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Abstract

With the development of autonomous car, a vehicle is capable to sense its environment more precisely. That allows

improved drving behavior decision strategy to be used for more safety and effectiveness in complex scenarios. In

this paper, a decision making framework based on hierarchical state machine is proposed with a top-down

structure of three-layer finite state machine decision system. The upper layer classifies the driving scenario based on

relative position of the vehicle and its surrounding vehicles. The middle layer judges the optimal driving behavior

according to the improved energy efficiency function targeted at multiple criteria including driving efficiency, safety

and the grid-based lane vacancy rate. The lower layer constructs the state transition matrix combined with the

calculation results of the previous layer to predict the optimal pass way in the region. The simulation results show

that the proposed driving strategy can integrate multiple criteria to evaluate the energy efficiency value of vehicle

behavior in real time, and realize the selection of optimal vehicle driving strategy. With popularity of automatic

vehicles in future, the driving strategy can be used as a reference to provide assistance for human drive or even the

real-time decision-making of autonomous driving.
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1 Introduction

Due to the improvement of vehicle perception technol-

ogy, the ability of vehicles to obtain the surrounding en-

vironment information in complex scenarios is far more

than human drivers, so the current auxiliary driving sys-

tem is considered to be an effective way to improve the

driving efficiency and driving safety of vehicles. For driv-

ing environment perception, many methods have been

proposed, Oh et al. [1] proposed a fast occupancy grid

filtering method using a grid state diagram, and esti-

mated the occupancy probability of each cell by Bayesian

filtering method. Sivaraman et al. [2] used lidar and

front camera to obtain 360-degree environment

information of vehicles, and a grid model is proposed to

represent the driving environment. Yang et al. [3] pro-

posed Video-based spatial distribution data of vehicles

to generate fine-grained fusion methods.

In the actual driving process of automatic vehicles, a

decision-making system plays an important role in auto-

matic driving when facing the complex external environ-

ment and changing traffic state. Therefore, scholars

from all walks of life have proposed a variety of methods

to solve the problem of autonomous decision-making of

automatic vehicles, based on the current research re-

sults, it can be argued that the behavioural decision-

making techniques for autonomous vehicles fall into two

main directions: rule-based decision-making and

learning-based decisions. Decision-making models based

on learning statistics are able to take full account of the
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possible uncertainties of autonomous vehicle driving in

complex environments. Yuan et al. [4] proposed a pre-

processing method with specified time-frequency rules is

proposed for more efficient traffic control. Wang et al.

[5] used integration of travel speed, traffic flow and rain-

fall intensity through the proposed deep belief-radial

basis function network to predict travel speedFor ex-

ample, Markov model is a predictive control model,

which can take some uncertain factors into account, it is

often used to improve the accuracy of automatic vehicle

behavior decisions [6]. Wei et al. used Markov model to

consider perceptual constraints and surrounding vehicle

behavior as attributes to make decisions, which im-

proved the stability of automatic vehicles in a single lane

[7]. Brechtel et al. combined the continuous state hier-

archical Bayesian transition model with Markov Decision

Process (MDP) model to realize that the automatic ve-

hicle can make reasonable decisions in the multi-lane

scene [8]. Brechtel et al. took driving decision as a

method to solve continuous state Partially Observable

Markov Decision Process (POMDP) [9]. In addition,

much progress has been made in research work on deep

reinforcement learning-based decision models, the driv-

ing behavior decision system developed by the NVIDIA

company uses an end-to-end neural network [10]. Intel

company uses the existing control data training network,

taking into account the vehicle straight, left turn, right

turn and other control commands, realizes the execution

of vehicle behavior such as turning while maintaining

the lane [11]. Wang et al. [12] used the successful pre-

diction of traffic flows for heavy, medium and small ve-

hicles contributes to safer and more efficient travel.

