W(l),Z(l)) ∈ 2V×R
× BFV􏽮 􏽯

� l, v, r
v
l( 􏼁, αp

l , βn
l􏽄 􏽅|l ∈ L, v ∈ V, r

v
l ∈R􏽮 􏽯,

(6)

where

Z,W: K⟶BFV, (7)

and BFV represents the collection of all bipolar fuzzy
values on V.

Here, αp

l ∈ [0, 1] and βn
l ∈ [− 1, 0] for all v ∈ V.

3. Theoretical Structure of Complex Bipolar
Fuzzy N-Soft Set

Definition 3.1. Let V be the universal set and A be the set of
parameters under examination, L⊆A. Let
R � 0, 1, 2, . . . , N − 1{ } be the set of ordered grades with
N ∈ 2, 3, . . .{ }. A triple χ � (ΥΦ, T , N) is called a complex
bipolar fuzzy N-soft set (CBFNSfS) on V, if

T � (Φ,L, N) possessing Φ: L⟶ 2V×R is an N-soft set
(NSfS) on V and ΥΦ: L⟶ 2V×R × CBFV, which is
described as follows:

χ � Φ li( 􏼁,Υ li( 􏼁( 􏼁􏼊 􏼋|li ∈ L􏼈 􏼉

� l, v, r
v
l( 􏼁, μl, ]l( 􏼁􏼊 􏼋|l ∈ L, v ∈ V, r

v
l ∈R􏼈 􏼉

� l, v, r
v
l( 􏼁, αp

l e
iωl , βn

l e
iψl􏽄 􏽅|l ∈ L, v ∈ V, r

v
l ∈R􏽮 􏽯,

(8)

where

Υ: L⟶ CBFV, (9)

CBFV indicates the collection of all complex bipolar fuzzy
values on V.

Here, i �
���
− 1

√
, αp

l ∈ [0, 1], βn
l ∈ [− 1, 0], ωl ∈ [0, π] and

ψ ∈ [− π, 0] for all v ∈ V.
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Remark. Let χ(li) � (vy, r
y
i ), αp

yie
iωyi , βn

yie
ψyi􏽄 􏽅 be a

CBFNSfS. )en, the complex bipolar fuzzy N-soft
number (CBFNSfN) is defined as follows:

χyi � r
y
i , αp

yie
iωyi , βn

yie
ψyi􏼐 􏼑􏽄 􏽅. (10)

)e following example of decision-making demonstrates
the importance and significance of the proposed hybrid
model. )is example elaborates the shortcomings of the
hybrid modelBFNSfS, put forward by Akram et al. [22],
and illustrates the proficiency of the presented hybrid model
in decision-making problems.

Example 3.2. Multiattribute decision-making procedures
are considered as a primary tool for examining the patient’s
medical history in the medical symptomatic system and
suggest the required tests. But most of the time, syndromes
are not apparent and show bipolar behavior. In such cir-
cumstances, bipolar fuzzy sets are more capable of applying
because it deals with positive along with negative behavior of
an object towards a certain property. Suppose that a person
with brain disorder visits a neurologist. A neurologist ex-
amines the symptoms first. )e symptoms are as follows:

l1: headache
l2: seizures
l3: fatigue
l4: mood swings

)e doctor examines the patient’s history, but still, there
is confusion about whether it is a traumatic brain injury or
brain tumor. Hence, the doctor wants to suggest one of the
following brain scans for clear examination.

v1: computed tomography (CT) scan
v2: magnetic resonance imaging (MRI)
v3: positron emission tomography (PET)
v4: single photon emission computed tomography
(SPECT)

)e neurologist will assign the 4Sf grades to the al-
ternatives in order to find out the best option for brain

scanning according to the symptoms. )e rating and as-
sociated 4SfS of alternatives are given in Table 1, where

)ree • represent outstanding
Two • represent superb
One • represents good
° represents average

)e corresponding 8SfS can be associated as follows:

< °’ indicates 0
<•’ indicates 1
<••’ indicates 2
<•••’ indicates 3

Corresponding to the grades, CBF8SfNs is assigned
to the criteria of vaccines by utilizing the following grading
criteria:

0.0≤f €byi􏼐 􏼑 < 0.25 when grade 0,

0.25≤f €byi􏼐 􏼑 < 0.50 when grade 1,

0.50≤f €byi􏼐 􏼑 < 0.75 when grade 2,

0.75≤f €byi􏼐 􏼑 ≤ 1.00 when grade 3.

(11)

where €byi � (αp
yi, β

n
yi), f(€byi) � αp

yi + βn
yi + 1/2 and

y � 1, 2, 3, 4; i � 1, 2, 3, 4.

According to the aforementioned criteria, the corre-
sponding grading criteria are represented in Table 2.

)ereby, the BF4SfS can be defined as follows:

ΥΦ l1( 􏼁 � v1, 2( 􏼁, 0.55, − 0.33􏼊 􏼋, v2, 3( 􏼁, 0.81, − 0.15􏼊 􏼋, v3, 1( 􏼁, 0.46, − 0.52􏼊 􏼋, v4, 2( 􏼁, 0.65, − 0.29􏼊 􏼋,􏼈 􏼉

ΥΦ l2( 􏼁 � v1, 2( 􏼁, 0.71, − 0.44􏼊 􏼋, v2, 3( 􏼁, 0.89, − 0.13􏼊 􏼋, v3, 2( 􏼁, 0.68, − 0.31􏼊 􏼋, v4, 3( 􏼁, 0.91, − 0.17􏼊 􏼋􏼈 􏼉,

ΥΦ l3( 􏼁 � v1, 1( 􏼁, 0.42, − 0.57􏼊 􏼋, v2, 3( 􏼁, 0.86, − 0.08􏼊 􏼋, v3, 1( 􏼁, 0.39, − 0.64􏼊 􏼋, v4, 0( 􏼁, 0.15, − 0.89􏼊 􏼋􏼈 􏼉,

ΥΦ l4( 􏼁 � v1, 2( 􏼁, 0.69, − 0.45􏼊 􏼋, v2, 3( 􏼁, 0.79, − 0.05􏼊 􏼋, v3, 1( 􏼁, 0.31, − 0.59􏼊 􏼋, v4, 1( 􏼁, 0.27, − 0.68􏼊 􏼋􏼈 􏼉.

(12)

)e tabular representation ofBF4Sf decision matrix is
given in Table 3.

)e doctor assigns the BFNs corresponding to each
grade value of the alternatives. Now, suppose that the doctor
observes “Initially, almost 3months the headache was bearable,
but from the last 8months it is severe.” )en the bipolar fuzzy
framework is ambiguous and fails to handle the complete

situation. Hence, it is necessary to use the complex bipolar
fuzzy environment in order to deal with the periodicity of the
data. )erefore, we set up the CBFNSfS instead of
BFNSfS for the assessment of such problems. )e phase
term in data will indicate the information related to the ref-
erence frame of time under consideration. Now, the grading
criteria are redefined according to the framework of CBFS.

Table 1: Rating of brain scanning tests.

V/L l1 l2 l3 l4

v1 2 � •• 2 � •• 1 � • 2 � ••

v2 3 � ••• 3 � ••• 3 � ••• 3 � •••

v3 1 � • 2 � •• 1 � • 1 � •

v4 2 � •• 3 � ••• 0�° 1 � •
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0.0≤ S Byi􏼐 􏼑< 0.50 when grade 0,

0.50≤ S Byi􏼐 􏼑< 1.00 when grade 1,

1.00≤ S Byi􏼐 􏼑< 1.50 when grade 2,

1.50≤ S Byi􏼐 􏼑≤ 2.00 when grade 3.

(13)

where Byi � (αp
yie

iωyiπ , βn
yie

ψyi ), S(Byi) � αp
yi + βn

yi + 1/2+

1/2(ωyi/π + ψyi/π + 1) and y � 1, 2, 3, 4; i � 1, 2, 3, 4.

According to the aforementioned criteria, the corre-
sponding grading criteria are represented in Table 4.

Hence, CBF4SfS can be obtained by applying Def-
inition 3.1 as follows:

ΥΦ l1( 􏼁 � v1, 2( 􏼁, 0.55e
i0.62π

, − 0.33e
− i0.29π

􏽄 􏽅, v2, 3( 􏼁, 0.81e
i0.89π

, − 0.15e
− i0.12π

􏽄 􏽅, v3, 1( 􏼁, 0.46e
i0.43π

, − 0.52e
− i0.62π

􏽄 􏽅,􏽮

v4, 2( 􏼁, 0.65e
i0.58π

, − 0.29e
− i0.34π

􏽄 􏽅􏽯,

ΥΦ l2( 􏼁 � v1, 2( 􏼁, 0.71e
i0.63π

, − 0.44e
− i0.38π

􏽄 􏽅, v2, 3( 􏼁, 0.89e
i0.81π

, − 0.13e
− i0.07π

􏽄 􏽅, v3, 2( 􏼁, 0.68e
i0.66π

, − 0.31e
− i0.37π

􏽄 􏽅,􏽮

v4, 3( 􏼁, 0.91e
i0.78π

, − 0.17e
− i0.11π

􏽄 􏽅􏽯,

ΥΦ l3( 􏼁 � v1, 1( 􏼁, 0.42e
i0.38π

, − 0.57e
− i0.65π

􏽄 􏽅, v2, 3( 􏼁, 0.86e
i0.93π

, − 0.08e
− i0.17π

􏽄 􏽅, v3, 1( 􏼁, 0.39e
i0.34π

, − 0.64e
− i0.57π

􏽄 􏽅,􏽮

v4, 0( 􏼁, 0.15e
i0.21π

, − 0.89e
− i0.92π

􏽄 􏽅􏽯,

ΥΦ l4( 􏼁 � v1, 2( 􏼁, 0.69e
i0.65π

, − 0.45e
− i0.42π

􏽄 􏽅, v2, 3( 􏼁, 0.79e
i0.82π

, − 0.05e
− i0.21π

􏽄 􏽅, v3, 1( 􏼁, 0.31e
i0.29π

, − 0.59e
− i0.72π

􏽄 􏽅,􏽮

v4, 1( 􏼁, 0.27e
i0.31π

, − 0.68e
− i0.61π

􏽄 􏽅􏽯.

(14)

)e tabular representation ofCBF4Sf decision matrix
is depicted in Table 5.

Definition 3.3. Let χyi � r
y
i , (αp

yie
iωyi , βn

yie
ψyi )􏽄 􏽅 be a

CBFNSfN over V. )e score function is defined as
follows:

S χyi􏼐 􏼑 �
r

y
i

N − 1
+
αp

yi + βn
yi + 1

2
+
1
2

ωyi

π
+
ψyi

π
+ 1􏼒 􏼓, (15)

where S(χyi) ∈ [0, 3].

Definition 3.4. Let χyi � r
y
i , (αp

yie
iωyi , βn

yie
ψyi )􏽄 􏽅 be a

CBFNSfN over V. )e accuracy function is defined as
follows:

A χyi􏼐 􏼑 �
r

y
i

N − 1
+ αp

yi − βn
yi +

ωyi

π
−
ψyi

π
, (16)

where A(χyi) ∈ [0, 4].

