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Abstract— In manufacturing, advanced robotic technology
has opened up the possibility of integrating highly autonomous
mobile robots into human teams. However, with this capability
comes the issue of how to maximize both team efficiency and
the desire of human team members to work with robotic
counterparts. We hypothesized that giving workers partial
decision-making authority over a task allocation process for
the scheduling of work would achieve such a maximization,
and conducted an experiment on human subjects to test this
hypothesis. We found that an autonomous robot can outperform
a worker in the execution of part or all of the task allocation
(p < 0.001 for both). However, rather than finding an ideal
balance of control authority to maximize worker satisfaction,
we observed that workers preferred to give control authority
to the robot (p < 0.001). Our results indicate that workers
prefer to be part of an efficient team rather than have a role
in the scheduling process, if maintaining such a role decreases
their efficiency. These results provide guidance for the successful
introduction of semi-autonomous robots into human teams.

I. INTRODUCTION

In manufacturing, there is a growing desire to leverage

the unique strengths of humans and robots to form highly

effective human-robot teams [9], [26], [27]. Often robots

are not capable of performing the same tasks as their

human counterparts, and human workers shift toward the

performance of a smaller set of tasks better suited for human

dexterity and intelligence, upon the introduction of a robot

worker to their environment. The proper functioning of a

human-robot manufacturing team requires strict coordination

between human and robotic work that satisfies hard temporal

and spatial constraints. Academic researchers and industry

practitioners alike have developed systems for the planning

or scheduling of human-robot work where the humans are

either included in the decision-making process [9], [11],

[32] or the work is scheduled autonomously [2], [5]. In

this work we experimentally investigate whether the robot

or the human worker should individually maintain or share

decision-making authority over how best to allocate the work

in order to maximize both human-robot team fluency and the

satisfaction of the human worker.

Human workers often develop a sense of identity and

security from their roles or jobs in a factory, and many

are used to having some degree of autonomy in decision-

making. As a result, a human worker who is tasked by an
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automated scheduling algorithm may feel devalued. Even

if the algorithm increases process efficiency at first, taking

control away from human workers may alienate them and,

in turn, ultimately damage overall productivity. On the other

hand, workers may find the process of scheduling to be

burdensome, and prefer to be part of an efficient team rather

than have a role in the scheduling process, if maintaining

such a role decreases their efficiency. While autonomous

scheduling algorithms can provide near-optimal schedules

within seconds, we also want to determine how much

decision-making authority humans should have in the task

allocation process, so that they feel appreciated while still

maintaining a high level of team efficiency.

We hypothesize that there is an inverse relationship be-

tween human-robot team efficiency and the satisfaction of

the human workers, according to how much control the

human workers have over task allocation, or the assignment

of which worker will perform which task. We conducted a

human-subject experiment (n = 24) where subjects worked

alongside both another human and a robot. Rather than

finding a desired middle ground between fully autonomous

and manual scheduling scenarios, we found statistically

significant evidence that giving human subjects more control

authority over task allocation negatively influenced team

fluency (p < .02) and the desire of the subject to work with

the robot again (p < 0.001). We also found evidence of a

complex relationship between human/robot decision-making

authority and human preferences over task allocation; people

sought looser couplings between human and robot work

when they did not retain primary decision-making authority.

II. BACKGROUND

The development of effective human-machine systems has

been the focus of research for many in the fields of human

factors, robotics, manufacturing and aerospace, to name a

few. A key goal of this work has been to leverage the unique

strengths of both the human and robot. Researchers have

defined a good robot teammate as one that permits teammates

to choose actions and timings on the fly, dynamically antici-

pates and adapts, ensures time-critical tasks are accomplished

first and supports interaction that is fluid and natural to the

human [6], [12], [23], [29], [31].

The human-robot interface has long been identified as a

major bottleneck for the utilization of these robotic systems

to their full potential [7]. As a result, significant research



efforts have been aimed at easing the use of these systems

in the field, including the careful design and validation of

supervisory and control interfaces [4], [10], [15], [21], [20].

Related research efforts have focused on the inclusion of

a human in the decision-making loop to improve the quality

of task plans and schedules for robots or semi-autonomous

systems [9], [10], [11]. This is particularly important if the

human operators have knowledge of factors not explicitly

captured by the system model or if scheduling decisions have

life and death consequences. In a study of aircraft carrier

flight deck operations, veteran operators used heuristics to

quickly generate an efficient plan and outperformed opti-

mization algorithms [28]. Other works aimed to leverage the

strengths of both humans and machines in scheduling by

soliciting user input in the form of quantitative, qualitative,

hard or soft constraints over various scheduling options.