However, autonomous vehicle decision-making needs to

be real-time and accurate in complex traffic scenarios

[13]. rule-based decision models are real-time in nature

and more focused on achieving functional, each behavior

of vehicle can correspond to a state, so many researchers

establish some rules to help automatic vehicles make de-

cisions, this method is in line with the logical thinking of

the driver, at the same time, it can meet the traffic rules,

omit the cumbersome calculation process, and ensure

real-time decision-making [14, 15]. Yang et al. [16] used

an improved reinforcement learning method to find the

best road trajectory. Zhao et al. designed a decision-

making system using traffic rules and part of the map in-

formation from the knowledge base to make real-time

decisions at intersections [17]. In addition, hierarchical

finite state machines are an excellent method and are

often used to assist in vehicle decision making because

of their unique hierarchical judgement structure, which

can be transferred to pre-set sub-states. Montemerlo

[18] subdivided the vehicle behavior and established a

limited state mechanism into decision-making system, in

which the states include: initial state, forward driving,

vehicle following, obstacle avoidance, and so on. This ex-

pands the application scope of the finite state machine

and makes the system clearer. Therefore, more scholars

applied vehicle behavior as a sub-state in the finite state

machine to form a hierarchical state machine [19]. In

addition, the layered finite state machine is used to assist

vehicle decision-making. Gindele [20] divided the state

machine into three layers, wherein the concurrent lay-

ered state machine online selection is used to select the

operation needed to complete the task. Although the

Hierarchical finite state machine can adapt to most sce-

narios, due to the inevitable uncertainty in the real traf-

fic scenarios, the state transfer between layers is very

important and can be further improved [21]. While, few

papers put driving efficiency, driving safety, Lane idle

rate and other factors into the condition of state transi-

tion, so we consider a variety of evaluation indexes com-

bined with a hierarchical state machine to make the

autonomous vehicle and make safe and effective deci-

sions on the real road.

The research focus of this paper is to design an auto-

matic driving decision framework including driving

safety and driving efficiency based on the existing vehicle

perception information and the actual road conditions.

We propose a hierarchical finite state machine model

with a top-down structure of three-layer of vehicle be-

havior decisions. Firstly, the traffic state of autonomous

vehicles interacting with other vehicles in urban roads is

divided into 30 sub-scenes. These scenes are regarded as

substates of the top layer of the state machine. The top

layer is used to judge the scene of automatic vehicles,

and the state transition condition is judged according to

the distribution of surrounding vehicles, the middle layer

is used to evaluate the possible behaviors of automatic

vehicles in the current scene. Here, we divide the behav-

iors of vehicles in any sub-scene into four categories:

lane changing to the left, lane changing to the right, ac-

celerating forward, and decelerating forward, using the

improved energy efficiency function, the energy effi-

ciency value of each vehicle behavior is calculated from

the three aspects of safety, efficiency, and lane idleness.

The state machine set of the lower layer is composed of

four kinds of vehicle behaviors, and the vehicle state

evolution prediction matrix is introduced, Predict and

judge the most reasonable vehicle behavior in the next

state, and execute the vehicle behavior. In summary, the

main contributions of this work are:

Proposed a hierarchical finite state machine decision

framework with three-layer;

Proposed an improved multi-indicator energy efficiency

function;

The feasibility of the proposed method is demonstrated

through simulation experiments;
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The organizational structure of this paper is as follows:

Section 2 introduces the research status of vehicle be-

havior decision-making and the innovation of research

methods. In Section 3, the vehicle behavior decision

model based on a hierarchical finite state machine is de-

signed for different scenarios. Section 4 introduces the

construction of the simulation environment and the test

of the decision model and then analyzes and evaluates

the results. Section 5 summarizes the thesis.

2 Methodology

The realization of autonomous decision-making for au-

tonomous vehicles is based on three decision layers [22].

This paper proposes a decision-making method for au-

tonomous vehicles performance based on finite state

machines (FSM), which enables intelligent decision-

making during driving and allows planning the next be-

havior to be performed by the vehicle based on real-time

traffic dynamics.

The implementation of the autonomous driving task

planning relies on the simulation of each traffic partici-

pating unit in a real traffic scenario, and then a three-

layer decision model is used to complete the final behav-

ior planning for each autonomous vehicle. The main

problem of planning is to determine the rules for driving

decisions and the methods for implementing the deci-

sion process.