Definition 3.5. For any two distinct
CBFNSfNs χyi � r

y
i , (αp

yie
iωyi , βn

yie
ψyi )􏽄 􏽅 and

χxi � rx
i , (αp

xie
iωxi , βn

xie
ψxi )􏽄 􏽅, we have the following:

(1) If S(χyi)< S(χxi), then χyi≺χxi (χxi is superior to χyi)

(2) If S(χyi)> S(χxi), then χyi ≻ χxi (χxi is inferior to χyi)

(3) If S(χyi) � S(χxi), then

(a) If A(χyi)>A(χxi), then χyi≺χxi (χxi

is superior to χyi)

(b) If A(χyi)<A(χxi), then χyi ≻ χxi (χxi

is inferior to χyi)

Table 3: Tabular form of the BF4SfS.

(ΥΦ, T , 4) l1 l2 l3 l4

v1 2, (0.55, − 0.33)〈 〉 2, (0.71, − 0.44)〈 〉 1, (0.42, − 0.57)〈 〉 2, (0.69, − 0.45)〈 〉

v2 3, (0.81, − 0.15)〈 〉 3, (0.89, − 0.13)〈 〉 3, (0.86, − 0.08)〈 〉 3, (0.79, − 0.05)〈 〉

v3 1, (0.46, − 0.52)〈 〉 2, (0.68, − 0.31)〈 〉 1, (0.39, − 0.64)〈 〉 1, (0.31, − 0.59)〈 〉

v4 2, (0.65, − 0.29)〈 〉 3, (0.91, − 0.17)〈 〉 0, (0.15, − 0.89)〈 〉 1, (0.27, − 0.68)〈 〉

Table 2: Grading criteria.

Grades Positive membership Negative membership
r

y
i αp

yi βn
yi

r
y
i � 0 [0, 0.25) [− 1, − 0.75)

r
y
i � 1 [0.25, 0.50) [− 0.75, − 0.50)

r
y
i � 2 [0.50, 0.75) [− 0.50, − 0.25)

r
y

i � 3 [0.75, 1.00] [− 0.25, − 0.00]
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(c) If A(χyi) � A(χxi), then χyi ∼ χxi (χyi

is equivalent to χxi)

Remark. It can be observed that

(1) For N � 2, CBFNSfS becomes CBFSfS.
(2) When N � 2 and |L| � 1, CBFNSfS becomes

CBFS.

Now, we will investigate the notions of complemen-
tarities of CBFNSfS.

Definition 3.6. Let (ΥΦ, T , N) be a CBFNSfS over
nonempty set V, where T � (Φ,L, N) is an NSfS, then
(ΥΦ, T c, N) is called weak complement if T c � (Φc,L, N) is a
weak complement of T � (Φ,L, N). In consequence,
Φc(li)∩Φ(li) � ∅ for all li ∈ L.

Remember that a weak compliment is not peculiar.

Definition 3.7. Let (ΥΦ, T , N) be aCBFNSfS overV, such
that T � (Φ,L, N) is an NSfS, then a complex bipolar fuzzy
complement is represented by (Υc

Φ, T , N), such that
Υc
Φ: L⟶CBFV(V×R), which is conveyed by the following:

Υc
Φ li( 􏼁 � vy, r

y
i􏼐 􏼑, 1 − αp

yi􏼐 􏼑e
i 1− ωyi/π( 􏼁( 􏼁π

, − 1 − βn
yi􏼐 􏼑e

i − 1− ψyi/π( 􏼁( 􏼁π
􏼜 􏼝.

(17)

Definition 3.8. Let (ΥΦ, T , N) be a CBFNSfS over V,
such that T � (Φ,L, N) is an NSfS, then (Υc

Φ, T
c, N) is

stated as weak complex bipolar fuzzy complement
⇔ (ΥΦ, T c, N) is a weak complement and (Υc

Φ, T , N) is a
complex bipolar fuzzy complement.

Example 3.9. Consider aCBF4SfS(ΥΦ, T , 4) as arranged
in Example 3.2. A weak complement (ΥΦ, T c, 4), complex
bipolar fuzzy complement (Υc

Φ, T , 4) , and weak complex
bipolar fuzzy complement (Υc

Φ, T
c, 4) are calculated and

organized by Tables 6–8, respectively.

Definition 3.10. For a CBFNSfS(ΥΦ, T , N), where T �

(Φ,L, N) is an NSfS, the top weak complement of
(ΥΦ, T , N) is (ΥΦ, T t, N), also the top weak complex bipolar
fuzzy complement of (ΥΦ, T , N) is (Υc

Φ, T
t, N) and defined as

follows:

ΥΦ, T
t
, N􏼐 􏼑 �

ΥΦ li( 􏼁 � vy, N − 1􏼐 􏼑, αp

yie
iωyi , βn

yie
iψyi􏼐 􏼑, if r

y

i <N − 1,

ΥΦ li( 􏼁 � vy, 0􏼐 􏼑, αp

yie
iωyi , βn

yie
iψyi􏽄 􏽅, if r

y

i � N − 1.

⎧⎪⎨

⎪⎩

Υc
Φ, T

t
, N􏼐 􏼑 �

ΥΦ li( 􏼁 � vy, N − 1􏼐 􏼑, 1 − αp
yi􏼐 􏼑e

i 1− ωyi/π( 􏼁π
, − 1 − βn

yi􏼐 􏼑e
i − 1− ψyi/π( 􏼁π

􏼜 􏼝, if r
y
i <N − 1,

ΥΦ li( 􏼁 � vy, 0􏼐 􏼑, 1 − αp
yi􏼐 􏼑e

i 1− ωyi/π( 􏼁π
, − 1 − βn

yi􏼐 􏼑e
i − 1− ψyi/π( 􏼁π

􏼜 􏼝, if r
y
i � N − 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

Example 3.11. )e top weak complement and the top weak
complex bipolar fuzzy complement of the CBF4SfS,
defined by Table 5 in Example 3.2, are shown in Tables 9 and
10, respectively.

Definition 3.12. For a CBFNSfS (ΥΦ, T , N), where T �

(Φ,L, N) is an NSfS, the bottom weak complement of
(ΥΦ, T , N) is (ΥΦ, Tb, N) also the bottomweak complex bipolar
fuzzy complement of (ΥΦ, T , N) is (Υc

Φ, T
b, N) and defined as

follows:

Table 4: Grading criteria.

Grades Amplitude terms Phase terms
r

y
i αp

yi βn
yi ωyi ψyi

r
y
i � 0 [0, 0.25) [− 1, − 0.75) [0, 0.25π) [− π, − 0.75π)

r
y

i � 1 [0.25, 0.50) [− 0.75, − 0.50) [0.25π, 0.50π) [− 0.75π, − 0.50π)
r

y
i � 2 [0.50, 0.75) [− 0.50, − 0.25) [0.50π, 0.75π) [− 0.50π, − 0.25π)

r
y
i � 3 [0.75, 1.00] [− 0.25, − 0.00] [0.75π, π] [− 0.25π, − 0.00]

Table 5: Tabular representation of the CBF4SfS.

(ΥΦ, T , 4) l1 l2 l3 l4

v1 2, (0.55ei0.62π , − 0.33e− i0.29π)􏼊 􏼋 2, (0.71ei0.63π , − 0.44e− i0.38π)􏼊 􏼋 1, (0.42ei0.38π , − 0.57e− i0.65π)􏼊 􏼋 2, (0.69ei0.65π , − 0.45e− i0.42π)􏼊 􏼋

v2 3, (0.81ei0.89π , − 0.15e− i0.12π)􏼊 􏼋 3, (0.89ei0.81π , − 0.13e− i0.07π)􏼊 􏼋 3, (0.86ei0.93π , − 0.08e− i0.17π)􏼊 􏼋 3, (0.79ei0.82π , − 0.05e− i0.21π)􏼊 􏼋

v3 1, (0.46ei0.43π , − 0.52e− i0.62π)􏼊 􏼋 2, (0.68ei0.66π , − 0.31e− i0.37π)􏼊 􏼋 1, (0.39ei0.34π , − 0.64e− i0.57π)􏼊 􏼋 1, (0.31ei0.29π , − 0.59e− i0.72π)􏼊 􏼋

v4 2, (0.65ei0.58π , − 0.29e− i0.34π)􏼊 􏼋 3, (0.91ei0.78π , − 0.17e− i0.11π)􏼊 􏼋 0, (0.15ei0.21π , − 0.89e− i0.92π)􏼊 􏼋 1, (0.27ei0.31π , − 0.68e− i0.61π)􏼊 􏼋
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ΥΦ, T
b
, N􏼐 􏼑 �

ΥΦ li( 􏼁 � vy, 0􏼐 􏼑, αp
yie

iωyi , βn
yie

iψyi􏽄 􏽅, if r
y
i > 0,

ΥΦ li( 􏼁 � vy, N − 1􏼐 􏼑, αp
yie

iωyi , βn
yie

iψyi􏽄 􏽅, if r
y
i � 0.

⎧⎪⎨

⎪⎩

Υc
Φ, T

b
, N􏼐 􏼑 �

ΥΦ li( 􏼁 � vy, 0􏼐 􏼑, 1 − αp
yi􏼐 􏼑e

i 1− ωyi/π( 􏼁π
, − 1 − βn

yi􏼐 􏼑e
i − 1− ψyi/π( 􏼁( 􏼁π

􏼜 􏼝, if r
y
i > 0,

ΥΦ li( 􏼁 � vy, N − 1􏼐 􏼑, 1 − αp
yi􏼐 􏼑e

i 1− ωyi/π( 􏼁π
, − 1 − βn

yi􏼐 􏼑e
i − 1− ψyi/π( 􏼁π

􏼜 􏼝 if r
y
i � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

Example 3.13. )e bottom weak complement and the
bottom weak complex bipolar fuzzy complement of the
CBF4SfS, defined by Table 5 in Example 3.2, are given by
Tables 11 and 12, respectively.

Definition 3.14. Let V be a nonempty set and (ΥΦ1, T1, N1)

and (ΥΦ2, T2, N2) be twoCBFNSfSs over V, where T1 �

(Φ1,L1, N1) and T2 � (Φ2,L2, N2) are NSfSs over V, then
their restricted intersection is defined as follows:

ϱ, T1 ∩ r T2, N3( 􏼁 � ΥΦ1, T1, N1􏼐 􏼑∩R ΥΦ2, T2, N2􏼐 􏼑, (20)

where, N3 � min(N1, N2) and T1 ∩ rT2 � (A,L1 ∩L2, N3)

i.e. ∀li ∈ L1 ∩L2, vy ∈ V, (vy, r
y

i ),􏽄 a, b〉 ∈ ϱ(li)⇔r
y

i �

min(rv1

i , rv2

i ), a � min(αp

E, αp

F) eimin(ωE ,ωF), b � max
(βn

E, βn
F)eimax(ψE ,ψF), if (vy, rv1

i ), αp

EeiωE , βn
EeiψE􏽄 􏽅 ∈ L1(li)

and (vy, rv2

i ), αp

FeiωF , βn
FeiψF􏽄 􏽅 ∈ L2(li),E and F are

complex bipolar fuzzy sets onΦ1(li) andΦ2(li), respectively.

Example 3.15. Let (ΥΦ1, T1, 5) be a CBF5SfS and
(ΥΦ2, T2, 4) be a CBF4SfS given by Tables 13 and 14,
respectively, then their restricted intersection
(ϱ, T1 ∩ r T2, 4) � (ΥΦ1, T1, 5)∩R(ΥΦ2, T2, 4), is presented
in Table 15.