Recommended schedules were then autonomously compiled

and provided to users [3], [16], [17], [22], [32]. While

developed to support scheduling of human teams, these

approaches can be readily extended to human-robot teams.

Supervisory systems have also been developed to assist

human operators in the coordination of the activities of either

four-robot or eight-robot teams [8]. Experiments demon-

strated that operators were less able to detect key surveillance

targets when controlling a larger number of robots. Similarly,

other studies have investigated the perceived workload and

performance of subjects operating multiple ground mobile-

based robots [1]. Findings indicated that a number of robots

greater than two greatly increased the perceived workload

and decreased the performance of the human subjects.

Some industry practitioners, however, have taken a differ-

ent approach to the scheduling human-robot teams. When

fulfilling online orders in warehouses, workers have to nav-

igate the warehouse to find the correct items, pick up the

item and then return to the packaging area to complete the

order. Kiva Systems has developed robots that are able to

fetch these items for the worker and ensure that each worker

is never idle while waiting for the next item to package.

One might initially think that narrowing the role of workers

in a factory setting may cause them to feel less important;

however, CNN has reported that “robots make for a more

pleasant work environment” because they “eliminate much

of the mundane physical labor employees once did to retrieve

products off shelves.” [2].

In this work, we are motivated by the application of

robotics in the manufacturing domain, where human workers

will perform physical tasks in coordination with robotic

partners. In some cases, the human workers may also be

responsible for tasking the team and tracking progress. We

seek to understand how much control human workers should

have over the assignment of roles and schedules when work-

ing in teams with robots. The following sections will describe

our experiment to lend insight into the relationship between

team efficiency and worker satisfaction, as a function of the

control authority of human workers over team scheduling.

III. AIM OF THE EXPERIMENT

We sought to understand the contributions of efficiency,

worker decision-making authority and human idle time to

objective and subjective measures of team performance and

worker satisfaction. Understanding the relationship between

these measures will provide researchers and industry prac-

titioners with better insight into how to design successful

human-robot teams.

A. Independent Variables

In our experiment, we control the level of decision-making

authority over task allocation the worker has during work

scheduling for their team. This independent variable can have

one of three values:

1) Manual Control-The subject decides who will perform

which tasks

2) Semi-Autonomous Control-The subject decides which

tasks he will perform, while the robot allocates the

remaining tasks to itself and the human assistant

3) Autonomous Control-The robot allocates all tasks.

The robot performs task sequencing in all three condi-

tions. We explore the decision-making authority over task

allocation alone, rather than over both task allocation and

sequencing, in order to isolate the effects of task allocation

and mitigate experimental confound. We leave investigation

of sequencing and joint task allocation and sequencing to our

future experimentation.

B. Hypotheses

H1 Team productivity degrades when the subject has

more control over the rescheduling process. As a metric of

productivity, we measure both the time it takes to reschedule

and the time it takes to finish all tasks.

Determining the optimal schedule while under hard upper-

and lower-bound temporal constraints is NP-Hard [5]. Even

for problems of a modest size, optimal scheduling becomes

intractable in these circumstances. While we have seen a

great deal of work in the development of supervisory control

interfaces and human in-the-loop systems to leverage the

strengths of human insight and the computational power of

autonomous scheduling algorithms ([4], [15], [21], [9], [11]),

we expect a near-optimal scheduling algorithm to generate

better schedules than those generated by the human subjects.

H2 Subjects prefer having partial control over the

rescheduling process rather than complete control, and pre-

fer having complete control to having no control. We utilize a

series of subjective Likert-scale questions to determine which

level of control the subjects prefer.

We posit that allowing subjects to decide which tasks they

will perform and having the robot complete the remainder

of the rescheduling will be most satisfying for the subject.

In this scenario, a subject can select their preferred tasks

according to perceived physical and mental demands, and

has a more substantial role in the success of their team. We

believe that both of these factors will contribute to the subject

being most satisfied by sharing control of the rescheduling

process with the robot. On the other hand, giving subjects



the responsibility of quickly and optimally rescheduling all

work will be overwhelming and least desirable. Furthermore,

allowing the robot to have complete control will improve

team fluency, but at the cost of possibly devaluing the role

of the subject.

H3 Subjects are more satisfied with their experience

working on the team when they are less idle. To test this

hypothesis, we utilize timing information of task execution

during the assembly process and the same set of subjective

Likert-scale questions used to test Hypothesis 2.

