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Abstract

Cloud computing is a paradigm that provides services through the Internet. The paradigm has been influenced by

previously available technologies (for example cluster, peer-to-peer, and grid computing) and has now been adopted

by almost all large organizations. Companies such as Google, Amazon, Microsoft and Facebook have made significant

investments in cloud computing, and now provide services with high levels of dependability. The efficient and

accurate assessment of cloud-based infrastructure is fundamental in guaranteeing both business continuity and

uninterrupted public services, as much as is possible. This paper presents an approach for selecting cloud computing

infrastructures, in terms of dependability and cost that best suits both company and customer needs. We use

stochastic models to calculate dependability-related metrics for different cloud infrastructures. We then use a

Multiple-Criteria Decision-Making (MCDM) method to rank the best cloud infrastructures, taking customer service

constraints such as reliability, downtime, and cost into consideration. A case study demonstrates the practicability and

usefulness of the proposed approach.
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Introduction
Cloud computing has enabled the emergence of several

service-oriented resources, such as Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS) [27]. The development and use of

such cloud-based services have resulted in an increased

number of users, and higher levels of data produced by dif-

ferent devices and applications. Several corporations and

institutions have shown an interest in cloud computing,

and because of this many cloud computing platforms have

been proposed. Google, Amazon, Microsoft, and Face-

book are examples of companies that are investmenting

heavily in cloud computing services [30, 37].

Cloud computing has grown rapidly, and has gained

popularity because it offers several benefits including

on-demand self-service, virtualization, geographic distri-

bution, and resilience [3]. These benefits are particularly
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attractive because they can offer flexibility guarantees

for customer service constraints such as downtime and

cost, which are negotiated by cloud providers through

Quality of Service (QoS) guarantees. However, providing

cloud services according to the customer needs and spe-

cific constraints remains a challenge. Parameters such as

reliability, capacity-oriented availability and cost are rel-

evant factors in the negotiation of such services [6, 10].

Therefore, an efficient and accurate assessment of cloud

infrastructures considering availability, reliability and cost

requirements is fundamental in allowing customers to

identify a cloud infrastructure that suits their needs and

preferences.

To provide uninterrupted cloud services, cloud man-

agers must evaluate and improve dependability aspects

of cloud infrastructures, such as availability and transac-

tion loss; this is because users require a reasonable level

of confidence in such infrastructures to efficiently plan

and operate their business [19]. Some services may be

considered mission-critical, and depending on the num-

ber of data operations involved, it may be essential to
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deploy redundancy strategies [24]. Such strategies can

lead to avoidance of outage due to issues such as database

deadlock, data loss, or network failure. Cloud outages

can cause significant financial losses to an organization,

and in extreme cases may result in the failure of the

business [4].

In this context, dependability models like Reliability

Block Diagrams (RBDs) and Stochastic Petri Nets (SPNs)

can be useful when comparing cloud infrastructures

[7, 28]. Cloud infrastructures differ one from another in

many aspects, and this results in significant challenge

for cloud users attempting to identify the infrastructure

that best suits their needs [34, 44]. There are always

trade-offs when considering different cloud alternatives;

for example, robust cloud infrastructures may result in

unnecessary costs to guarantee against events that are

very unlikely to happen, while simple infrastructures may

result in loss of critical data. MCDM methods, which

consist of techniques to solve such multi-criteria prob-

lems, are essential because they can assist cloud users in

choosing the best cloud infrastructure, and can take into

account multiple criteria like capacity-oriented availabil-

ity, reliability, downtime, or cost.

MCDM methods are designed to analyze and give

recommendations on situations involving a large num-

ber of alternatives and conflicting criteria. In [33], the

authors presented a case study to compare different

MCDM methods in order to select IaaS services. Garg

et al. [14] proposed a framework based on an Ana-

lytic Hierarchy Process (AHP) to rank cloud providers.