Definition 3.16. Let V be a universe of discourse and
(ΥΦ1, T1, N1) and (ΥΦ2, T2, N1) be two CBFNSfSs over
V, where T1 � (Φ1,L1, N1) and T2 � (Φ2,L2, N2) are
NSfSs on V; then their extended intersection is given as
(η, T1 ∩ e T2, N4) � (ΥΦ1, T1, N1)∩ E(ΥΦ2, T2, N2), where
N4 � max(N1, N2), T1 ∩ eT2 � (B,L1 ∪L2, N4) defined by
the following:

Table 6: A weak complement of.(ΥΦ, T , 4).

(ΥΦ, Tc, 4) l1 l2 l3 l4

v1 3, (0.55ei0.62π , − 0.33e− i0.29π)􏼊 􏼋 3, (0.71ei0.63π , − 0.44e− i0.38π)􏼊 􏼋 2, (0.42ei0.38π , − 0.57e− i0.65π)􏼊 􏼋 1, (0.69ei0.65π , − 0.45e− i0.42π)􏼊 􏼋

v2 (0, (0.81ei0.89π, − 0.15e− i0.12π)) 1, (0.89ei0.81π , − 0.13e− i0.07π)􏼊 􏼋 1, (0.86ei0.93π , − 0.08e− i0.17π)􏼊 􏼋 0, (0.79ei0.82π , − 0.05e− i0.21π)􏼊 􏼋

v3 2, (0.46ei0.43π , − 0.52e− i0.62π)􏼊 􏼋 0, (0.68ei0.66π , − 0.31e− i0.37π)􏼊 􏼋 0, (0.39ei0.34π , − 0.64e− i0.57π)􏼊 􏼋 3, (0.31ei0.29π , − 0.59e− i0.72π)􏼊 􏼋

v4 1, (0.65ei0.58π , − 0.29e− i0.34π)􏼊 􏼋 2, (0.91ei0.78π , − 0.17e− i0.11π)􏼊 􏼋 3, (0.15ei0.21π , − 0.89e− i0.92π)􏼊 􏼋 2, (0.27ei0.31π , − 0.68e− i0.61π)􏼊 􏼋

Table 7: Complex bipolar fuzzy complement.

(Υc
Φ, T , 4) l1 l2 l3 l4

v1 2, (0.45ei0.38π , − 0.67e− i0.71π)􏼊 􏼋 2, (0.29ei0.37π , − 0.56e− i0.62π)􏼊 􏼋 1, (0.58ei0.62π , − 0.43e− i0.35π)􏼊 􏼋 2, (0.31ei0.35π , − 0.55e− i0.58π)􏼊 􏼋

v2 3, (0.19ei0.11π , − 0.85e− i0.88π)􏼊 􏼋 3, (0.11ei0.19π , − 0.87e− i0.93π)􏼊 􏼋 3, (0.14ei0.07π , − 0.92e− i0.83π)􏼊 􏼋 3, (0.21ei0.18π , − 0.95e− i0.79π)􏼊 􏼋

v3 1, (0.54ei0.57π , − 0.48e− i0.38π)􏼊 􏼋 2, (0.32ei0.34π , − 0.69e− i0.63π)􏼊 􏼋 1, (0.61ei0.66π , − 0.36e− i0.43π)􏼊 􏼋 1, (0.69ei0.71π , − 0.41e− i0.28π)􏼊 􏼋

v4 2, (0.35ei0.42π , − 0.71e− i0.66π)􏼊 􏼋 3, (0.09ei0.22π , − 0.83e− i0.89π)􏼊 􏼋 0, (0.85ei0.79π , − 0.11e− i0.08π)􏼊 􏼋 1, (0.73ei0.69π , − 0.32e− i0.39π)􏼊 􏼋

Table 8: Weak complex bipolar fuzzy complement.

(Υc
Φ, T

c, 4) l1 l2 l3 l4

v1 3, (0.45ei0.38π , − 0.67e− i0.71π)􏼊 􏼋 3, (0.29ei0.37π , − 0.56e− i0.62π)􏼊 􏼋 2, (0.58ei0.62π , − 0.43e− i0.35π)􏼊 􏼋 1, (0.31ei0.35π , − 0.55e− i0.58π)􏼊 􏼋

v2 0, (0.19ei0.11π , − 0.85e− i0.88π)􏼊 􏼋 1, (0.11ei0.19π , − 0.87e− i0.93π)􏼊 􏼋 1, (0.14ei0.07π , − 0.92e− i0.83π)􏼊 􏼋 0, (0.21ei0.18π , − 0.95e− i0.79π)􏼊 􏼋

v3 2, (0.54ei0.57π , − 0.48e− i0.38π)􏼊 􏼋 0, (0.32ei0.34π , − 0.69e− i0.63π)􏼊 􏼋 0, (0.61ei0.66π , − 0.36e− i0.43π)􏼊 􏼋 3, (0.69ei0.71π , − 0.41e− i0.28π)􏼊 􏼋

v4 1, (0.35ei0.42π , − 0.71e− i0.66π)􏼊 􏼋 2, (0.09ei0.22π , − 0.83e− i0.89π)􏼊 􏼋 3, (0.85ei0.79π , − 0.11e− i0.08π)􏼊 􏼋 2, (0.73ei0.69π , − 0.32e− i0.39π)􏼊 􏼋
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Table 9: Top weak complement of the CBF4SfS.

(ΥΦ, T t, 4) l1 l2 l3 l4

v1 3, (0.55ei0.62π , − 0.33e− i0.29π)􏼊 􏼋 3, (0.71ei0.63π, − 0.44e− i0.38π)􏼊 􏼋 3, (0.42ei0.38π , − 0.57e− i0.65π)􏼊 􏼋 3, (0.69ei0.65π , − 0.45e− i0.42π)􏼊 􏼋

v2 0, (0.81ei0.89π , − 0.15e− i0.12π)􏼊 􏼋 0, (0.89ei0.81π, − 0.13e− i0.07π)􏼊 􏼋 0, (0.86ei0.93π , − 0.08e− i0.17π)􏼊 􏼋 0, (0.79ei0.82π , − 0.05e− i0.21π)􏼊 􏼋

v3 3, (0.46ei0.43π , − 0.52e− i0.62π)􏼊 􏼋 3, (0.68ei0.66π, − 0.31e− i0.37π)􏼊 􏼋 3, (0.39ei0.34π , − 0.64e− i0.57π)􏼊 􏼋 3, (0.31ei0.29π , − 0.59e− i0.72π)􏼊 􏼋

v4 3, (0.65ei0.58π , − 0.29e− i0.34π)􏼊 􏼋 0, (0.91ei0.78π, − 0.17e− i0.11π)􏼊 􏼋 3, (0.15ei0.21π , − 0.89e− i0.92π)􏼊 􏼋 3, (0.27ei0.31π , − 0.68e− i0.61π)􏼊 􏼋

Table 10: Top weak complex bipolar fuzzy complement.

(Υc
Φ, T

t, 4) l1 l2 l3 l4

v1 3, (0.45ei0.38π , − 0.67e− i0.71π)􏼊 􏼋 3, (0.29ei0.37π, − 0.56e− i0.62π)􏼊 􏼋 3, (0.58ei0.62π , − 0.43e− i0.35π)􏼊 􏼋 3, (0.31ei0.35π , − 0.55e− i0.58π)􏼊 􏼋

v2 0, (0.19ei0.11π , − 0.85e− i0.88π)􏼊 􏼋 0, (0.11ei0.19π, − 0.87e− i0.93π)􏼊 􏼋 0, (0.14ei0.07π , − 0.92e− i0.83π)􏼊 􏼋 0, (0.21ei0.18π , − 0.95e− i0.79π)􏼊 􏼋

v3 3, (0.54ei0.57π , − 0.48e− i0.38π)􏼊 􏼋 3, (0.32ei0.34π, − 0.69e− i0.63π)􏼊 􏼋 3, (0.61ei0.66π , − 0.36e− i0.43π)􏼊 􏼋 3, (0.69ei0.71π , − 0.41e− i0.28π)􏼊 􏼋

v4 3, (0.35ei0.42π , − 0.71e− i0.66π)􏼊 􏼋 0, (0.09ei0.22π, − 0.83e− i0.89π)􏼊 􏼋 3, (0.85ei0.79π , − 0.11e− i0.08π)􏼊 􏼋 3, (0.73ei0.69π , − 0.32e− i0.39π)􏼊 􏼋

Table 14: Tabular representation of CBF4SfS (ΥΦ2, T2, 4).

(ΥΦ2, T2, 4) l1 l2 l4

v1 3, (0.81ei0.92π , − 0.17e− i0.09π)􏼊 􏼋 2, (0.56ei0.67π , − 0.29e− i0.32π)􏼊 􏼋 1, (0.31ei0.37π , − 0.65e− i0.59π)􏼊 􏼋

v2 2, (0.61ei0.57π , − 0.35e− i0.41π)􏼊 􏼋 3, (0.89ei0.95π , − 0.13e− i0.19π)􏼊 􏼋 2, (0.71ei0.63π , − 0.38e− i0.42π)􏼊 􏼋

v3 0, (0.09ei0.21π , − 0.89e− i0.91π)􏼊 􏼋 1, (0.43ei0.47π , − 0.58e− i0.61π)􏼊 􏼋 0, (0.12ei0.17π , − 0.86e− i0.79π)􏼊 􏼋

Table 11: Bottom weak complement of the CBF4SfS.

(ΥΦ, Tb, 4) l1 l2 l3 l4

v1 0, (0.55ei0.62π , − 0.33e− i0.29π)􏼊 􏼋 0, (0.71ei0.63π, − 0.44e− i0.38π)􏼊 􏼋 0, (0.42ei0.38π, − 0.57e− i0.65π)􏼊 􏼋 0, (0.69ei0.65π , − 0.45e− i0.42π)􏼊 􏼋

v2 0, (0.81ei0.89π , − 0.15e− i0.12π)􏼊 􏼋 0, (0.89ei0.81π, − 0.13e− i0.07π)􏼊 􏼋 0, (0.86ei0.93π, − 0.08e− i0.17π)􏼊 􏼋 0, (0.79ei0.82π , − 0.05e− i0.21π)􏼊 􏼋

v3 0, (0.46ei0.43π , − 0.52e− i0.62π)􏼊 􏼋 0, (0.68ei0.66π, − 0.31e− i0.37π)􏼊 􏼋 0, (0.39ei0.34π, − 0.64e− i0.57π)􏼊 􏼋 0, (0.31ei0.29π , − 0.59e− i0.72π)􏼊 􏼋

v4 0, (0.65ei0.58π , − 0.29e− i0.34π)􏼊 􏼋 0, (0.91ei0.78π, − 0.17e− i0.11π)􏼊 􏼋 3, (0.15ei0.21π, − 0.89e− i0.92π)􏼊 􏼋 0, (0.27ei0.31π , − 0.68e− i0.61π)􏼊 􏼋

Table 12: Bottom weak complex bipolar fuzzy complement.