Many studies have used idle time as a proxy for team fluency

[19], [25], [30], and we posit that subjects’ satisfaction is

negatively correlated with idle time.

IV. EXPERIMENTAL METHODS

We designed an environment analogous to a manufacturing

setting. The subject is a member of a human-robot team

responsible for completing a set of tasks that includes both

the fetching and assembly of part kits. For each trial, the

team must schedule and complete this set of tasks. In our

experiment, the goal was to assemble various components

of a Lego kit, as shown in Figure 1. A video describing the

experiment can be found at http://tiny.cc/k4hzgx.

A. Materials and Setup

We used a Willow Garage PR2 platform as shown in

Figure 2, as the robotic assistant for our human-robot team.

Relevant to the experiment, the PR2 has a holonomic base

with optical encoders for each wheel and a 270 deg Hokuyo

laser at the base. We mapped the laboratory using this laser,

as well as the standard Gmapping package in the Robot

Operating System (ROS). For navigation, we used the Adap-

tive Monte Carlo Localization (AMCL) [13] probabilistic

localization package and a hybrid-dynamical proportional-

derivative (PD) controller. The locations of the pick-up and

drop-off locations for each part kit were hard-coded into the

robot controller. The inspection component of the fetching

task was simulated.

B. Human-Robot Team Composition

Our human-robot manufacturing team consisted of the

human subject, a robotic assistant and a human assistant. The

human subject was capable of both fetching and building,

and the robot assistant was only capable of fetching. One

of the experimenters played the role of a third teammate

for all subjects and was capable of both fetching and

Fig. 1. The Assembled Lego Model.

Fig. 2. This figure depicts a diagram of the laboratory room where the
experiment took place. There are two locations where the human and robot
workers can inspect part kits during a fetching task, and two locations where
the human workers can build the part kits.

building. The third human teammate was included to more

realistically represent the composition of a human-robot

team in a manufacturing setting. The human subjects either

performed the task allocation or shared the decision-making

authority over task allocation with the robotic teammate,

depending on the experimental condition. The robot assistant

was always responsible for sequencing the team’s work.

The third teammate did not provide any decision-making

assistance to the subject or the robot.

C. Experiment Task

In our scenario, the fetching of a kit required walking to

one of two inspection stations where the kits were located,

inspecting the part kit and carrying it to the build area.

The architecture of our fetching task is analogous to what

is required in many manufacturing domains: To adhere to

strict quality assurance standards, fetching a part kit requires

verification from one to two people that all correct parts are

in the kit, and certification from another person that the kit

has been verified.

There were a number of constraints imposed on the analog

assembly process, in order to model relevant constraints

encountered during assembly manufacturing: First, a part kit

must have been fetched before it could be built. Also, no

two agents were able to occupy the same fetching or build

station. There were two fetching and two build stations, as

shown in Figure 2. Four part kits were located at one fetching

station, and four kits were located at the second fetching

station. When fetching a part kit, inspection of that kit must

have occurred at the fetching station where it was initially

located.

Because there were an equal number of building stations

and agents able to build, there were no additional constraints

imposed exclusively on build tasks. However, because there

were three agents who could fetch and only two fetching

stations, the agents were required to take turns using the

http://tiny.cc/k4hzgx


fetching stations. Allowing workers to sort through parts

from multiple kits at the same location risked mixing the

wrong part with the wrong kit. We imposed a 10-minute

deadline from the time that the fetching of a part kit began

until that part kit had been built, for similar reasons. In

manufacturing, if a part or part kit is missing from an

expected location for too long, work in that area of the

factory will temporarily halt until the missing pieces are

found.

D. Formulation of the Human-Robot Scheduling Problem

Assembly of the Lego model involved eight tasks τ =
{τ1, τ2, . . . , τ8}, each of which was composed of a fetch

and build subtask τi = {τfetchi , τ buildi }. The time each

subject took to complete each subtask C
subject−fetch
i and

C
subject−build
i was measured during an experiment training

round. The timings for the robot C
robot−fetch
i and human

assistant C
assist−fetch
i and Cassist−build

i (performed by

an experimenter) were collected prior to the experiments.

Constraints on lowerbound completion time of tasks are

presented in Equations 1-5.

f build
i − sbuildi ≥ C

subject−build
i −M(1−A

subject

τbuild
i

) (1)

f
fetch
i − s

fetch
i ≥ C

subject−fetch
i −M(1−A

subject

τ
fetch
i

) (2)

f
fetch
i − s

fetch
i ≥ C

robot−fetch
i −M(1−Arobot

τ
fetch
i

) (3)

f build
i − sbuildi ≥ Cassist−build

i −M(1−Aassist
τbuild
i

) (4)

f
fetch
i − s

fetch
i ≥ C

assist−fetch
i −M(1−Aassist

τ
fetch
i

), (5)

where A
agent

τsubtask
i

is a binary decision variable for the as-

signment of agent ∈ {subject, robot, assist} to each

subtask ∈ {fetch, build} of τi ∈ τ .