In [23], the authors presented a multi-attribute group

decision-making (MAGDM) approach for selection cloud

providers. Differently from these works, we present an

approach based on a MCDM method and stochas-

tic models to evaluate, rank and find a set of opti-

mal cloud environments considering dependability (eg.:

ca-pacity-oriented availability and reliability), and cost

requirements.

The process of choosing a cloud infrastructure can

be slow, tedious and costly; it can also generate con-

flicts of interest considering a set of alternatives. In

recognition of the importance of making an appropriate

cloud infrastructure choice, we propose a novel approach

which implements an Multiple-Criteria Decision-Making

(MCDM) method to rank the best infrastructure, and

takes customer service constraints such as dependability

and cost into consideration. Although there are several

methods for multi-criteria decision-making, we adopted

the Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) method [11] due to its simplicity

and easiness to apply. The results allow cloud customers to

identify and choose the cloud infrastructure that best suits

their needs, in a fast and efficient manner. Specifically, our

contributions are:

• We design and implement a strategy that combines a

decision-making method, with the capacity of

stochastic models to obtain dependability-related

metrics (like reliability and capacity-oriented

availability).
• Our modeling strategy is based on hierarchical and

heterogeneous modeling for planning cloud

infrastructures, which allows the evaluation of cloud

infrastructures with complex redundant mechanisms

and maintenance policies.
• We developed a tool (called MiPACE) to support the

planning of cloud infrastructures which consider

customer service constraints, and assists in the

decision-making process.
• We demonstrate the feasibility of our approach by

showing real case scenarios and identify a set of ideal

cloud infrastructures.

The remaining sections are organized as follows.

“Background” section describes some general concepts.

“Related work” section presents the related work.

“Adopted strategy and base cloud architecture” section

shows the proposed approach for ranking cloud infras-

tructures according to customers needs, and details the

base cloud architecture adopted by this paper. “Hier-

archical models and cost equations” section illustrates

the hierarchical modeling process and cost equations.

“MiPACE: amulti-criteria tool for planning and analysis of

cloud environments” section presents the developed tool

used to support the decision-making process. “Results

and discussion” section illustrates the proposed approach

through a real-world case study. “Final remarks” section

concludes the paper and presents future directions.

Background
This section introduces fundamental concepts onmultiple-

criteria decision-making, dependabilitymodeling, stochastic

Petri net, and reliability block diagram.

Multiple-criteria decision-making

In our daily lives, we do not consider just one crite-

rion when making a decision, but rather compare and

evaluate more than one alternative simultaneously. When

purchasing a cloud service for example, security, process-

ing power, networking throughput, and storage capac-

ity may all be considered as main criteria. It would be

unusual for the cheapest cloud service to have the high-

est reliability and unlimited storage, and it is necessary

to evaluate all potential impact when making decisions

that involve long-term commitment and budget alloca-

tion. Thus, companies must consider multiple criteria

when determing the best cost-benefit ratio. Multiple-

Criteria Decision-Making (MCDM) methods have been

developed to support the decision-making process in
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solutions that exhibit multiple conflicting criteria, and

thus provide techniques for finding a set of optimal

solutions.

A large number of MCDM techniques have been pro-

posed, each with different perspectives and theories.

Some techniques are used to solve ranking problems, such as

the Analytic Hierarchy Process (AHP), Analytic Network

Process (ANP), Elimination and Choice Expressing Reality

(ELECTRE III), and Technique for Order of Preference

by Similarity to Ideal Solution (TOPSIS) approaches [11].

Other approaches adopted monitoring and historical data

combining with ranking techniques for decision making

[15]. In this paper, the concept of the TOPSIS method has

been adopted for ranking cloud infrastructures. TOPSIS

is a useful technique for ranking and selecting a number

of externally determined alternatives, using distance mea-

sures such as Euclidean, Manhattan and Minkowski [39].