2.1 Vehicle model establishment

To establish an autonomous driving working condition

model and abstract a real autonomous vehicle, the basic

features and behavior attributes used to describe the

basic behavioral capabilities of the vehicle are extracted,

and all the basic features and attributes about the entity

are described based on the vehicle dynamics structure,

and its actions can also be considered as some rules used

to change the properties of the entity. The basic actions

of the entity can be divided into two most basic driving

behaviors, following and lane changing.

2.2 FSM mission planning model

The FSM model is established for autonomous vehicles

in straight lanes and the decisions of the state machine

are divided into three layers. Such a decision framework

is expressed through collaboration between the three

layers, and depending on the actual traffic situation and

vehicle state, a decision is made as to which specific ve-

hicle action to perform next, and all tasks are completed

only when the decisions at each tier are completed. The

FSM model hierarchy is shown in Fig. 1.

The above behavior planning is a decision-making

method based on a finite state machine model to decide

which specific task to perform in the task framework.

The three task layers can be specifically represented as a

scenario decision, an energy efficiency assessment deci-

sion and an execution action decision layer, which can

make intelligent decisions when performing the task and

can match the actual driving situation.

A key issue in behavior planning is how to decide

on the next behavior based on the actual traffic situ-

ation and the change of its own vehicle state, to

achieve the purpose of decision making and reason-

ing. The different states in the above decision frame-

work are regarded as different situations of the

autonomous vehicle in the actual traffic scenario, and

are expressed in the specific decision method of the

state machine: the first layer judges the scenario of

the vehicle in the straight-line section by the distribu-

tion of the surrounding vehicles perceived by the au-

tonomous vehicle, the second layer evaluates and

Fig. 1 Task network diagram
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judges the potential vehicle behavior according to the

divided scenario and its own vehicle state, and the

third layer manifests itself in the form of specific be-

havior planning. This allows for real-time adjustments

to be made based on the traffic situation and the

state of the vehicle itself, thus enabling consistent

control and planning of the autonomous vehicle in

straight sections. The quintet is defined as follows to

build a finite state machine decision model at each

task level:

MðS;∑ ; f ; S0; FÞ: ð1Þ

Here, S means the set of states, in this paper, it can

be expressed as a set of task points of all layers, at

any certain moment, the FSM can only be in a cer-

tain state. Σ means the set of input events or all situ-

ations, the FSM can only receive a certain input at

any certain behavior. f means a mapping from S × Σ

to Σ, in a certain state, the FSM will switch to a new

state determined by the state transition function after

a given input, such as f(S, R) = S′ means that the

current mission is S, when the situation changed to

R, the mission will transfer to the next mission S′. S0
is the initial state and F is the final state.

2.3 Top layer scenario decision

All task modes in the task network represent different fi-

nite states in a finite state machine. In the execution of

the task, to complete the decision, the traffic situation in

different scenarios needs to be judged and the energy ef-

ficiency values of different vehicle behaviors during the

driving process are evaluated by the corresponding indi-

cators in different autonomous driving scenarios to fi-

nally plan and predict the vehicle behaviors, thus

establishing the state transition table of the FSM. Fig-

ure 2 below shows the typical scenario division decision

of the top-layer state machine on the distribution of ve-

hicles around the perception of the self-driving vehicle.

According to the distribution of vehicles around the per-

ception of the self-driving vehicle, all scenarios are di-

vided into three categories: no vehicle in front, no

vehicle on the side, and vehicle on the side, and subdi-

vided into sub-scenarios again on this basis.

2.4 Middle layer energy efficiency assessment

The traffic situation evaluation is performed after the

completion of the first layer of tasks. The evaluation re-

sults are calculated by collecting the relevant attributes

and execution of itself and the surrounding vehicles. By

analyzing all sub-scenarios, the energy efficiency values

Fig. 2 Scenario decision of top state machine
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for different potential behavior planning are calculated,

taking into account the safety, efficiency and lane avail-

ability of the scenario the vehicle is in, and the vehicle

behavior with the highest energy efficiency value is se-

lected by conditional judgement.

The driving state of the vehicle can be divided into

3 kinds: the free driving state with the desired speed

as the target, the lane change driving state under dif-

ferent acceleration, and the following driving state.