Constraints 6 and 7 also ensured that each agent performed

one subtask at a time.

syx − f
j
i ≥ −M

(

1− x〈τj
i
,τ

y
x 〉

)

−M
(

2−A
agent

τ
j
i

−A
agent

τ
y
x

)

, ∀τ ji , τ
y
x ∈ τ

(6)

s
j
i − fy

x ≥ −Mx〈τj
i
,τ

y
x 〉

−M
(

2−A
agent

τ
j
i

−A
agent

τ
y
x

)

, ∀τ ji , τ
y
x ∈ τ ,

(7)

where x〈τj
i
,τ

y
x 〉 ∈ {0, 1} is a binary decision variable

specifying whether τ
j
i comes after or before τyx .

Temporal constraints 8 and 9 ensured that parts for each

task were fetched before building began, and that building

finished within D = 10 minutes of fetching the parts.

∞ ≥ sbuildi − f
fetch
i ≥ 0, ∀τi ∈ τ (8)

D ≥ f build
i − s

fetch
i ≥ 0, ∀τi ∈ τ , (9)

where sbuildi , s
fetch
i and f build

i , f
fetch
i are the start and finish

times of the build and fetch subtasks, respectively.

The spatial constraint in Equation 10 ensured that no two

agents occupied the same fetching station at the same time.

s
fetch
j − f

fetch
i ≥ 0 ∨ s

fetch
i − f

fetch
j ≥ 0,

∀τi, τj ∈ τ s.t. R
fetch
i = R

fetch
j ,

(10)

where R
fetch
k denotes the physical floor area reserved for

the fetching subtask τ
fetch
k . Fetching subtasks {τfetchi |i ∈

{1, 2, 3, 4}} used the first inspection station R
fetch
1

, and

{τfetchi′ |i′ ∈ {5, 6, 7, 8}} used the second inspection station

R
fetch
2

.

Finally, one pair of tasks τtwo−step = 〈τ3, τ4〉 was related

through a precedence constraint. Specifically particpants

were instructed that the first task, τ3 in the pair be completed

before starting to fetch parts for the second task τ4. This

constraint is presented in Equation 11.

s
fetch
j − f build

i ≥ 0, ∀ 〈τi, τj〉 ∈ τtwo−step (11)

To objective of the problem (Equation 12) was to minimize

the maximum amount of work assigned to any one agent,

while satisfying the constraints in Equations 1 - 11.

obj = argmin

(

max
agent

(

∑

τi

(

∑

subtask

C
agent

τsubtask
i

A
agent

τsubtask
i

)))

(12)

E. Scheduling Mechanism

To enable the robot to schedule with varying degrees of

decision-making input from the subject, we adapted Ter-

cio, a fast, near-optimal scheduling algorithm that divides

the scheduling process into task allocation and sequencing

subroutines [14]. The algorithm works by solving for the

optimal task allocation and then finding a corresponding

task sequence. If the schedule does not satisfy a specified

makespan, a second iteration is performed by finding the

second-most optimal task allocation and corresponding se-

quence. The process terminates when the user is satisfied

with the schedule quality, or when no better schedule can be

found. In this experiment we specified that Tercio run for 25
iterations and return the best schedule.

In the scenario where the subject performed task allo-

cation, the robot used Tercio to sequence tasks and return

a flexible, dispatchable schedule [24]. When the subject

decided which tasks he or she would perform, the robot used

Tercio to find an efficient schedule by iterating over different

allocations to the robot and the human assistant. Tercio

receives upperbound, lowerbound, and expected duration of

each task, and uses the expected durations to compute near-

optimal schedules. The upperbound and lowerbound times

are used in computing the flexible, dispatchable schedule

to allow subjects the flexibility to work faster or slower

than expected. We set the lowerbound duration of subtasks

assigned to the subject to be 25% faster than their timings

during training to mitigate subject idle time due to learning

effects.



F. Human-Robot Coordination

Subjects were provided each agent’s expected time to

complete each of the sixteen subtasks, for experiment con-

ditions where the subject performed the task allocation.