These distancesmeasures order alternative solutions from

the best to the worst by means of scores or pairwise com-

parisons. They are based on five stages, where the first

step groups the set of alternative solutions when taking the

defined criteria into account. In the second step, the val-

ues representing each criterion are normalized; this allows

all criteria to be treated in a similar way, independent of

the metric adopted. Next, the criteria can be weighted

and the distances between each solution are calculated,

taking an anti-ideal and an ideal point (optimal solution)

into consideration. In the fourth step, the relative close-

ness to the ideal solution is calculated. In the last step,

a set of alternatives is ranked according to the relative

closeness [18].

Dependability modeling and evaluation

The dependability [21] of a system is defined as its justi-

fiably trusted ability to deliver a set of services. Depend-

ability requirements encompass the concepts of reliability,

availability, maintainability, performability, and testability.

This paper focuses on availability and reliability model-

ing, and analysis of cloud infrastructures. Availability is

the probability that the system is working (even if not at

its full capacity) over time, whereas reliability is the prob-

ability that the system will deliver a set of services over a

given period of time [21, 25]. The steady state availability

(A) may be calculated by Eq. 1:

A =
MTTF

MTTF + MTTR
(1)

where MTTF and MTTR denote the mean time to failure

and mean time to repair, respectively.

For any given time period represented by the inter-

val (0, t), R(t) is the probability that the component has

continued to function (i.e. has not failed) from 0 until t.

When an exponentially distributed time to failure (TTF)

is considered, reliability is represented by

R(t) = exp

[

−

∫ t

0
λ

(

t
′
)

dt
′

]

(2)

where λ(t
′
) is the instantaneous failure rate.

We also adopt the Capacity-Oriented Availability

(COA) as [25, 42]. COA takes into account how much of a

service provided by a system is delivering, therefore, does

not consider only states of availability or unavailability,

but the impact of these conditions in service delivery. The

COA calculation considers pci as operational processing

capacity or the amount of resource available at any state

si. πi is the probability of being at state si ∈ S, where S is

the set of reachable states. And the maximum capacity of

the system is N. Thus, we can calculate the COA by Eq. 3.

COA =

∑

si∈S
pci × πi

N
(3)

Redundancy techniques

In several application domains, different techniques have

been adopted to increase the dependability of systems.

These techniques are traditionally classified into four

groups: fault prevention, fault removal, fault forecasting,

and fault tolerance [38]. Unlike other techniques, fault

tolerance (redundancy) aims to provide correct service

delivery even in the presence of faults. Redundancy refers

to extra resources that are not necessary for the execution

of the faultless task, but must be applied if faults occur to

guarantee the service delivery.

The redundancy techniques for fault tolerance include

active-standby and active-active redundancy [5]. In an

active-active redundancy mechanism, both the main ele-

ments (e.g., resource and service) and the redundant

elements are permanently active. The users do not per-

ceive the occurrence of faults, nor does performance

degradation take place. In contrast, active-standby mech-

anisms are characterized by fault detection followed by

recovery actions, which require extra processing time.

This type of strategy uses two component types: active,

and standby. The active module usually provides the ser-

vice for all environments; if the active module fails, the

standby component assumes control. Standby modules

are classified as hot, warm, or cold, depending on the level

of service restoration [24].

Stochastic Petri net

Petri nets are very well suited for modeling several sys-

tem types. This is because concurrency, synchronization,

communicationmechanisms, and deterministic and prob-

abilistic delays, are naturally represented. In general, Petri

nets are a bipartite directed graph, in which places (rep-

resented by circles) denote local states, and transitions

(depicted as rectangles) represent actions. Arcs (directed
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edges) connect places to transitions, and vice versa. The

original Petri Net does not have the notion of time for ana-

lyzing performance and dependability; the introduction of

event durations results in a timed Petri Net.

Stochastic Petri nets (SPN) [26] is a special type of timed

Petri Net, which allows the association of probabilistic

delays with transition, by using exponential distribution.