Three driving states are required to meet the vehicle

driving stability conditions and the lane change,

and the following driving state are required to meet

the collision safety restriction conditions. Vehicle lane

change process, the current lane change vehicle and

the target lane vehicle travel trajectory in time and

space close to each other, there will be a collision.

Therefore, it is a very important part to establish a

reasonable collision safety distance model to study the

relative states of two vehicles on their respective tra-

jectories from the moment they start lane changing

to the moment they finish lane changing. Based on

the relative speed of the lane change vehicle and the

target lane vehicle as well as the relative distance be-

tween the two vehicles and other parameters, the col-

lision safety distance model is established by

calculating the minimum safety distance at the critical

collision point.

When the automatic vehicle performs the lane change

behavior, it is assumed that the adjacent vehicle travels

along trajectory 1 and the host vehicle travels along tra-

jectory 2 in Fig. 3. Among them, trajectory 1 is a

straight-line driving, and trajectory 2 is selected as a

polynomial lane change trajectory model [23]. The body

lengths of the two vehicles are also taken into account,

and the collision occurs when the two vehicles travel to

the position in the figure. Let point A be the collision

point, by studying the relationship between the position

of two vehicles from the moment of starting lane change

to the moment of collision, we can establish the mini-

mum safe distance model.

According to the relationship between the positions of

the two vehicles in Fig. 3, we can establish the safety dis-

tance condition to avoid the collision:

ΔS þ LH þ SH⩾SA þ LH cosθ þWH sinθ; ð2Þ

where: ΔS is the initial longitudinal relative distance

between the host vehicle and the adjacent vehicle at the

start of the lane change; SH and SA are the longitudinal

displacements of the host vehicle and the adjacent ve-

hicle from the start of the lane change to the completion

of the lane change, respectively; LH is the length of the

host vehicle, WH is the width of the host vehicle, and θ

is the angle between the body of the host vehicle and the

horizontal direction at the time of lane change.

Here we consider that the automatic vehicle completes

the lane change with a constant longitudinal acceleration,

and considering the driving comfort [24], we set −2 m/

s2 ≤ aM ≤ 2 m/s2, where the acceleration is zero and the

automatic vehicle completes the lane change at a constant

longitudinal speed, so Eq. (2) can be rewritten as follows:

ΔS⩾SA−SH−LH þ LH cosθ þWH sinθ ¼
VAt−VHt−0:5aH t

2
−LH þ LH cosθ þWH sinθ:

ð3Þ

From Eqs. (2) and (3), we can get the critical minimum

safety distance between two vehicles without collision

when lane change occurs, which we name as Minc( S1 ),

that is, at the initial moment of lane change, the relative

distance ΔS between two vehicles satisfies the following

equation, and the two vehicles can avoid collision during

lane change.

Minc S1ð Þ ¼ Max VAt−VH t−LH þ LH cosθ þWH sinθ�½ :

ð4Þ

Vehicles in the process of changing lanes, the mini-

mum safe distance on the formula (3) as a judgment of

Fig. 3 Scene of vehicle lane changing
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the risk of collision between the two vehicles is not rea-

sonable, in the actual driving process will be dangerous,

therefore, we set aside a certain safe workshop distance

for the automatic vehicle after changing lanes. When the

host vehicle changes to the target lane, as the two vehi-

cles follow the driving at a smaller relative speed, we

consider here that the distance between the two vehicles

is linearly related to the speed of the lane-changing ve-

hicle, thus establishing the safe distance model after lane

changing:

Minc S2ð Þ ¼ VAtd þ D0: ð5Þ

Where: Minc(S2) is the safety distance after lane

change; td is the braking delay time of FA vehicle, gener-

ally take 1.2~2 s; D0 is the psychological safety distance

of the front vehicle completely stop, generally

take 2~5m.