In the manual condition, subjects specified the assignment

of agent ∈ {subject, robot, assist} to each subtask ∈
{fetch, build} of τi ∈ τ , by writing the assignment list

on a blank paper. The experimenter input the data to the

scheduling algorithm, which then optimized the sequencing

of subtasks {x
<τ

j
i
,τm

n >
}.

In the semi-autonomous condition, the subjects chose

only the subtasks that they would complete themselves,

and the robot allocated the remaining subtasks. Again the

robot sequenced all subtasks {x
<τ

j
i
,τm

n >
}. In the autonomous

condition, the scheduling algorithm optimized both the allo-

cation and sequencing of subtasks.

The robot served as a central coordinating agent, commu-

nicating to the subject and the human teammate when to start

their next subtasks. The subject and human teammate con-

firmed to the robot as they started or finished subtasks. The

team members communicated this information by sending

simple, text-based messages over a TCP/IP GUI1.

G. Procedure

We first introduced the subject to the manufacturing

scenario. Subjects were told that they were a member of

a human-robot manufacturing team. The manufacturer had

recently acquired a new robot to work alongside people in

the factory to improve the manufacturer’s productivity. We

explained the various temporal and spatial constraints of our

analog manufacturing task as well as the capabilities and

roles of each team member.

We then conducted a training round where the subject

fetched and built each of the eight part kits. We timed

how long it took the participant to complete each task, and

provided this information to the robot and the subject for

use in scheduling the work. Participants were instructed to

work as quickly as possible without making mistakes. Next,

the experimenter explained the constraints imposed on the

assembly process, and the subject was trained on how to

communicate with the robot via the TCP/IP GUI.

We then performed three trials in which the subject was

exposed to each of the three conditions (manual, semi-

autonomous or autonomous control), varying the order of the

conditions across subjects. Each trial consisted of reschedul-

ing the work and completing all tasks according to that

schedule. In the scenarios where the subject participated in

the task allocation process, we provided the subject with

information about how long it took for each agent to perform

each task. The subject was instructed to quickly construct

an efficient task allocation with the goal of minimizing the

sum of the time spent rescheduling and completing the tasks.

Subjects took on approximately 5 minutes when asked to

1SocketTest v3.0.0 c©2003-2008 Akshathnkumar Shetty (http://
sockettest.sourceforge.net/)

allocate all of the tasks, and approximately 2 minutes when

deciding which tasks to complete themselves.

Either autonomously or according to the task allocation

information provided by the subject, the robot completed the

rescheduling and the assembly process began. Each trial took

approximately 15 minutes. After each trial, subjects were

asked to answer a post-test questionnaire with 21 Likert-

scale questions assessing their experience. The experiment

concluded with a final post-test questionnaire with three

Likert-scale questions and two free-response questions, as

shown in Tables I and II.

H. Experimental Design

The goal of the experiment was to understand the re-

lationship between efficiency and worker satisfaction, as a

function of how much control the worker has over his or her

own role on the team. Our experiment used a within-subjects

design, allowing for more powerful statistical testing. In prior

experience, we have seen that human subjects build Lego

models at vastly different rates. By utilizing a within-subjects

design, we mitigated the effects of inter-subject variability.

However, because of this design, we needed to account for

possible learning effects over the different trials. The speed

with which subjects build generally increases with practice.

To block for this factor, we balanced the assignment subjects

into groups for each of the k! orderings of our k = 3
conditions.

To block for variability in the characteristics of the human

assistant on the team, a laboratory researcher played the role

of the human assistant for all trials. This assistant performed

tasks at a nearly constant speed and did not aid the subject

in rescheduling the work.

I. Objective Evaluation

Objective measures of team fluency consist of assembly

time, rescheduling time and idle time. “Assembly time” is

defined as the difference between the time the last task

was completed and the time the first task was initiated.

“Rescheduling” time is defined as the sum of the time it took

the subject to allocate tasks when the subject was involved

and the time it took the robot to complete the remainder of

the scheduling work. (The experimenter was required to input

the task allocation of the subject into the robot’s scheduling

algorithm, but we did not include this time as a part of the

rescheduling time.) Lastly, we defined “idle time” as the sum

of the periods during which the subject was not working.

J. Subjective Evaluation

Subjects received post-trial questionnaires after each trial,

consisting of 21 Likert-scale questions, as shown in Table

I. Hoffman proposed a set of composite measures for the

evaluation of human-robot fluency [18]. Questions 1-3 cor-

responded to Hoffman’s measure of Robot Teammate Traits,

and Questions 4-13 represented Hoffman’s adaptation of the

“Working Alliance Index” for human-robot teams, measuring

the quality of the alliance amongst the teammates. We added

questions 14-21 based on our own insight. Subjects were not

http://sockettest.sourceforge.net/
http://sockettest.sourceforge.net/


TABLE I

SUBJECTIVE MEASURES - POST-TRIAL QUESTIONNAIRE

Robot Teammate Traits

1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.