(Υc
Φ, T

b, 4) l1 l2 l3 l4

v1 0, (0.45ei0.38π , − 0.67e− i0.71π)􏼊 􏼋 0, (0.29ei0.37π, − 0.56e− i0.62π)􏼊 􏼋 0, (0.58ei0.62π, − 0.43e− i0.35π)􏼊 􏼋 0, (0.31ei0.35π , − 0.55e− i0.58π)􏼊 􏼋

v2 0, (0.19ei0.11π , − 0.85e− i0.88π)􏼊 􏼋 0, (0.11ei0.19π, − 0.87e− i0.93π)􏼊 􏼋 0, (0.14ei0.07π, − 0.92e− i0.83π)􏼊 􏼋 0, (0.21ei0.18π , − 0.95e− i0.79π)􏼊 􏼋

v3 0, (0.54ei0.57π , − 0.48e− i0.38π)􏼊 􏼋 0, (0.32ei0.34π, − 0.69e− i0.63π)􏼊 􏼋 0, (0.61ei0.66π, − 0.36e− i0.43π)􏼊 􏼋 0, (0.69ei0.71π , − 0.41e− i0.28π)􏼊 􏼋

v4 0, (0.35ei0.42π , − 0.71e− i0.66π)􏼊 􏼋 0, (0.09ei0.22π, − 0.83e− i0.89π)􏼊 􏼋 3, (0.85ei0.79π, − 0.11e− i0.08π)􏼊 􏼋 0, (0.73ei0.69π , − 0.32e− i0.39π)􏼊 􏼋

Table 13: Tabular representation of CBF5SfS (ΥΦ1, T1, 5).

(ΥΦ1, T1, 5) l1 l2 l3

v1 3, (0.65ei0.72π , − 0.33e− i0.29π)􏼊 􏼋 4, (0.92ei0.83π , − 0.03e− i0.15π)􏼊 􏼋 1, (0.25ei0.32π , − 0.63e− i0.72π)􏼊 􏼋

v2 2, (0.43ei0.52π , − 0.52e− i0.43π)􏼊 􏼋 4, (0.87ei0.93π , − 0.13e− i0.09π)􏼊 􏼋 2, (0.57ei0.45π , − 0.45e− i0.51π)􏼊 􏼋

v3 1, (0.27ei0.21π , − 0.65e− i0.75π)􏼊 􏼋 3, (0.75ei0.69π , − 0.25e− i0.33π)􏼊 􏼋 0, (0.12ei0.07π , − 0.92e− i0.83π)􏼊 􏼋
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η li( 􏼁 �

ΥΦ1 li( 􏼁, if li ∈ L1 − L2,

ΥΦ2 li( 􏼁, if li ∈ L2 − L1,

vy, r
y

i􏼐 􏼑, a, b􏽄 􏽅, such that r
y

i � min r
v1

1 , r
v2

1􏼒 􏼓,

a � min αp

E, αp

F􏼐 􏼑e
imin ωE ,ωF( ), b � max βn

E, βn
F( 􏼁e

imax ψE ,ψF( ),

where vy, r
v1

1􏼒 􏼓, αp

Ee
iωE , βn

Ee
iψE􏼜 􏼝 ∈ L1 li( 􏼁,

and vy, r
v2

1􏼒 􏼓, αp

Fe
iωF , βn

Fe
iψF􏼜 􏼝 ∈ L2 li( 􏼁,

E andF are complex bipolar fuzzy sets onΦ1 li( 􏼁 andΦ2 li( 􏼁,

respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Example 3.17. Let (ΥΦ1, T1, 5) and (ΥΦ2, T2, 4) be two
CBF5SfS and CBF4SfS, respectively, arranged by
Tables 13 and 14, respectively. )en their extended inter-
section (η, T1 ∩ e T2, 5) � (ΥΦ1, T1, 5)∩ E(ΥΦ2, T2, 4) is given
in Table 16.

Definition 3.18. Let V be a universal set and (ΥΦ1, T1, N1)

and (ΥΦ2, T2, N2) be twoCBFNSfSs over V, where T1 �

(Φ1,L1, N1) and T2 � (Φ2,L2, N2) are NSfSs on V; then
their restricted union is defined as follows:

ΥΦ1, T1, N1􏼐 􏼑∪R ΥΦ2, T2, N2􏼐 􏼑 � σ, T1 ∪ r T2, N4( 􏼁, (22)

where N4 � max(N1, N2), T1 ∪ rT2 � (E,L1 ∩L2, N4), i.e.
∀li ∈ L1 ∩L2, vy ∈ V, (vy, r

y
i ), a,􏽄 b〉 ∈ σ(li)⇔r

y
i � max

(rv1

1 , rv2

1 ), a � max(αp

E, αp

F)eimax(ωE ,ωF), b � min(βn
E, βn

F)

eimin(ωE ,ωF), if (vy, rv1

i ),􏽄 αp

EeiωE , βn
EeiψE〉 ∈ L1(li) and

(vy, rv2

i ), αp

FeiωF , βn
FeiψF􏽄 􏽅 ∈ L2(li),E and F are complex

bipolar fuzzy sets on Φ1(li) and Φ2(li), respectively.

Example 3.19. Let (ΥΦ1, T1, 5) and (ΥΦ2, T2, 4) be two
CBF5SfS and CBF4SfS, respectively, defined by
Tables 13 and 14, respectively; then their restricted union
(ΥΦ1, T1, 5)∪R(ΥΦ2, T2, 4) � (σ, T1 ∪ r T2, 5) is defined in
Table 17.

Definition 3.20. Let V be a nonempty and (ΥΦ1, T1, N1) and
(ΥΦ2, T2, N1) be two CBFNSfSs on V, where
T1 � (Φ1,L1, N1) and T2 � (Φ2,L2, N2) are NSfSs over V;
then their extended union is described as
(ΥΦ1, T1, N1)∪ E(ΥΦ2, T2, N2) � (ϑ, T1 ∪ ϵ T2, N4), where
N4 � max(N1, N2), T1 ∪ εT2 � (F,L1 ∪L2, N4), and ϑ(li) is
given by the following:

ϑ li( 􏼁 �

ΥΦ1 li( 􏼁, if li ∈ L1 − L2,

ΥΦ2 li( 􏼁, if li ∈ L2 − L1,

vy, r
y
i􏼐 􏼑, a, b􏽄 􏽅, such that r

y
i � max r

v1

1 , r
v2

1􏼒 􏼓,

a � max αp

E, αp

F􏼐 􏼑e
imax ωE ,ωF( ), b � min βn

E, βn
F( 􏼁e

imin ψE ,ψF( ),

where vy, r
v1

1􏼒 􏼓, αp

Ee
iωE , βn

Ee
iψE􏼜 􏼝 ∈ L1 li( 􏼁,

and vy, r
v2

1􏼒 􏼓, αp

Fe
iωF , βn

Fe
iψF􏼜 􏼝 ∈ L2 li( 􏼁,

E andF are complex bipolar fuzzy sets onΦ1 li( 􏼁andΦ2 li( 􏼁,

respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Table 15: Restricted intersection.

(ϱ, T1 ∩r T2, 4) l1 l2

v1 3, (0.65ei0.72π , − 0.17e− i0.09π)􏼊 􏼋 2, (0.56ei0.67π , − 0.03e− i0.15π)􏼊 􏼋

v2 2, (0.43ei0.52π , − 0.35e− i0.41π)􏼊 􏼋 3, (0.87ei0.93π , − 0.13e− i0.09π)􏼊 􏼋

v3 0, (0.09ei0.21π , − 0.65e− i0.75π)􏼊 􏼋 1, (0.43ei0.47π , − 0.25e− i0.33π)􏼊 􏼋

Mathematical Problems in Engineering 9



Example 3.21. Let (ΥΦ1, T1, 5) and (ΥΦ2, T2, 4) be two
CBF5SfS and CBF4SfS, respectively, shown by Ta-
bles 13 and 14, respectively; then their extended union
(ΥΦ1, T1, 5)∪ E(ΥΦ2, T2, 4) � (ϑ, T1 ∪ ϵ T2, 5) is given in
Table 18.

Definition 3.22. Consider that (ΥΦ, T , N) be aCBFNSfS

over nonempty set V, where T � (Φ,L, N) is an NSfS on
V. Let 0<D<N be a threshold. A CBFS _f􏼈 􏼉S related
with (ΥΦ, T , N) and D, denoted by (ΥDΦ ,L), is defined as
follows:

ΥDΦ li( 􏼁 �

αp
yie

iωyi , βn
yie

iψyi􏼐 􏼑, if ΥΦ li( 􏼁 � vy, r
y
i􏼐 􏼑, αp

yie
iωyi , βn

yie
iψyi􏽄 􏽅,

r
y

i ≥D,

0.0e
i0π

, − 1.0e
− iπ

􏼐 􏼑, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

Particularly, (Υ1Φ,L), and (ΥN− 1
Φ ,L), are known as

bottomCBFS _f􏼈 􏼉S and topCBFS _f􏼈 􏼉S, respectively.

Definition 3.23. Let 0<D<N and ρ ∈ [0, 2] be the
threshold. )en the SfS on V associated with (ΥΦ, T , N)

and (D, ρ) denoted by (Υ(D,ρ)

Φ ,L) is defined as follows:

Υ(D,ρ)

Φ li( 􏼁 � y ∈ V: S ΥDΦ li( 􏼁􏼐 􏼑> ρ,∀li ∈ L􏽮 􏽯, (25)

where, S(ΥDΦ(li)) is represented as the score value of
ΥDΦ(li) � (αp(D)

yi e
iωD

yi , βn(D)
yi e

iψD
yi ).

Example 3.24. Consider the CBF4SfS defined in Ex-
ample 3.2. By employing Definition 3.22, the associated
CBFSfSs with CBF4SfS can be found out. Let
0<D< 4 be the thresholds. )e possible associated
CBFSfSs with threshold values 1, 2 and 3 are given by
Tables 19–21. Moreover, by taking (D, ρ) � (2, 0.9), asso-
ciated SfS (Υ(2,0.9)

Φ ,L) is arranged by Table 22.
It is clear from above analysis that CBFNSfS can be

converted into CBFSfS and SfS. Hence, it is a gener-
alization of both these models. )e following properties are
stated without proofs.

Theorem 3.25. Let (ΥΦ, T , N) be a CBFNSfS over V.
Jen:

(1) (ΥΦ, T , N)∩R(ΥΦ, T , N) � (ΥΦ, T , N)

(2) (ΥΦ, T , N)∩ E(ΥΦ, T , N) � (ΥΦ, T , N)

(3) (ΥΦ, T , N)∪R(ΥΦ, T , N) � (ΥΦ, T , N)

(4) (ΥΦ, T , N)∪ E(ΥΦ, T , N) � (ΥΦ, T , N)

Theorem 3.26. Let (ΥΦ1, T1, N1) and (ΥΦ2, T2, N2) be two
CBFNSfSs over V. Jen the absorption properties are
preserved:

(1) ((ΥΦ1, T1, N1)∪ E(ΥΦ2, T2, N2))∩R(ΥΦ1, T1, N1) �

(ΥΦ1, T1, N1)

(2) (ΥΦ1, T1, N1)∪ E((ΥΦ2, T2, N2)∩R(ΥΦ1, T1, N1)) �

(ΥΦ1, T1, N1)

(3) ((ΥΦ1, T1, N1)∩R(ΥΦ2, T2, N2))∪ E(ΥΦ1, T1, N1) �

(ΥΦ1, T1, N1)

(4) (ΥΦ1, T1, N1)∩R((ΥΦ2, T2, N2)∪ E(ΥΦ1, T1, N1)) �

(ΥΦ1, T1, N1)

Theorem 3.27. Let (ΥΦ1, T1, N1), (ΥΦ2, T2, N2) and
(ΥΦ3, T3, N3) be three CBFNSfSs over V, then the fol-
lowing properties hold:

(1) (ΥΦ1, T1, N1)∪R(ΥΦ2, T2, N2) � (ΥΦ2, T2, N2)∪R
(ΥΦ1, T1, N1)

(2) (ΥΦ1, T1, N1)∪ E(ΥΦ2, T2, N2) � (ΥΦ2, T2, N2)∪ E
(ΥΦ1, T1, N1)

Table 16: Extended intersection.