The minimum safety distance model established by

the integrated vehicle lane change critical collision point

and the post-lane change safety distance model is used

to obtain the minimum safety distance model required

for safe lane change:

Minc Sð Þ ¼ Minc S1ð Þ þ Minc S2ð Þ: ð6Þ

In the case where the automatic vehicle maintains the

lane without changing lanes (the vehicle performs the

following behavior), we establish the following model,

and the automatic vehicle needs to maintain a safe fol-

lowing distance with the vehicle ahead, and the distance

between the two vehicles should be greater than the

minimum safe distance of the vehicle ahead under

normal braking and emergency braking. Normal brak-

ing distance refers to the braking distance of the ve-

hicle ahead under non-emergency conditions in the

following process. Emergency braking distance refers

to the displacement of the vehicle in front of you

when you need to brake urgently. The safe distance

for a vehicle to follow the vehicle ahead to avoid col-

lision can be defined as:

Min f ðSÞ ¼ V 2
A=ð2amÞ−V

2
H=ð2amÞ þ TVA þ LM: ð7Þ

Where T is the braking reaction time of the driver

under the braking situation of the front vehicle, VA is

the current speed of the automatic vehicle, VM is the

speed of the nearest vehicle ahead, and am is the braking

deceleration speed of the front vehicle. For the braking

capacity of most vehicles, the maximum deceleration

speed of the vehicle is generally 7.5 ∼ 8m/s2, and the or-

dinary braking deceleration speed is generally 3 ∼ 4m/s2.

The ideal state of the vehicle after following the stable

vehicle is that the front and rear vehicles keep a safe

shop distance at all times.

In addition to the driving safety risks mentioned

above, an actual vehicle behavior decision framework

should also consider the following decision attributes in

the context of safety: travel efficiency and lane occu-

pancy. The travel efficiency is based on the comparison

of the current travel speed of the autonomous vehicle

with the desired travel speed of the vehicle. To achieve

the optimal choice of automatic vehicle behavior under

different vehicle interaction scenarios, this paper intro-

duces an energy efficiency function U based on the

evaluation of safety, efficiency and lane availability,

where U1 reflects the assessment of vehicle driving safety

risk, and U2 and U3 are judged from driving efficiency

and lane occupancy. Through the analysis of the above

three indicators, an assessment of the rationality of the

automated vehicle behavior can be achieved, and we set:

U1 ¼
VH=V set; if VH < V set;

1; if VH≥V set:

�

ð8Þ

Where: VH indicates the actual speed of the vehicle

and Vset indicates the set ideal speed of the automatic

vehicle.

The closeness of the distance between the automatic

vehicle and the target vehicle can reflect the degree of

danger in the process of driving the vehicle, here, the

safety distance model Min(s) is chosen as Minc(S) and

Minf(S) respectively according to the vehicle behavior,

lane-changing or lane-keeping.

U2 ¼
Min Sð Þ−ΔX;

ΔX;
if ΔX < Min Sð Þ;

1 if ΔX ≥ Min Sð Þ:

8

<

:

ð9Þ

Equipped with on-board GPS and front/rear/left/right

radar and high-performance sensors, the autonomous

vehicle can detect the driving speed of neighbouring ve-

hicles within 360 degrees of the vehicle and the relative

position information with its own vehicle. Using the

sensing ability of the automatic vehicle, the external traf-

fic environment information is extracted, combined with

the lane line information to limit the effective travelling

area, and the potential passing path is planned based on

the virtual drawn cross grid, dividing the adjacent lane

as well as its own lane into nine areas, which are left,

right, front and rear, left front, right front, left rear and

right rear eight potential driving directions of the auto-

matic vehicle, under the premise of ensuring that each

grid (called driving cell) obtained by equal division can

accommodate the driving vehicles, the longitudinal

length of the grid is set to 9 m and the transverse length

is the lane width (3.5 m). Each cell obtained after the

equipartition of the straight lane is shown in Fig. 4.

Using the estimation method of cell probability, assum-

ing that each vehicle can fall in a cell, two states of busy
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and idle are assigned to the cell according to whether

the vehicle falls in the cell or not, and the busy/idle state

of three cells of each lane is used to calculate the whole

lane idle rate as follows:

U3 ¼

n

3
if Lane is busy;

1 if Lane is free:

8

<

:

ð10Þ

Here n is the number of free cells in the lane.