Working Alliance for Human-Robot Teams

4. I feel uncomfortable with the robot. (reverse scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my goals are.
11. The robot worker does not understand what I am trying to
accomplish.
12. The robot worker and I are working towards mutually agreed
upon goals.
13. I find what I am doing with the robot worker confusing.
(reverse scale)

Additional Measures of Team Fluency

14. I was satisfied by the teams performance.
15. I would work with the robot the next time the tasks were to
be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time possible. 19.
The robot worker was necessary to the successful completion of
the tasks.
20. The human worker was necessary to the successful completion
of the tasks.
21. I was necessary to the successful completion of the tasks.

TABLE II

SUBJECTIVE MEASURES - POST-TEST QUESTIONNAIRE

Overall Preference

22. If it was the PR2s job to reschedule the work, I would want
to work with the robot again.
23. If it was my job to reschedule my work and the PR2
reschedule the work for the PR2 and my human teammate, I
would want to work with the robot again.
24. If it was my job to reschedule the work for myself, my human
teammate, and the PR2, I would want to work with the robot
again.

Open Response Questions

25. Which of the three scenarios did you prefer and why?
26. If you were going to add a robotic assistant to a manufacturing
team, to whom would you give the job of rescheduling the work
and why?

informed of their rescheduling and build times during the

experiment.

Subjects also received a post-test questionnaire after com-

pleting the three trials. This questionnaire gathered demo-

graphic information, and included three additional Likert-

scale questions summarizing the experience of the subject,

as well as two open-ended questions.

V. RESULTS

In this section, we report the demographics of the partic-

ipants, as well as statistically significant and insightful find-

ings from our experiment. We define statistical significance

at the α = .05 level.

A. Participants

Twenty-four participants were included in the experiment.

Each participant worked on the human-robot manufacturing

team under each level of decision-making authority for a

within-subjects design. To control for learning effects, par-

ticipants were balanced between one of six groups, including

one group for each of the six possible sequences of the

three conditions and four subjects for each sequence.The

participants (14 men and 10 women) had an average age

of 27± 7 years (minimum and maximum ages were 20 and

42) and were recruited via email and fliers distributed around

a university campus.

B. Objective Measures of Human-Robot Team Fluency

We consider the team’s assembly time and the subjects’

rescheduling time as a function of the subject’s decision-

making authority. Recall that hypothesis H1 predicts that the

team will be more fluent, in terms of both assembly and

rescheduling time, when the robot has more control authority

over task allocation. Rescheduling and assembly times are

depicted in Figure 3.

Analysis of variance demonstrated statistically significant

differences in the distribution of rescheduling time as a

function of decision-making authority, F (2, 69) = 55.1,

p < 0.01. Rescheduling time in the autonomous condition

(M = 30, SD = 0) was lower than in the semi-autonomous

condition (M = 108, SD = 69), t(23) = 7.24, p <

0.01. Likewise, rescheduling time in the semi-autonomous

condition was lower than in the manual condition (M = 315,

SD = 154), t(23) = 7.23, p < 0.01.

Repeated-measure analysis of variances demonstrated sig-

nificant differences in assembly time, as a function of

condition F (2, 46) = 3.84, p = .03. Assembly time in

the autonomous condition (M = 520, SD = 60.6) was

faster than in the semi-autonomous (M = 564, SD = 83.9),

t(23) = 2.37, p = 0.01, and manual conditions (M = 582,

SD = 115), t(23) = 2.18, p = 0.02.

Learning effects were found for assembly time as a

function of trial number (ANOVA F (2, 69) = 3.68, p = .03).

Specifically, third-trial assembly times (M = 519, SD = 85)

were lower than those in the first (M = 585, SD = 49), t(23),
p = .002 and second trials (M = 567, SD = 75), t(23), p =
.022. Nonetheless, the k–factorial design counterbalanced the

learning effects, and results indicated significant differences

in both assembly time, F (2, 46) = 3.84, p = .03, and

rescheduling time, F (2, 69) = 55.1, p < 0.01 as a function

of level of automation.

C. Subjective Measure of Satisfaction as a Function of Task-

Allocation Authority

Recall that our second hypothesis H2 states that workers

prefer partial authority over the task process rather than total

control, and that having no control is preferable to having

complete control.