(η, T1 ∩r T2, 5) l1 l2

v1 3, (0.65ei0.72π, − 0.17e− i0.09π)􏼊 􏼋 2, (0.56ei0.67π , − 0.03e− i0.15π)􏼊 􏼋

v2 2, (0.43ei0.52π, − 0.35e− i0.41π)􏼊 􏼋 3, (0.87ei0.93π , − 0.13e− i0.09π)􏼊 􏼋

v3 0, (0.09ei0.21π, − 0.65e− i0.75π)􏼊 􏼋 1, (0.43ei0.47π , − 0.25e− i0.33π)􏼊 􏼋

l3 l4
v1 1, (0.25ei0.32π, − 0.63e− i0.72π)􏼊 􏼋 1, (0.31ei0.37π , − 0.65e− i0.59π)􏼊 􏼋

v2 2, (0.57ei0.45π, − 0.45e− i0.51π)􏼊 􏼋 2, (0.71ei0.63π , − 0.38e− i0.42π)􏼊 􏼋

v3 0, (0.12ei0.07π, − 0.92e− i0.83π)􏼊 􏼋 0, (0.12ei0.17π , − 0.86e− i0.79π)􏼊 􏼋

Table 17: Restricted union.

(σ, T1 ∩ r T2, 5) l1 l2

v1 3, (0.81ei0.92π, − 0.33e− i0.29π)􏼊 􏼋 4, (0.92ei0.83π , − 0.29e− i0.32π)􏼊 􏼋

v2 2, (0.61ei0.57π, − 0.52e− i0.43π)􏼊 􏼋 4, (0.89ei0.95π , − 0.13e− i0.19π)􏼊 􏼋

v3 1, (0.27ei0.21π, − 0.89e− i0.91π)􏼊 􏼋 3, (0.75ei0.69π , − 0.58e− i0.61π)􏼊 􏼋
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(3) (ΥΦ1, T1, N1)∩R(ΥΦ2, T2, N2) � (ΥΦ2, T2, N2)∩R
(ΥΦ1, T1, N1)

(4) (ΥΦ1, T1, N1)∩ E(ΥΦ2, T2, N2) � (ΥΦ2, T2, N2)∩ E
(ΥΦ1, T1, N1)

(5) ((ΥΦ1,T1,N1)∪R(ΥΦ2,T2,N2))∪R(ΥΦ3,T3,N3) �

(ΥΦ1,T1,N1)∪R((ΥΦ2,T2,N2)∪R(ΥΦ3,T3,N3))

(6) ((ΥΦ1,T1,N1)∪E(ΥΦ2,T2,N2))∪E (ΥΦ3,T3,N3) �

(ΥΦ1,T1,N1)∪E((ΥΦ2,T2,N2)∪E(ΥΦ3,T3,N3))

(7) ((ΥΦ1,T1,N1)∩R(ΥΦ2,T2,N2))∩R (ΥΦ3,T3,N3) �

(ΥΦ1,T1,N1)∩R((ΥΦ2,T2,N2)∩R(ΥΦ3,T3,N3))

(8) ((ΥΦ1,T1,N1)∩E(ΥΦ2,T2,N2))∩E (ΥΦ3,T3,N3) �

(ΥΦ1,T1,N1)∩E((ΥΦ2,T2,N2)∩E(ΥΦ3,T3,N3))

(9) (ΥΦ1,T1,N1)∪E((ΥΦ2,T2,N2)∩R (ΥΦ3,T3,N3)) �

((ΥΦ1,T1,N1)∪E(ΥΦ2, T2,N2))∩R((ΥΦ1,T1, N1)

∪E (ΥΦ3,T3,N3))

(10) (ΥΦ1,T1,N1)∩E((ΥΦ2,T2,N2)∪R (ΥΦ3,T3,N3)) �

((ΥΦ1,T1,N1)∩E(ΥΦ2,
T2,N2))∪R((ΥΦ1,T1,N1)∩E(ΥΦ3,T3,N3))

(11) (ΥΦ1,T1,N1)∪R((ΥΦ2,T2,N2) ∩E(ΥΦ3,T3,N3)) �

((ΥΦ1,T1,N1)∪R(ΥΦ2, T2,N2))∩E((ΥΦ1,T1,N1)

∪R(ΥΦ3,T3,N3))

Table 18: Extended union.

(ϑ, T1 ∩ r T2, 5) l1 l2

v1 3, (0.81ei0.92π, − 0.33e− i0.29π)􏼊 􏼋 4, (0.92ei0.83π , − 0.29e− i0.32π)􏼊 􏼋

v2 2, (0.61ei0.57π, − 0.52e− i0.43π)􏼊 􏼋 4, (0.89ei0.95π , − 0.13e− i0.19π)􏼊 􏼋

v3 1, (0.27ei0.21π, − 0.89e− i0.91π)􏼊 􏼋 3, (0.75ei0.69π , − 0.58e− i0.61π)􏼊 􏼋

l3 l4
v1 1, (0.25ei0.32π, − 0.63e− i0.72π)􏼊 􏼋 1, (0.31ei0.37π , − 0.65e− i0.59π)􏼊 􏼋

v2 2, (0.57ei0.45π, − 0.45e− i0.51π)􏼊 􏼋 2, (0.71ei0.63π , − 0.38e− i0.42π)􏼊 􏼋

v3 0, (0.12ei0.07π, − 0.92e− i0.83π)􏼊 􏼋 0, (0.12ei0.17π , − 0.86e− i0.79π)􏼊 􏼋

Table 19: CBFSfS associated with CBF4SfS and threshold D � 1.

(Υ1Φ,L), l1 l2 l3 l4

v1 (0.55ei0.62π , − 0.33e− i0.29π) (0.71ei0.63π, − 0.44e− i0.38π) (0.42ei0.38π , − 0.57e− i0.65π) (0.69ei0.65π , − 0.45e− i0.42π)

v2 (0.81ei0.89π , − 0.15e− i0.12π) (0.89ei0.81π, − 0.13e− i0.07π) (0.86ei0.93π , − 0.08e− i0.17π) (0.79ei0.82π , − 0.05e− i0.21π)

v3 (0.46ei0.43π , − 0.52e− i0.62π) (0.68ei0.66π, − 0.31e− i0.37π) (0.39ei0.34π , − 0.64e− i0.57π) (0.31ei0.29π , − 0.59e− i0.72π)

v4 (0.65ei0.58π , − 0.29e− i0.34π) (0.91ei0.78π, − 0.17e− i0.11π) (0ei0π, − 1e− iπ) (0.27ei0.31π , − 0.68e− i0.61π)

Table 20: CBFSfS associated with CBF4SfS and threshold D � 2.

(Υ2Φ,L), l1 l2 l3 l4

v1 (0.55ei0.62π , − 0.33e− i0.29π) (0.71ei0.63π, − 0.44e− i0.38π) (0ei0π, − 1e− iπ) (0.69ei0.65π , − 0.45e− i0.42π)

v2 (0.81ei0.89π , − 0.15e− i0.12π) (0.89ei0.81π, − 0.13e− i0.07π) (0.86ei0.93π , − 0.08e− i0.17π) (0.79ei0.82π , − 0.05e− i0.21π)

v3 (0ei0π, − 1e− iπ) (0.68ei0.66π, − 0.31e− i0.37π) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ)

v4 (0.65ei0.58π , − 0.29e− i0.34π) (0.91ei0.78π, − 0.17e− i0.11π) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ)

Table 22: SfS associated with CBF4SfS and thresholds D � 2, ρ � 0.9.

(Υ2Φ,L), l1 l2 l3 l4

v1 1 1 0 1
v2 1 1 1 1
v3 0 1 0 0
v4 1 1 0 0

Table 21: CBFSfS associated with CBF4SfS and threshold D � 3.

(Υ3Φ,L), l1 l2 l3 l4

v1 (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ)

v2 (0.81ei0.89π , − 0.15e− i0.12π) (0.89ei0.81π, − 0.13e− i0.07π) (0.86ei0.93π , − 0.08e− i0.17π) (0.79ei0.82π , − 0.05e− i0.21π)

v3 (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ)

v4 (0ei0π, − 1e− iπ) (0.91ei0.78π, − 0.17e− i0.11π) (0ei0π, − 1e− iπ) (0ei0π, − 1e− iπ)
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(12) (ΥΦ1,T1,N1)∩R((ΥΦ2,T2,N2)∪E (ΥΦ3,T3,N3)) �

((ΥΦ1,T1,N1)∩R(ΥΦ2, T2,N2))∪E((ΥΦ1,T1,N1)

∩R(ΥΦ3,T3,N3))

Now, we will define some fundamental operations on
complex bipolar fuzzy N-soft numbers.

Definition 3.28. Let χyi � r
y
i , (αp

yie
iωyi , βn

yie
ψyi )􏽄 􏽅 and χxi �

rx
i , (αp

xi, β
n
xi)􏽄 􏽅 be twoCBFNSfNs and τ > 0. )en, some

operations for CBFNSfNs are as follows:

τχyi � r
y
i , 1 − 1 − αp

yi􏼐 􏼑
τ

􏼐 􏼑e
i 1− 1− ωyi/π( 􏼁( 􏼁

τ
( 􏼁π

, − βn
yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
τ
e

− i ψyi/π
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
τ
π

􏼠 􏼡􏼪 􏼫,

χyi􏼐 􏼑
τ

� r
y
i , αp

yi􏼐 􏼑
τ
e

i ωyi/π( 􏼁
τ
π
, − 1 + 1 + βn

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
τ

􏼒 􏼓e
− i − 1+ 1+ψyi/π

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
τ

􏼐 􏼑π
􏼠 􏼡􏼪 􏼫,

χyi ⊗ χxi � max r
y

i , r
x
i( 􏼁, αp

yi + αp

xi − αp

yiα
p

xi􏼐 􏼑e
i ωyi/π( 􏼁+ ωxi/π( )− ωyi/π( 􏼁 ωxi/π( )( 􏼁π

􏼒􏼜 􏼝,

− βn
yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 β
n
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓e

− i ψyi/π
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψxi/π| |􏼐 􏼑π
􏼡,􏼪

min r
y

i , r
x
i( 􏼁, αp

yiα
p

xi􏼐 􏼑e
i ωyi/π( 􏼁 ωxi/π( )π , − βn

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − βn
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + βn

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 β
n
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼝

e
i − ψyi/π

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌− ψxi/π| |+ψyi/π

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ψxi/π| |􏼐 􏼑π

􏼡.􏼪

(26)

Theorem 3.29. Let χ � g, (αp, βn)􏼊 􏼋, χyi � r
y
i , (αp

yie
iωyi ,􏽄

βn
yie

ψyi )〉 and χxi � rx
i , (αp

xi, β
n
xi)􏽄 􏽅 be three CBFNSfNs

and τ, τy, τx > 0 be any real numbers; then

(1) χyi ⊕ χxi � χxi ⊕ χyi

(2) χyi ⊗ χxi � χxi ⊗ χyi

(3) τχyi ⊕ τχxi � τ(χyi ⊕ χxi)

(4) χτyi ⊗ χτxi � (χyi ⊗ χxi)
τ

(5) τyχ ⊕ τxχ � (τy + τx)χ
(6) χτy ⊗ χτx � χτy+τx

4. Formation of Decision-Making
Algorithms under CBFNSfS Framework

In this section, we will present the three Algorithms 1, 2, and
3 in order to deal withMADMproblems in the framework of
CBFNSf model that will help to choose the best opt.
Consider V � v1, v2, v3, . . . , vk􏼈 􏼉 to be the universal set of
alternatives and L � l1, l2, l3, . . . , lr􏼈 􏼉 the set of criteria that
will be used to solve the decision-making problems. Let τ �

τ1, τ2, τ3, . . . , τr􏼈 􏼉 be the weight vector of criteria repre-
senting the importance of the parameters in the MADM
problem, where 􏽐

r
i�1 τi � 1 and τi ∈ [0, 1].