So far, energy efficiency functions based on efficiency,

safety and lane availability have been constructed. In the

process of solving multi-attribute decision problems, we

use weight values to quantify the relative importance be-

tween attributes, which also allows both traffic safety

and access efficiency considerations to be considered to-

gether to create a multi-dimensional evaluation method.

The hierarchical analysis is a multi-objective decision

analysis method that combines qualitative and quantita-

tive analysis methods. The main idea of this method is

that by decomposing a complex problem into several

levels and factors, making a comparative judgement on

the importance between two indicators, establishing a

judgement matrix, and by calculating the maximum

eigenvalue of the judgement matrix and the correspond-

ing eigenvector, the weights of the importance of differ-

ent solutions can be derived, providing a basis for the

selection of the best solution [25], we used classical hier-

archical analysis to determine the decision matrix, giving

higher subjective weights to the safety indicators of the

vehicle, In order to integrate the three indicators more

intuitively, with a maximum energy efficiency value of 1

for each indicator, we multiplied the final weight value

by a scale factor of 3 to obtain the coefficient ω =

[0.6 1.68 0.72].

U ¼
X

3

i¼1

ωiU i: ð11Þ

The energy efficiency function can be used to reflect

the evaluation of each potential behavior of the auto-

matic vehicle, and the energy efficiency values of the

four potential behaviors are represented byUA ,UB,UC ,UD

respectively. By comparing the energy efficiency values

of different vehicle behaviors, the current optimal driv-

ing decision can be judged in real-time.

2.5 Lower layer action decision

The following FSM state transfer table can be created

based on the evaluation results of the mid-layer state

machine and the potential behavior nodes in the subse-

quent stages. The table defines the rules for vehicle be-

havior transfer, i.e., all potential vehicle behaviors in the

current state of the vehicle and the next state under dif-

ferent scenarios and different risk situations. To avoid

confusion, the energy efficiency value U obtained from

the evaluation of potential vehicle behaviors in the previ-

ous section is represented in this table by R. Each poten-

tial state corresponds to an evaluation value R. For

example, a scenario is randomly selected to build a be-

havior transition table that contains three stages after

the initial moment, each with four potential behavior

nodes, as shown in Table 1.

Where S0 represents the initial behavior node,

A1 , B1, C1 , D1 represent the four potential behavior

nodes in the first stage (t1) after the initial moment,

A2 , B2, C2 , D2 represent the four potential behavior

nodes in the second stage (t2), etc. The specific behavior

Fig. 4 Situation distribution of lanes around vehicles

Table 1 Static conversion table of FSM

Assessed Value RA RB RC RD

Potential Nodes

Current node

t0 S0 A1 B1 C1 D1

t1 A1 A2 B2 C2 D2

B1 A2 B2 C2 D2

C1 A2 B2 C2 D2

D1 A2 B2 C2 D2

t2 A2 A3 B3 C3 D3

B2 A3 B3 C3 D3

C2 A3 B3 C3 D3

D2 A3 B3 C3 D3
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implementation is in the order of vehicle acceleration,

right lane change, left lane change and deceleration. If

the vehicle is currently in one of the identified nodes,

the value of this node is set to 1 and the others are set

to 0. For example, if A1 = 1, then the vehicle performs an

acceleration behavior at the current moment and B1 =

C1 =D1 = 0. R1, R2, R3 and R4 represent the results of the

evaluation of the vehicle behavior in the next phase. If

the highest energy efficiency value for the next phase is

R2 according to the evaluation of the middle-layer state

machine, then R2 = 1, R2 = R3 = R4 = 0, and the vehicle

behavior performed is a right lane change.

The state transition table can be expressed by matrix.

According to Table 1, the matrix can be expressed as

follows:

P ¼

A1 B1 C1 D1

A2 B2 C2 D2

A2 B2 C2 D2

A2 B2 C2 D2

A2 B2 C2 D2

A3 B3 C3 D3

A3 B3 C3 D3

A3 B3 C3 D3

A3 B3 C3 D3

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

: ð12Þ

Let the current state, i.e., the current behavior node,

be S′ and the energy efficiency evaluation matrix be Ri.