It is a high-level model which allows automatically to

generate and evaluate Continuos Time Markov Chain

(CTMC) [42]. This carateristic is particularly useful when

the system’s state space is large and/or system compo-

nent’s interactions are complex. Besides, SPN may also

be evaluated through simulation. Simulation may be the

alternative when non phase-type distribution [42] are

required and/or the system state space is infinity.

Reliability block diagram

A Reliability Block Diagram (RBD) [12] is a combinato-

rial model, initially proposed as a technique for calculat-

ing the reliability of a system by using block diagrams.

The technique has also been extended to calculate other

dependability metrics, such as availability [21, 24, 25].

RBD may be a model of choice for computing availabil-

ity and reliability related metrics for passive redundant

mechanism and/or independent component systems [25].

In RBD, model are usually obtained by serial and parallel

composition of components and subsystems.

In an arrangement series, the whole system is no longer

operational if a single component fails. This means that

all components must be operational for the serial system

to succeed. If a system with n independent components

is considered, the reliability (instantaneous availability

or steady-state availability) is obtained by the product

of component’s reliabilities (instantaneous availability or

steady-state availability). In a parallel arrangement, the

whole system is considered operational even if only a sin-

gle component is operational, because there are a total of

n possible success paths. For a system with n independent

components, the unreliability (instantaneous unavailabil-

ity or steady-state unavailability) is obtained by the

product of component’s unreliability (instantaneous

unavailability or steady-state unavailability). k-out-n

redundancy may also be represented by RBDs. k-out-n

RBDmodels allows you to represent more general compo-

sitions than simple series or parallel configurations. Actu-

ally, simple series or parallel configurations are special

cases of k-out-n compositions [24, 25, 31, 42].

Failure critical index

In general, component importance ranking indicates the

impact of a particular component on the overall system

reliability. Based on certain system characteristics, vari-

ous measures are calculated to estimate the component

importance, and this often relates the contribution of a

component to the system failure. Birnbaum introduced

this concept, which can be considered one of the most

widely used reliability importance indices [21]. The Birn-

baum importance of a component i is equal to the degree

of improvement in system reliability, when the reliability

of the component is increased by one unit [21]. In other

words, RI (reliability importance) is a partial derivative of

system reliability with respect to the failure rate of each

individual component [17].

The RI of component i can be computed as

IBi = Rs

(

1i,p
i
)

− Rs

(

0i,p
i
)

(4)

where IBi is the reliability importance of component i, pi is

the component reliability vector with the ith component

removed, 0i represents the condition when component i

fails, and 1i describes the condition when i is working.

IBi depends on the structure of the system and the reli-

ability of the other components. The RI of a component i

is determined by the reliability of the other components,

excluding i [32].

Related work
The increasing number of cloud platforms added to the

competition among various cloud providers, has resulted

in a situation whereby customers may find selection of a

dependable and cost-effective cloud infrastructure diffi-

cult. In this context, several approaches have been pro-

posed to assist cloud customers with identification of a

suitable cloud infrastructure.

Rehman [35] presented a cloud selection approach

based on historical QoS to rank cloud services; the pro-

posed approach captures variations in each time-slot, and

a service selection decision is then made. All decisions

are then aggregated to find the best option. Lee et al. [22]

proposed a hybrid multi-criteria decision-making model

for a cloud service selection problem using balanced

scorecard (BSC), fuzzy Delphi method (FDM) and fuzzy

analytical hierarchy process (FAHP). Sachdeva et al. [36]

combined a hybrid TOPSIS method with an intuitionistic

fuzzy set to select appropriate cloud solutions to manage

big data projects in a group decision-making environ-

ment. Garg et al. [14] proposed a framework called SMI-

Cloud, which compares different cloud providers based

on user requirements. The framework considers a set of

attributes (e.g. accountability, agility, assurance of service,

performance, cost, and usability) when prioritizing and

ranking the best services, with the ranking mechanism

based on an Analytic Hierarchy Process (AHP). Liu et al.