5. Selection of the Best COVID-19 Vaccine

COVID-19 is a contagious disease that has heavily influ-
enced globally, leading to the pandemic. COVID-19 vaccine
is a vaccine designed to provide acquired immunity against
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus that causes COVID-19. COVID-19 vac-
cine is being formulated in various advanced countries, but
underdeveloped countries have not been able to invent their

own vaccine. So they have to import it from the developed
countries. Suppose that a developing country wants to
import the vaccine with the highest urgency for the sake of
saving the lives of citizens, but due to the low GDP and
budget, the government can import only one vaccine at a
time. )e following are the available options of the vaccines:

v1: Sinopharm,
v2: AstraZeneca,
v3: Sinovac,
v4: Novavax,
v5: SANOFI.

)e attributes on the basis of which the decision-maker
will assess the alternatives and assign them grades are as
follows:

l1: age factor

l2: cost

l3: efficacy
l4: manufacturer,
l5: administration

Each expert will assign the 8Sf grade in order to find out
the best alternative with respect to the parameters.)e rating
and associated 8SfS of alternatives are given in Table 23,
where

Seven ⋆ symbolize < Exceptional’

Six ⋆ symbolize < Superb’

Five ⋆ symbolize < Impressive’
Four ⋆ symbolize < Excellent’
)ree ⋆ symbolize < Good’
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Two ⋆ symbolize < Average’
One ⋆ symbolizes < Subpar’,2009
◇ symbolizes < Substandard’

)e corresponding 8SfS can be associated as follows:

<◇’ refers to 0
<⋆’ refers to 1
<⋆⋆’ refers to 2
<⋆⋆⋆’ refers to 3
<⋆⋆⋆⋆’ refers to 4
<⋆⋆⋆⋆⋆’ refers to 5
<⋆⋆⋆⋆⋆⋆’ refers to 6
<⋆⋆⋆⋆⋆⋆⋆’ refers to 7

Corresponding to the grades, the CBF8SfNs are
assigned to the criteria of vaccines by utilizing the following
grading criteria:

0.0≤ S Byi􏼐 􏼑 < 0.25 when grade 0,

0.25≤ S Byi􏼐 􏼑 < 0.50 when grade 1,

0.50≤ S Byi􏼐 􏼑 < 0.75 when grade 2,

0.75≤ S Byi􏼐 􏼑 < 1.00 when grade 3,

1.00≤ S Byi􏼐 􏼑 < 1.25 when grade 4,

1.25≤ S Byi􏼐 􏼑 < 1.50 when grade 5,

1.50≤ S Byi􏼐 􏼑 < 1.75 when grade 6,

1.75≤ S Byi􏼐 􏼑≤ 2.00 when grade 7.

(27)

Input:V � v1, v2, . . . , vk􏼈 􏼉: Universal set of objects,
L � l1, l2, . . . , lr􏼈 􏼉: Set of parameters,
(Φ,L, N):NSfS with R � 0, 1, 2, . . . , N − 1{ } where N ∈ 2, 3, 4, . . .{ },
(ΥΦ, T , N):CBFNSfS, where T � (Φ,L, N).

Compute ϑy � ⊕ r
i�1χyi where χyi � ri

y, (αp

yie
iωyi , βn

yie
iψyi )􏽄 􏽅, and sum of two

CBFNSfNs χyi and χyg is calculated as follows:

χyi ⊕ χyg � max(r
y

i , r
y
g), ((αp

yi + αp
yg − αp

yiα
p
yg)e

i((ωyi/π)+t(ωyg/π)n− q(ωyi/π)h(ωyg/π))π
, 〉

(− |βn
yi||β

n
yg|)e

− i(|ψyi/π||ψyg/π|)π
).􏽄

Compute the choice values of each vy ∈ V by employing the Sϑy
, using (15), ∀y � 1, 2, . . . , k{ }.

Reckon all the indices y for which Sy � max
y

Sϑy
.

if Sy � Sx, for arbitrary y, x ∈ 1, 2, 3, . . . , k{ }, then
apply accuracy function given in (16) and find out the alternative that has the highest
accuracy value;

else
Determine the alternative with the highest score value.

output: )e alternative having highest score or accuracy value will be the optimal solution.

ALGORITHM 1: )e algorithm of choice values of CBFNSfSs.

Input:V � v1, v2, . . . , vk􏼈 􏼉: Universal set of objects,
L � l1, l2, . . . , lr􏼈 􏼉: Set of parameters,
(Φ,L, N):NSfS with R � 0, 1, 2, . . . , N − 1{ } where N ∈ 2, 3, 4, . . .{ },
(ΥΦ, T , N): CBFNSfS, where T � (Φ,L, N),

τ � (τ1, τ2, τ3, . . . , τr): weight vector for attributes.
Compute ϑτy � ⊕ r

i�1τiχyi whereτχyi � r
y
i , ((1 − (1 − αp

yi)
τ)ei(1− (1− ωyi/π)τ)π , − |βn

yi|
τe− i|ψyi/π|τπ)􏽄 􏽅.

Sum of two weighted CBFNSfNs χτyi and χτyg is calculated as follows:

τχyi ⊕ τχyg � max(r
y(τ)
i , r

y(τ)
g ), ((αp(τ)

yi + αp(τ)
yg − αp(τ)

yi αp(τ)
yg )e

i((ωτ
yi
/π)+t(ωτ

yg/π)n− q(ωτ
yi
/π)h(ωτ

yg/π))π
, 〉

(− |βn(τ)
yi ||βn(τ)

yg |)e
− i(|ψτ

yi
/π||ψτ

yg/π|)π
).􏽄

Compute the weighted choice values of each vy ∈ V by employing the Sϑτy , using (15), ∀y � 1, 2, . . . , k{ }.
Determine all indices y for which Sy � max

y
Sϑτy .

if S(w)
y � S(w)

x , for some y, x ∈ 1, 2, 3, . . . , k{ }, then
utilize accuracy function defined in (16) and find out the alternative that has the extreme accuracy value;

else
Specify the alternative with the greatest score value.

output: )e alternative having greatest score or accuracy value will be the optimum solution.

ALGORITHM 2: )e algorithm of weighted choice values of CBFNSfSs.
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where Byi � (αp
yie

iωyi , βn
yie

ψyi ), S(Byi) � αp
yi + βn

yi + 1/2+

1/2(ωyi/π + ψyi/π + 1) and y � 1, 2, 3, 4, 5; i � 1, 2, 3, 4, 5.

According to the above-mentioned conditions, the
corresponding grading criteria are represented in Table 24.

)ereby, the CBF8SfS can be determined by using
Definition 3.1 as follows:

ΥΦ l1( 􏼁 � v1, 6( 􏼁, 0.77e
i0.82π

, − 0.13e
− i0.17π

􏽄 􏽅, v2, 5( 􏼁, 0.71e
i0.64π

, − 0.35e
− i0.32π

􏽄 􏽅, v3, 5( 􏼁, 0.69e
i0.72π

, − 0.32e
− i0.26π

􏽄 􏽅,􏽮

v4, 4( 􏼁, 0.52e
i0.54π

, − 0.42e
− i0.48π

􏽄 􏽅, v5, 3( 􏼁, 0.38e
i0.48π

, − 0.53e
− i0.55π

􏽄 􏽅􏽯,

ΥΦ l2( 􏼁 � v1, 6( 􏼁, 0.79e
i0.84π

, − 0.14e
− i0.19π

􏽄 􏽅, v2, 4( 􏼁, 0.59e
i0.55π

, − 0.43e
− i0.47π

􏽄 􏽅, v3, 5( 􏼁, 0.67e
i0.66π

, − 0.31e
− i0.29π

􏽄 􏽅,􏽮

v4, 3( 􏼁, 0.39e
i0.44π

, − 0.55e
− i0.61π

􏽄 􏽅, v5, 2( 􏼁, 0.26e
i0.31π

, − 0.71e
− i0.65π

􏽄 􏽅􏽯,

ΥΦ l3( 􏼁 � v1, 7( 􏼁, 0.92e
i0.95π

, − 0.07e
− i0.05π

􏽄 􏽅, v2, 6( 􏼁, 0.81e
i0.77π

, − 0.18e
− i0.14π

􏽄 􏽅, v3, 5( 􏼁, 0.65e
i0.71π

, − 0.34e
− i0.27π

􏽄 􏽅,􏽮

v4, 3( 􏼁, 0.45e
i0.41π

, − 0.52e
− i0.58π

􏽄 􏽅, v5, 1( 􏼁, 0.15e
i0.21π

, − 0.79e
− i0.81π

􏽄 􏽅􏽯,

ΥΦ l4( 􏼁 � v1, 6( 􏼁, 0.82e
i0.85π

, − 0.15e
− i0.18π

􏽄 􏽅, v2, 5( 􏼁, 0.63e
i0.68π

, − 0.35e
− i0.33π

􏽄 􏽅, v3, 3( 􏼁, 0.43e
i0.39π

, − 0.57e
− i0.55π

􏽄 􏽅,􏽮

v4, 5( 􏼁, 0.64e
i0.69π

, − 0.29e
− i0.28π

􏽄 􏽅, v5, 4( 􏼁, 0.53e
i0.61π

, − 0.39e
− i0.43π

􏽄 􏽅􏽯,

ΥΦ l5( 􏼁 � v1, 5( 􏼁, 0.74e
i0.72π

, − 0.28e
− i0.31π

􏽄 􏽅, v2, 4( 􏼁, 0.61e
i0.55π

, − 0.39e
− i0.43π

􏽄 􏽅, v3, 3( 􏼁, 0.41e
i0.39π

, − 0.61e
− i0.59π

􏽄 􏽅,􏽮

v4, 4( 􏼁, 0.54e
i0.58π

, − 0.44e
− i0.49π

􏽄 􏽅, v5, 2( 􏼁, 0.32e
i0.33π

, − 0.71e
− i0.68π

􏽄 􏽅􏽯.

(28)

)e CBF8Sf decision matrix is organized in Table 25.

5.1. Choice Values ofCBF8SfS. By employing Algorithm
1, choice values ofCBF8Sf decision matrix are computed
for the purpose of choosing the best vaccine to import, and
the results are arranged in Table 26.

According to the results of Table 26, the vaccines of
COVID-19 are ranked as follows:

v1 > v2 > v3 > v4 > v5. (29)

Hence, the government will import the v1 � Sinopharm
on the urgent basis.

5.2. Weighted Choice Values of CBF8SfS. In order to
apply Algorithm 2 on the CBF8Sf decision matrix, the
expert will assign the weight vector

τ � (0.17 0.23 0.25 0.15 0.20)
T
, (30)

to the attributes.)e results are accumulated in Table 27.
According to the results of Table 27, the descending

order ranking of COVID-19 vaccines is given as follows:

v1 > v2 > v3 > v4 > v5. (31)

Hence, it is concluded that the government will import
the v1 � Sinopharm.