An omnibus Friedman test confirmed a statistically signif-

icant difference in the distribution of a subset of the Likert-

scale responses for the three conditions, as shown in Table



TABLE III

P-VALUES FOR STATISTICALLY SIGNIFICANT POST-TRIAL QUESTIONS

(N=24). STATISTICALLY SIGNIFICANT VALUES ARE SHOWN IN BOLD.

Question Omnibus Auto v. Semi v. Auto. v.
Man. Man. Semi.

1 p = .031 p = .008 p = .073 p = .059

5 p = .046 p = .007 p = .111 p = .105

10 p = .009 p = .001 p = .008 p = .063

11 p = .002 p < .001 p = .002 p = .017

14 p = .005 p < .001 p = .003 p = .008

15 p = .033 p = .011 p = .064 p = .064

16 p = .018 p = .004 p = .048 p = .031

18 p = .018 p < .001 p = .015 p = .002

III. A pair-wise Friedman test confirmed our hypothesis that

subjects were more satisfied under the autonomous and semi-

autonomous conditions than the manual condition for the

questions listed in Table III.

However, there did not exist a single question for which

subjects favored the semi-autonomous condition over the

autonomous condition. A post-hoc Friedman test with a

requisite Bonferroni correction of α
3

indicated that subjects

were significantly more satisfied with team performance

(Question 14, p = .008) under the autonomous condi-

tion than the semi-autonomous condition. Likewise, subjects

agreed more strongly under the autonomous condition that

the team performed the tasks within the least amount of time

(Question 18, p = .002).

The post-test questionnaire included three questions de-

signed to determine whether subjects would be more likely to

work with the robot again given the level of decision-making

authority allotted to the subject and the robot. Applying the

omnibus Friedman test across Questions 22-24 from Table II,

we observed a statistically significant difference in subjects’

responses to these questions (p < 0.001). Post-hoc analysis,

using pair-wise comparison with a Bonferroni correction,

confirmed that subjects agreed that they were more likely

to work with the robot again if the robot performed task

allocation autonomously than if the subject and the robot

shared task allocation authority (p < 0.001) or if the subject

had complete task allocation authority (p < 0.01). Similarly,

Fig. 3. This figure shows the average and standard error for the assembly
times in each condition.

TABLE IV

REPRESENTATIVE OPEN-ENDED RESPONSES FROM SUBJECTS

PREFERRING THE MANUAL, SEMI-AUTONOMOUS, AND AUTONOMOUS

CONDITIONS.

Manual

“People may resent being told what to do by a robot...worker
dissatisfaction would probably impact efficiency to the point
where any bit of time gained by the robot would be lost by the
demotivation [sic] of the workers.”
“There is something soul-sucking about taking the thinking away
from the workers”

Semi-autonomous

“I prefer the scenario where I pick the tasks I want because some
task are more fun for me than others...even if it might slightly
increase completion time.”
“I got to schedule my work and the robot filled in the rest of the
schedule with the purpose of optimizing time”

Autonomous

“It removes the possibility of scheduling being influence by the
ego of the team leader.” “I never felt like I was wasting time
or waiting when the PR2 schedule tasks.” “Easier for the robot
to deal with scheduling many complex tasks than it is for a
human because it can consider all at once [without] getting
overwhelmed.”

subjects were more likely to report they would work with

the robot again if the robot and the human shared task

allocation authority than if the subject had sole authority

for task allocation (p < 0.01).

D. Analysis of Open-Ended Responses

Questions 25 and 26 of the post-trial questionnaire offered

subjects the opportunity to provide open-ended responses to

prompts on which condition they preferred and to whom

they would give control of the task allocation in a manu-

facturing setting. While the majority of subjects’ responses

were supportive of a robotic assistant that autonomously

allocates work, we also provide representative responses

from subjects who preferred the manual, semi-autonomous,

and autonomous conditions as shown in Table IV. While

most of the subjects’ responses directly supported one of

the three experimental conditions, some subjects suggested a

blended level of control where the robot would “assign tasks

but allow person to override (if for example they become

overwhelmed or bored).”

E. Subject Idle Time and Satisfaction

Our third hypothesis H3 states that subjects are more

satisfied working on a human-robot team when the they are

less idle. Our post-test questionnaire prompted subjects to

rate the degree to which they would want to work with the

robot again depending on the robots role in the scheduling

process (one question for each of the three conditions). Both

idle time and subject satisfaction are dependent variables in

our experiment. Experiment conditions (autonomous, semi-

autonomous, and manual) were ranked according to each

subject’s preference. The condition’s rank was then plot-

ted against the corresponding idle time for each subject-

condition pair. The Pearson product-moment correlation co-

efficient of satisfaction and idle time (r = 0.125) was not

significant (t(23) = 0.90, p = 0.367).