[23] presented a multi-attribute group decision-making

(MAGDM) approach for the process of choosing an ade-

quate cloud service vendor. This approach considered

objective attributes (i.e., cost and time), as well as sub-

jective attributes such as TOE (Technology, Organization,

and Environment). To demonstrate the usefulness of the
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approach, a hypothetical example was given. Differently

from these works that use data from other works or esti-

mate data from case studies to ranking, we use the results

obtained from the proposed hybrid approach to gener-

ate a set of optimal solutions. The approach combines

RBD and SPN models to represent and evaluate cloud

infrastructures with complex redundant mechanisms and

maintenance policies.

Other work has evaluated the dependability of cloud

infrastructures. Wei et al. [45] presented a hierarchical

approach that combines reliability block diagrams and

general stochastic Petri nets in evaluating the dependabil-

ity of a virtual data center. Andrade et al. [1] developed

a framework for transforming elements of SysML dia-

grams into deterministic and stochastic Petri nets. The

work focused on modeling and analysis of cloud service

management, with the aim of maximizing the use of cloud

computing resources at the lowest possible cost. Sousa

et al. [41] proposed a modeling strategy for planning

cloud infrastructure when considering dependability and

cost requirements. This approach is based on hierarchical

and heterogeneous modeling that combines combinato-

rial and state-space models to represent and evaluate

cloud infrastructures. Dantas et al. [9] described stochas-

tic models for evaluating private cloud architectures, and

presented a comparative cost study of public and pri-

vate cloud providers. Despite the fact that these works

are interesting, they only concerned with evaluating sce-

narios and presenting a comparison of the quantitative

results.

The works discussed above has attempted to solve

one side of the problem only: either the cloud selection

perspective, or the dependability and cost evaluation

aspect. However, there are various kinds of cloud environ-

ments with conflicting requirements that needs scientific

approaches to judge which one should be chosen. To

fill this research gap, a strategy that combines the need

to rank different service constraints with the capacity to

study alternative cloud infrastructures, is presented.

Adopted strategy and base cloud architecture
This section first introduces the proposed strategy for

modeling, analysis, and ranking of cloud computing envi-

ronments. After that, the base cloud architecture adopted

for this study is detailed.

A strategy for decision making in cloud computing

environments

The strategy is based on stochastic models and anMCDM

method to rank a set of cloud infrastructures, taking into

account availability, capacity-oriented availability, reliabil-

ity and cost requirements. The proposed strategy can be

used by service providers or individuals who are interested

in building and selecting their own cloud computing envi-

ronments. Figure 1 illustrates the proposed strategy. The

macro activities consist of (i) experimental design, (ii) cre-

ation of availability and cost models, (iii) assessment, and

(iv) the decision-making process.

Experimental design (i): This activity comprises two

steps: defining the base cloud environment, and designing

Fig. 1 Strategy for decision making in cloud computing environments



Araujo et al. Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:7 Page 6 of 19

the experiment. The first step determines the nature of

the cloud environment in terms of its components and

their interactions, and defines a base cloud environment.

The experiment is designed to investigate the effects of

variations in one or more parameters on the base cloud

environment. This is accomplished by generating distinct

scenarios from the base cloud environment (e.g. redun-

dant nodes and repairing service), and investigating the

impact of these modifications on adopted metrics such as

reliability and capacity-oriented availability.

Create dependability and cost models (ii): The model-

ing strategy comprises two steps: creation of models, and

hierarchical composition. The first step aims to identify a

set of individual components from the base infrastructure

to be modeled through RBDs. These models are useful to

analyze the reliability/availability of simple and complex

systems. They can also be used to model variations in the

base architecture defined from the design of experiments,

such as the redundancy of nodes or virtual machines.