Input: V � v1, v2, . . . , vk􏼈 􏼉: Universal set of objects,
L � l1, l2, . . . , lr􏼈 􏼉: Set of parameters,
(Φ,L, N): NSfS with R � 0, 1, 2, . . . , N − 1{ } where N ∈ 2, 3, 4, . . .{ },
(ΥΦ, T , N): CBFNSfS, where
T � (Φ,L, N), 0<D<N: threshold value.

Compute ΥDΦ(li) �
/span􏼊 􏼋 /p􏼊 􏼋(αp

yie
iωyi , βn

yie
iψyi ), if ΥΦ(li) � (vy, r

i
y), αp

yie
iωyi , βn

yie
iψyi􏽄 􏽅, and r

i
y ≥D,

(0.0e
i0π

, − 1.0e
− iπ

), otherwise.
􏼨

Compute ϑDy � ⊕ k
y�1χDyi , where χDyi � (αp(D)

yi e
iωD

yi , βn(D)
yi e

iψD
yi ), and sum of two CBFNSfNs χDyi and χDyg is calculated as follows:

χDyi ⊕ χDyg � ((αp(D)
yi + αp(D)

yg − αp(D)
yi αp(D)

yg )e
i(ωD

yi
/π+ωD

yg/π− (ωD
yi
/π)(ωD

yg/π))π
, (− |βn(D)

yi ||βn(D)
yg |)e

− i(|ψD
yi
/π||ψD

yg/π|)π
).

Compute the D-choice values of each vy ∈ V by employing the SϑDy
, ∀y � 1, 2, . . . , k{ }. Here,

SϑDy
� αp(D)

yi + βn(D)
yi + 1/2 + 1/2(ωD

yi/π + ωD
yi/π + 1)

Determine all indices y for which Sy � max
y

SϑDy
.

if SDy � SDx , for some y, x ∈ 1, 2, 3, . . . , k{ }, then
utilize accuracy function and find out the alternative that has the extreme accuracy value;

else
Find out the alternative with maximum score value.

output: )e alternative having maximum accuracy or score value will be the best solution.

ALGORITHM 3: )e algorithm of D-choice values of CBFNSfSs.
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5.3. D-Choice Values of CBF8SfS. )e D-choice values
of CBF8Sf decision matrix are evaluated by utilizing
Algorithm 3, whereD � 5.)e results are shown in Table 28.

From Table 28, it is summarized that the ranking of
COVID-19 vaccines is as follows:

v1 > v2 > v3 > v4 > v5. (32)

Hence, the government will import v1 � Sinopharm
without further delay.

6. Comparison

In this section, a comparison of the proposed MADM
techniques with previous methodologies, namely, choice
values, weighted choices values, and D-choice values of
BFNSfS is demonstrated, which is presented by Akram
et al. [22]. )is comparison will demonstrate the proficiency
and authenticity of our proposed techniques by examining
the numerical application of “Selection of the best COVID-
19 vaccine” in the environment of BFNSfS.

6.1. ChoiceValue ofBF8SfS. In order to apply the Choice
value of BFNSfS, firstly, we arranged the BF8SfS

from Table 23 by taking all phase terms of CBFNSfNs

equal to zero. )e grading criteria and the grades given by
the expert will remain the same. )e BF8Sf decision
matrix is arranged in Table 29.

Moreover, compute the δy as follows:

δy � ⊕ r
i�1χyi, (33)

where χyi � ri
y, (αp

yi, β
n
yi)􏽄 􏽅, and sum of two

BFNSfNs χyi and χyg is calculated as follows:

χyi ⊕ χyg � max r
y

i , r
y
g􏼐 􏼑, αp

yi + αp
yg − αp

yiα
p
yg, − βn

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 β
n
yg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼜 􏼝.

(34)

Further, the choice value ofBFNSfNs is calculated by
using the score function as follows:

fδy
�

r
y
i

N − 1
+
αp

yi + βn
yi + 1

2
. (35)

Table 23: Grading of vaccinations and associated 8SfS.

V/L l1 l2 l3 l4 l5

v1 6 � ⋆⋆⋆⋆⋆⋆ 6 � ⋆⋆⋆⋆⋆⋆ 7 � ⋆⋆⋆⋆⋆⋆⋆ 6 � ⋆⋆⋆⋆⋆⋆ 5 � ⋆⋆⋆⋆⋆
v2 5 � ⋆⋆⋆⋆⋆ 4 � ⋆⋆⋆⋆ 6 � ⋆⋆⋆⋆⋆⋆ 5 � ⋆⋆⋆⋆⋆ 4 � ⋆⋆⋆⋆
v3 5 � ⋆⋆⋆⋆⋆ 5 � ⋆⋆⋆⋆⋆ 5 � ⋆⋆⋆⋆⋆ 3 � ⋆⋆⋆ 3 � ⋆⋆⋆
v4 4 � ⋆⋆⋆⋆ 3 � ⋆⋆⋆ 3 � ⋆⋆⋆ 5 � ⋆⋆⋆⋆⋆ 4 � ⋆⋆⋆⋆
v5 3 � ⋆⋆⋆ 2 � ⋆⋆ .. 4 � ⋆⋆⋆⋆ 2 � ⋆⋆

Table 24: Grading criteria.

Grades Amplitude terms Phase terms
r

y
i αp

yi βn
yi ωyi ψyi

r
y
i � 0 [0, 0.125) [− 1, − 0.875) [0, 0.125π) [− π, − 0.875π)

r
y
i � 1 [0.125, 0.250) [− 0.875, − 0.750) [0.125π, 0.250π) [− 0.875π, − 0.750π)

r
y
i � 2 [0.250, 0.375) [− 0.750, − 0.625) [0.250π, 0.375π) [− 0.750π, − 0.625π)

r
y
i � 3 [0.375, 0.500) [− 0.625, − 0.500) [0.375π, 0.500π) [− 0.625π, − 0.500π)

r
y
i � 3 [0.500, 0.625) [− 0.500, − 0.375) [0.500π, 0.625π) [− 0.500π, − 0.375π)

r
y
i � 3 [0.625, 0.750) [− 0.375, − 0.250) [0.625π, 0.750π) [− 0.375π, − 0.250π)

r
y
i � 3 [0.750, 0.875) [− 0.250, − 0.125) [0.750π, 0.875π) [− 0.250π, − 0.125π)

r
y
i � 3 [0.875, 1.00] [− 0.125, 0] [0.875π, π] [− 0.125π, 0]

Table 25: CBF8Sf decision matrix.

(ΥΦ, T , 8) l1 l2 l3

v1 6, (0.77ei0.82π , − 0.13e− i0.17π)􏼊 􏼋 6, (0.79ei0.84π , − 0.14e− i0.19π)􏼊 􏼋 7, (0.92ei0.95π , − 0.07e− i0.05π)􏼊 􏼋

v2 5, (0.71ei0.64π , − 0.35e− i0.32π)􏼊 􏼋 4, (0.59ei0.55π , − 0.43e− i0.47π)􏼊 􏼋 6, (0.81ei0.77π , − 0.18e− i0.14π)􏼊 􏼋

v3 5, (0.69ei0.72π , − 0.32e− i0.26π)􏼊 􏼋 5, (0.67ei0.66π , − 0.31e− i0.29π)􏼊 􏼋 5, (0.65ei0.71π , − 0.34e− i0.27π)􏼊 􏼋

v4 4, (0.52ei0.54π , − 0.42e− i0.48π)􏼊 􏼋 3, (0.39ei0.44π , − 0.55e− i0.61π)􏼊 􏼋 3, (0.45ei0.41π , − 0.52e− i0.58π)􏼊 􏼋

v5 3, (0.38ei0.48π , − 0.53e− i0.55π)􏼊 􏼋 2, (0.26ei0.31π , − 0.71e− i0.65π)􏼊 􏼋 1, (0.15ei0.21π , − 0.79e− i0.81π)􏼊 􏼋

l4 l5
v1 6, (0.82ei0.85π , − 0.15e− i0.18π)􏼊 􏼋 5, (0.74ei0.72π , − 0.28e− i0.31π)􏼊 􏼋

v2 5, (0.63ei0.68π , − 0.35e− i0.33π)􏼊 􏼋 4, (0.61ei0.55π , − 0.39e− i0.43π)􏼊 􏼋

v3 3, (0.43ei0.39π , − 0.57e− i0.55π)􏼊 􏼋 3, (0.41ei0.39π , − 0.61e− i0.59π)􏼊 􏼋

v4 5, (0.64ei0.69π , − 0.29e− i0.28π)􏼊 􏼋 4, (0.54ei0.58π , − 0.44e− i0.49π)􏼊 􏼋

v5 4, (0.53ei0.61π , − 0.39e− i0.43π)􏼊 􏼋 2, (0.32ei0.33π , − 0.71e− i0.68π)􏼊 􏼋
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)e results are given by Table 30.
According to the results of Table 30, the vaccines of

COVID-19 are ranked as follows:

v1 > v2 > v3 > v4 > v5. (36)

Hence, the government will import the v1 � Sinopharm on
an urgent basis.

6.2.Weighted Choice Values ofBF8SfS. In order to apply
the weighted choice values of BFNSfS, we used the
BF8Sf decision matrix given by Table 29, where phase

terms are taken zero. )e weight vector of criteria is given
below:

τ � (0.17 0.23 0.25 0.15 0.20)
T
. (37)

Further, compute the δτy as follows:

δτy � ⊕ r
i�1τχyi, (38)

where χyi � ri
y, (αp

yi, β
n
yi)􏽄 􏽅, τχyi � r

y

i , (1 − (1 − αp

yi)
τ ,􏽄

− |βn
yi|

τ)〉., and the sum of two weightedBFNSfNs χτyi and
χτyg is calculated as follows:

τχyi ⊕ τχyg � max r
y(τ)
i , r

y(τ)
g􏼐 􏼑, αp(τ)

yi + αp(τ)
yg − αp(τ)

yi αp(τ)
yg , − βn(τ)

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 β
n(τ)
yg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼜 􏼝. (39)

Further, the weighted choice values of BFNSfNs is
calculated by using the score function as follows:

fδτy �
r

y

i

N − 1
+
αp

yi + βn
yi + 1

2
. (40)

)e results are arranged by Table 31.
According to the results of Table 31, the descending

order ranking of COVID-19 vaccines is given as follows:

v1 > v2 > v3 > v4 > v5. (41)

Hence, it is concluded that the government will import
the v1 � Sinopharm.

6.3. D-Choice Values of BF8SfS. In order to apply the
D-choice values of BFNSfS, we used the BF8Sf de-
cisionmatrix, given by Table 29, where phase terms are taken
zero. )e threshold D � 5.

Further, calculate

Table 29: BF8Sf decision matrix.

(I, T , 8) l1 l2 l3 l4

v1 6, (0.77, − 0.13)〈 〉 6, (0.79, − 0.14)〈 〉 7, (0.92, − 0.07)〈 〉 6, (0.82, − 0.15)〈 〉

v2 5, (0.71, − 0.35)〈 〉 4, (0.59, − 0.43)〈 〉 6, (0.81, − 0.18)〈 〉 5, (0.63, − 0.35)〈 〉

v3 5, (0.69, − 0.32)〈 〉 5, (0.67, − 0.31)〈 〉 5, (0.65, − 0.34)〈 〉 3, (0.43, − 0.57)〈 〉

v4 4, (0.52, − 0.42)〈 〉 3, (0.39, − 0.55)〈 〉 3, (0.45, − 0.52)〈 〉 5, (0.64, − 0.29)〈 〉

v5 3, (0.38, − 0.53)〈 〉 2, (0.26, − 0.71)〈 〉 1, (0.15, − 0.79)〈 〉 4, (0.53, − 0.39)〈 〉

l5
v1 5, (0.74, − 0.28)〈 〉

v2 4, (0.61, − 0.39)〈 〉

v3 3, (0.41, − 0.61)〈 〉

v4 4, (0.54, − 0.44)〈 〉

v5 2, (0.32, − 0.71)〈 〉

Table 28: 5-Choice values of CBF8SfS.