The next state S can be calculated by:

S ¼ S
0

� P � RT
i : ð13Þ

For example, if the current task is at the second node

of the first phase, i.e., C1, the current state can be

expressed as:

S′ ¼ ½0 0 0 1 0 0 0 0 0 �: ð14Þ

And assume that the current scenario under the best

risk assessment conforms to the R3, the situation can be

expressed as:

R3 ¼ ½0 0 1 0�: ð15Þ

So, the next task is:

S ¼ S
0

� P � RT
3 ¼ C2: ð16Þ

We can see from the above that the next task is trans-

ferred to C2, which is the second node of the second

layer. The specific planning task is to change the lane

left at the next moment.

3 Simulation evaluation in typical scenarios

Prescan is used to build a simulation traffic scene, and a

three-lane road with a width of 3.5 m and a length of

300 m is designed. At the same time, to increase the

visual effect and the sensor authenticity of automatic

driving vehicles in complex weather, trees and buildings

elements are added on both sides of the road to make

the scene more like the urban road environment. Ac-

cording to the four consecutive typical lane changing

scenarios randomly selected in Fig. 2 above, eight dy-

namic and free driving automatic vehicles are placed in

the traffic scene as the research vehicles, in which the

prescan’s own vehicle dynamics model is added to all ve-

hicles, in addition, sensors are added to the front of the

simulation model to detect the position and speed of the

vehicle in front.

Figure 5 is a total traffic scene composed of four con-

tinuous static sub-scenes. Due to the changes of sur-

rounding vehicles, the scene of the research vehicle

changes dynamically. Furthermore, to analyze the ro-

bustness of our proposed decision model in dynamic

and complex scenes, we set up autonomous vehicles

with different penetration rates, this can make the ve-

hicle driving more random in the scene, and make the

decision model better deal with the complex traffic

scene.

After the traffic scenario is built, a hierarchical finite

state machine model can be constructed by running

MATLAB/Simulink directly through prescan. The finite

state machine is divided into three layers, the top layer,

the middle layer and the bottom layer, the top layer state

machine is used to judge the scene it is in, its state is the

sub-scene divided above, the state transfer condition is

judged according to the surrounding vehicle distribution,

and this scene information is passed to the middle layer

state machine as the output. The state transfer condition

is determined according to the surrounding vehicle dis-

tribution, and this scene information is passed to the

intermediate layer state machine as output. Each top-

level state machine outputs a scene corresponding to an

intermediate level state machine, which is used to filter

out the vehicle potential behaviors with the highest en-

ergy efficiency value based on the energy efficiency value

calculated from the relative speed and relative distance

of the surrounding vehicles, and whose state is the best

energy efficiency value of the vehicle potential behaviors

for each sub-scene. The mid-layer state machine passes

the filtering results as output to the behavior matrix der-

ivation module. For the underlying state machine, the

state information is straight ahead acceleration, straight-

ahead deceleration, lane change to the left, lane change

to the right, and the state transfer condition is the result

of the state matrix deduction above, which is converted

into a specific vehicle action after judgement, and finally,

the decision information is output to the vehicle dynam-

ics model. The self-driving vehicle behavior decision

model is thus basically built, as shown in Fig. 6a of the

decision framework execution process. The whole
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simulation model includes the traffic environment mod-

ule, vehicle dynamics module, vehicle state output mod-

ule, GPS inertial navigation radar module, control

strategy execution module and speed control module.

The simulation model framework shown in Fig. 6b is

obtained.

According to the above-built simulation traffic scene,

the driving results of the automatic vehicle based on the

finite state machine decision are verified, as shown in

Fig. 7 below. During the driving process, the vehicle en-

sures its own safety and stability through a series of deci-

sions such as lane change, acceleration, deceleration, etc.

Two typical scenarios in Fig. 2 above are selected for

analysis, and the simulation results shown in Figs. 8 and 9

are obtained, and mainly include: (a) Traffic scene of three

lanes in the same direction; (b) The energy efficiency as-

sessment chart of the ego vehicle under different accelera-

tions in different lanes and the optimal point obtained by

the decision method (d) Path-speed planning results based

on the optimal point, c-1, c-2, c-3, c-4 are the lateral pos-

ition, longitudinal position, speed and acceleration

respectively.