F. Posthoc Analysis

We conducted a posthoc analysis to better understand

differences in the ways people allocate work under the

various experiment conditions. In Definition 1, we define a

metric, Frequency of Independent Work Allocation (FIWA),

to assess the degree to which the agent in charge of task

allocation decouples his/her work from the rest of the agents

in the team.

Definition 1: Frequency of Independent Work Allocation

(FIWA) - the number of instances in which the agent is

allocated to complete either:

1) A subtask that does not depend on another subtask

being completed before its execution (e.g., τ
fetch
1

)

2) A pair subtasks that are linked by precedence (e.g.,
〈

τ
fetch
1

, τ build
1

〉

or
〈

τ build
3

, τ
fetch
4

〉

).

We investigated differences in a subject’s FIWA score as

a function of their decision-making authority. The FIWA

score for a subject was greater in the semi-autonomous

condition than the autonomous condition 58.3% of the

time, but was greater in the manual versus autonomous

condition only 37.5% of the time. A z–Test for two

proportions demonstrated statistical significance of this

difference z = 1.72, p = 0.043. As such, we establish a

new hypothesis for testing in a future experiment: H4 In

a scenario where the goal is to maximize team efficiency,

a human worker is more likely to allow for interdependent

work between himself and his team if the subject is

responsible in allocating work to the entire team.

VI. DISCUSSION

A. Guidance on Deploying Autonomous Robot Teammates

The aim of this study was to determine how much control a

human member of a human-robot team should have over his

or her robot counterpart in order to maximize team efficiency

and worker satisfaction. We hypothesized that giving workers

some control over the task allocation process would increase

satisfaction without too great a sacrifice to team efficiency;

however, autonomous control yielded improvements in ob-

jective and subjective measures, as compared to manual or

semi-autonomous control. This finding is in keeping with

anecdotal evidence that subjects prefer working with highly

autonomous robots [2].

These results provide guidance for the successful in-

troduction of robots into human teams. First, providing

human teammates subjects more decision-making authority

over robot behavior is not sufficient to improve the worker

satisfaction, and may degrade team performance. Also, team

fluency does appear to positively correlate with willingness

to collaborate with robotic technology. Second, these ex-

periments provide preliminary evidence that there exists a

complex relationship between human/robot decision-making

authority and human preferences over task allocation; peo-

ple may voluntarily seek looser couplings between human

and robot work when they do not retain primary decision-

making authority. This preference may negatively affect team

performance, and warrants investigation in a future study.

B. Limitations and Future Work

There are limitations to our experimental findings. Our

sample population consisted of college students and young

professionals whose livelihoods are not threatened by the

possibility of robots replacing them. Providing manufac-

turing workers with more control in the decision-making

process may still influence the satisfaction of those work-

ers. However, our findings suggest that team fluency is

also likely to be an important component in the successful

introduction of robot teammates. To better understand the

relative contributions of team fluency and decision-making

authority towards worker satisfaction in manufacturing, we

will conduct a future study where we specifically recruit

manufacturing workers.

Each participant in our experiment worked worked with

the human-robot for one, 90–minute period. However, man-

ufacturing workers would be working with robots every

workday, possibly for years. Human workers may have

strong preferences for some jobs over others, and may

make different choices or have different preferences in task

allocation when working with robots every day for the long

term. We propose a longitudinal study is necessary to observe

the trajectory of human worker satisfaction over time, since

the short and long-term effects of decision-making authority

may differ.

VII. CONCLUSION

With the increasing desire and ability to integrate au-

tonomous robotic agents into manufacturing environments,

it is important to understand how much decision-making

authority human workers should have over their robotic

counterparts when allocating tasks to human and robot team

members. While autonomy can improve team efficiency,

providing a worker too little or too much control may be

alienating or overwhelming, respectively. We conducted an

experiment with human subjects to determine how much

control a worker should have over the task allocation process.

We found that an autonomous robot can outperform a human

worker when conducting part (p < 0.001) or all of the task

allocation (p < 0.001). However, rather than finding an ideal

balance of control authority to maximize worker satisfaction,

we observed that workers preferred to give control authority

to the robot (p < 0.001). Our results suggest that providing

workers with a role in the allocation of tasks to their robotic

counterparts may not be an effective method of improving

worker satisfaction. Rather, team fluency may more strongly

influence worker satisfaction than level of decision-making

authority.
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