(Υ5Φ, T , 8) l1 l2 l3 l4

v1 (0.77ei0.82π , − 0.13e− i0.17π) (0.79ei0.84π , − 0.14e− i0.19π) (0.92ei0.95π , − 0.07e− i0.05π) (0.82ei0.85π , − 0.15e− i0.18π)

v2 (0.71ei0.64π , − 0.35e− i0.32π) (0ei0π, − 1e− i1π) (0.81ei0.77π , − 0.18e− i0.14π) (0.63ei0.68π , − 0.35e− i0.33π)

v3 (0.69ei0.72π , − 0.32e− i0.26π) (0.67ei0.66π , − 0.31e− i0.29π) (0.65ei0.71π , − 0.34e− i0.27π) (0ei0π, − 1e− i1π)

v4 (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π) (0.64ei0.69π , − 0.29e− i0.28π)

v5 (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π)

l5 ϑDy Sϑ5y
v1 (0.74ei0.72π , − 0.28e− i0.31π) (0.9998ei0.9999π, − 5.35 × 10− 5e− i9.01×10− 5π) 1.9998
v2 (0ei0π, − 1e− i1π) (0.9796ei0.9735π , − 0.0221e− i0.0148π) 1.9581
v3 (0ei0π, − 1e− i1π) (0.9642ei0.9724π , − 0.0337e− i0.0204π) 1.9413
v4 (0ei0π, − 1e− i1π) (0.64ei0.69π , − 0.29e− i0.28π) 1.38
v5 (0ei0π, − 1e− i1π) (0ei0π, − 1e− i1π) 0
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D

li( 􏼁 �
αp

yi, β
n
yi􏼐 􏼑, if ΥΦ li( 􏼁 � vy, r

i
y􏼐 􏼑, αp

yi, β
n
yi􏽄 􏽅, and r

i
y ≥D,

(0.0, − 1.0), otherwise.

⎧⎨

⎩ (42)

Moreover, compute the δDy as follows:

δDy � ⊕ r
i�1χ

D
yi, (43)

where, χDyi � (αp(D)

yi , βn(D)
yi )〉 , and the sum of two

BFNSfNs χDyi and χDyg is calculated as follows:

χDyi ⊕ χ
D
yg � αp(D)

yi + αp(D)
yg − αp(D)

yi αp(D)
yg , − βn(D)

yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 β
n(D)
yg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓〉 .

(44)

Further, the 5-choice values ofBFNSfNs is calculated
by using the score function as follows:

fδDy
�
αp

yi + βn
yi + 1

2
. (45)

)e results are arranged by Table 32.
From Table 32, it is summarized that the ranking of

COVID-19 vaccines is as follows:

v1 > v2 > v3 > v4 > v5. (46)

Hence, the government will import v1 � Sinopharm
without further delay.

6.4. Discussion

(1) Now, the results of the presented MADM method-
ologies in the framework of CBFNSfS are
compared with MADM methods, namely, choice
values of BFNSfS, weighted choice values of
BFNSfS and D-choice values of BFNSfS,
presented by Akram et al. [22], to show the au-
thenticity and veracity of the proposed decision-
making algorithms.

(2) Moreover, we have also applied the decision-making
methods of FNSf S [17] in order to find the best
available COVID-19 vaccine to import.)e results of
the proposed and existing methods, including the
final ranking and best alternatives, are arranged in
Table 33 as follows:

(3) It is clear from Table 33 that the v1 is the best vaccine
in all environments. Moreover, the ranking of vac-
cines is also similar in all methodologies, which il-
lustrates the reliability and accuracy of the presented
MADM techniques.

(4) )e comparative analysis of the results is also
demonstrated in Figure 3 through the bar chart

Table 31: Weighted choice value of BF8SfS.

(I, T , 8) l1 l2 l3 l4

v1 6, (0.2211, − 0.7069)〈 〉 6, (0.3016, − 0.6362)〈 〉 7, (0.4682, − 0.5144)〈 〉 6, (0.2268, − 0.7523)〈 〉

v2 5, (0.1898, − 0.8365)〈 〉 4, (0.1854, − 0.8236)〈 〉 6, (0.3398, − 0.6514)〈 〉 5, (0.1385, − 0.8543)〈 〉

v3 5, (0.1805, − 0.8239)〈 〉 5, (0.2251, − 0.7639)〈 〉 5, (0.2308, − 0.7636)〈 〉 3, (0.0809, − 0.9191)〈 〉

v4 4, (0.1173, − 0.8629)〈 〉 3, (0.1075, − 0.8715)〈 〉 3, (0.1388, − 0.8492)〈 〉 5, (0.1421, − 0.8305)〈 〉

v5 3, (0.0781, − 0.8977)〈 〉 2, (0.0669, − 0.9242)〈 〉 1, (0.0398, − 0.9428)〈 〉 4, (0.1071, − 0.8683)〈 〉

l5 δτy fδτy
v1 5, (0.2362, − 0.7752)〈 〉 7, (0.8291, − 0.1349)〈 〉 1.7221
v2 4, (0.1717, − 0.8283)〈 〉 6, (0.6891, − 0.3176)〈 〉 1.4357
v3 3, (0.1001, − 0.9059)〈 〉 5, (0.5960, − 0.4001)〈 〉 1.2229
v4 4, (0.1438, − 0.8486)〈 〉 5, (0.5017, − 0.4501)〈 〉 1.1508
v5 2, (0.0742, − 0.9338)〈 〉 4, (0.3172, − 0.6342)〈 〉 0.8415

Table 30: Choice values of BF8SfS.

(I, T , 8) l1 l2 l3 l4

v1 6, (0.77, − 0.13)〈 〉 6, (0.79, − 0.14)〈 〉 7, (0.92, − 0.07)〈 〉 6, (0.82, − 0.15)〈 〉

v2 5, (0.71, − 0.35)〈 〉 4, (0.59, − 0.43)〈 〉 6, (0.81, − 0.18)〈 〉 5, (0.63, − 0.35)〈 〉

v3 5, (0.69, − 0.32)〈 〉 5, (0.67, − 0.31)〈 〉 5, (0.65, − 0.34)〈 〉 3, (0.43, − 0.57)〈 〉

v4 4, (0.52, − 0.42)〈 〉 3, (0.39, − 0.55)〈 〉 3, (0.45, − 0.52)〈 〉 5, (0.64, − 0.29)〈 〉

v5 3, (0.38, − 0.53)〈 〉 2, (0.26, − 0.71)〈 〉 1, (0.15, − 0.79)〈 〉 4, (0.53, − 0.39)〈 〉

l5 δy fδy

v1 5, (0.74, − 0.28)〈 〉 7, (0.9998, − 5.35 × 10− 5)􏼊 􏼋 1.8749
v2 4, (0.61, − 0.39)〈 〉 6, (0.9967, − 0.0037)〈 〉 1.7465
v3 3, (0.41, − 0.61)〈 〉 5, (0.9880, − 0.0117)〈 〉 1.6131
v4 4, (0.54, − 0.44)〈 〉 5, (0.9733, − 0.0153)〈 〉 1.6040
v5 2, (0.32, − 0.71)〈 〉 4, (0.8754, − 0.0823)〈 〉 1.3965
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Table 33: Comparative analysis.

Methods Ranking of COVID-19 vaccines Best vaccine
Choice value of CBFNSfS (proposed) v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
Weighted choice value of CBFNSfS (proposed) v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
5-Choice value of CBFNSfS (proposed) v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
Choice value of BFNSfS [22] v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
Weighted choice value of BFNSfS [22] v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
5-Choice value of BFNSfS [22] v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
Choice value of FNSf S [17] v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1
3-Choice value of FNSf S [17] v1 ≻ v2 ≻ v3 ≻ v4 ≻ v5 v1

Table 32: 5-choice value of BF8SfS.

(I, T , 8) l1 l2 l3 l4

v1 (0.77, − 0.13) (0.79, − 0.14) (0.92, − 0.07) (0.82, − 0.15)

v2 (0.71, − 0.35) (0, − 1) (0.81, − 0.18) (0.63, − 0.35)

v3 (0.69, − 0.32) (0.67, − 0.31) (0.65, − 0.34) (0, − 1)

v4 (0, − 1) (0, − 1) (0, − 1) (0.64, − 0.29)

v5 (0, − 1) (0, − 1) (0, − 1) (0, − 1)

l5 δDy fδDy
v1 (0.74, − 0.28) (0.9998, − 5.35 × 10− 5) 0.9999
v2 (0, − 1) (0.9796, − 0.0221) 0.9788
v3 (0, − 1) (0.9642, − 0.0337) 0.9652
v4 (0, − 1) (0.64, − 0.29) 0.6750
v5 (0, − 1) (0, − 1) 0

Ex
ce

pt
io

na
l

Su
pe

rb
Ac

ce
pt

ab
le

O
rd

in
ar

y
Ra

nk
in

g
po

or

υ2υ1 υ4υ3 υ5
COVID-19 Vaccines

Choice value of CBFNSf S (proposed)
Weighted choice value of CBFNSf S (proposed)
5-Choice value of CBFNSf S (proposed)
Choice value of BFNSf S [4]

Weighted choice value of BFNSf S [4]
5-Choice value of BFNSf S [4]
Choice value of FNSf S [2]
5-Choice value of FNSf S [2]

Figure 3: Comparative analysis.
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between the ranking and COVID-19 vaccines, which
shows the proficiency of the proposed decision-
making techniques.

(5) )e proposed hybrid model of CBFNSfS can
effectively handle the information in the environ-
ment of CBFNSfS, BFSfS and BFS by
taking N � 2 and |L| � 1 respectively.

(6) )e proposed decision-making methods of
CBFNSfS can handle the environment of FNSf S
by taking negative membership values and phase
terms equal to zero.

(7) )e presented CBFNSfS is a parameterized
framework that is used to deal with the bipolar
fuzziness of the information. It has the capability to
handle two-dimensional vague information; i.e., it
can deal with the periodicity involved in the bipolar
information. Particularly, it can efficiently deal with
the ranking based assessment of imprecise infor-
mation that involves effects along with side effects.

7. Conclusion

In this paper, an innovative hybrid model, namely, complex
bipolar fuzzy N-soft sets has been set up by integrating the
CBFSs with NSfSs. )e generalized, more efficient
theory is useful to handle the two-dimensional bipolar fuzzy
information. It is superior to the existing BFNSfS as it
deals with periodic information. Firstly, we have presented
the conventional definition of CBFNSfSs in addition to
its fundamental operations and related results. We have
defined elementary algebraic operations for CBFNSfNs.
We have also developed three algorithms for MADM
problems in order to choose the favorable parameter under
the environment of CBFNSfS. We have illustrated the
significance of proposed algorithms by applying them to
practical applications. Finally, to demonstrate their validity
and applicability, we have shown a comparison with existing
MADM approaches. In the future, we intend to establish
more decision-making approaches, including ELECTRE I,
ELECTRE II, and TOPSIS methods under the aforemen-
tioned abundant and multifaceted model of CBFNSfS.
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