Figure 8 shows that the main vehicle runs normally in

three lanes in the same direction, and the initial speed is

21m/s. front vehicle a and right-front vehicle B drive at a

constant speed of 18m/s without acceleration. Consider-

ing the large relative speed between the main vehicle

and the vehicle in front, the main vehicle attempts to

change the current state to ensure the expected speed of

23m/s. It can be seen from Fig. 6 that the vehicle

Fig. 5 Prescan simulation experiment scene

Fig. 6 Schematic diagram of the simulation establishment. a FSM model architecture. b Simulation model framework
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generates decision point 1. According to the energy effi-

ciency assessment diagram in Fig. 8b, the main vehicle

can turn left to achieve the highest energy efficiency in-

come. The planning results are shown in Fig. 8c, the

host vehicle completes lane change with an acceleration

of 2 m/s2. After lane change, the driving speed reaches

24.5m/s. The results of longitudinal displacement and

transverse displacement are shown in the figure.

Figure 9 shows that the main vehicle runs normally in

three lanes in the same direction, and the initial speed is

21m/s. vehicle A in front of the left, vehicle B in front

and vehicle C in front of the right drive at a constant

speed of 18m/s without acceleration signs. Considering

the relative speed and relative position between the main

vehicle and the vehicle in front, the main vehicle should

change the current state to reduce risks and ensure

safety. As can be seen from Fig. 7 above, the vehicle gen-

erates decision point 5. According to the energy effi-

ciency assessment diagram in Fig. 9b, the main vehicle

can achieve the maximum energy efficiency benefits by

taking appropriate deceleration. The planning results are

shown in Fig. 9c, the main vehicle decelerates and fol-

lows the vehicle with an acceleration of −2 m/s2. After

the following behavior is completed, the driving speed

Fig. 7 Simulation result of Vehicle behavioural decisions. a Automatic vehicle trajectory. b Automatic vehicle decision point

Fig. 8 Simulation result of normal driving scenario. a Road scene. b Energy efficiency assessment map. c Trajectory plan
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reaches 18 m/s. The results of longitudinal displacement

and transverse displacement are shown in the figure.

4 Conclusion

This paper presents an automatic decision-making sys-

temetic framework for vehicle behaviour based on hier-

archical finite state machines. The entire state machine

decision framework is divided into three layers. The top

layer state machine determines the scenario in which the

main vehicle is located based on information about the

surrounding vehicles. The middle layer state machine

uses an improved energy efficiency function to evaluate

the energy efficiency values of potential vehicle behav-

iour and determine the optimal energy efficiency value.

The lower layer state machine combines the state trans-

fer matrix to derive the optimal driving strategy for the

autonomous vehicle at the next point in time. The deci-

sion framework proposed in this paper is based on au-

tonomous vehicles equipped with high performance

sensors that can flexibly adapt the vehicle driving strat-

egy to the surrounding environment to cope with chan-

ging traffic conditions in real driving situations. The

simulation results show that the proposed self driving

vehicle behavior decision-making framework can achieve

correct decision-making in complex road scenes, com-

prehensively consider driving safety and traffic efficiency,

and select the best driving strategy. When the main ve-

hicle is in the speed position with the surrounding vehi-

cles to ensure safe driving and the main vehicle does not

reach the expected passing speed, in our decision-

making process, we can select the path and speed most

in line with the expected speed. Compared with the

decision-making considering only the safe distance, the

transmission efficiency is improved by 16.7%. This paper

focuses on the analysis of optimal decisions made by au-

tomated vehicles in the face of complex traffic situations,

but the current approach has certain limitations that will

be addressed in future work: 1) the specific trajectory

and speed planning of vehicle lane changes are not ana-

lyzed and calculated; 2) the weight distribution of the in-

dicators needs to be more reasonable. In future work,

we will further study vehicle trajectory prediction as well

as trajectory tracking, and more in-depth research on

the weight selection of indicators, and consider using

game theory to analyze each indicator to improve our

decision and planning framework, so that the framework

decision is more accurate, safe and efficient, and it is

more in line with the thinking logic of drivers in actual

driving.
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