Nevertheless, RBDs cannot easily handle detailed fail-

ure/repair behavior, and SPNs are therefore adopted to

model complex redundant mechanisms and maintenance

policies. We combine the strongest advantages of these

models to perform the analysis and constitutes a hierar-

chical model. We also propose equations for estimating

the costs of the cloud environment, considering associated

maintenance and operational costs.

Assessment (iii): This is a macro activity in which a hier-

archical model, comprising RBD and SPN models, is used

to evaluate the impact that different redundant mecha-

nisms and maintenance policies have on the steady-state

availability and reliability of an environment. The hierar-

chical model solution is computed by passing the outputs

of the SPN models (the lower-level sub-models) as inputs

to the higher level sub-models represented by the RBDs.

Cost equations are also solved, to estimate the cost of the

infrastructure under analysis. The results obtained from

the dependability models and cost equations are then used

in the next step to assist in the decision-making process.

Decision making (iv): At this stage, the cloud infrastruc-

tures are ranked based on any of the following distance

measures: Euclidean, Manhattan and Minkowski. First, it

is defined a criteria (e.g.: availability or cost) and objectives

which can be minimize or maximize the criteria previ-

ously defined. The weights of each criterion according to

the decision maker’s preference are then defined. Lastly,

a set of alternative solutions is ranked, based on a dis-

tancemeasure chosen. If the results are satisfactory for the

desired criteria, the proposed strategy is complete. Other-

wise, adjustments are made in the criteria, and the macro

activity steps are repeated. Note that this macro step is

automated, and the tool developed for this is described in

“MiPACE: a multi-criteria tool for planning and analysis

of cloud environments” section.

The cloud environment

The base cloud architecture used for this study is depicted

in Fig. 2, and comprises three main components: the main

node, standby node, and the front-end. The main node

consists of a virtual machine (VM) hosted on physical

hardware (Hw). The virtual machine is represented by an

operating system (OS) and an application service (APP).

The application running in the VM is a digital library ser-

vice. It should be noted, however, that the hardware in the

main node supports an OS, a management server (Mng)

and a VM. Themanagement server executes the cloud ser-

vices in the operating system. The standby node is used to

ensure high levels of availability, and it assumes the role

of the main node when a failure occurs; this node has

the same components as the main node. The front-end

is responsible for supervising and controlling the entire

cloud environment through a specific cloud management

tool. It is important to highlight that the remote stor-

age volume can be accessed by the VMs, and is managed

through the front-end. All of the components are inter-

connected by a private network. Note that from the base

cloud architecture, more complex scenarios were con-

sidered based on the strategy described above and are

described in the results and discussion section.

The cloud operational mode is described as follows. The

main node (and its VM) and the front-end must be in

working order for the system to be operational. However,

if the standby and main nodes fail, the cloud becomes

unavailable. The roles of the standby and main nodes are

swapped when the VM is restored. The objective of the

Fig. 2 Infrastructure overview



Araujo et al. Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:7 Page 7 of 19

standby node is to maximize the availability of the cloud

infrastructure, which can be established through a Service

Level Agreement (SLA).

Hierarchical models and cost equations
This section describes the hierarchical models designed

to represent the base cloud environment previously pre-

sented (see Fig. 2). RBDs are used to represent the

dependability relationship between independent subsys-

tems, while detailed or more complex fail and repair

mechanisms are modeled using SPNs. This approach

enables the representation of many kinds of dependency

between components, and avoids the well-known issue of

state-space explosion [43]. Furthermore, this section also

presents the proposed equations for estimating the cloud

environment costs, which consider associated mainte-

nance and operational costs.

Availability models for the base cloud environment

A hierarchical model was created to compute dependabi-

lity-related metrics for the cloud environment described

in “The cloud environment” section. Assuming cloud

environments only, the architecture can be divided into

three sub-models: front-end, main node, and standby

node. The base cloud environment illustrated in Fig. 2 is

modeled through RBDs and the respectively availability

(reliability) is shown as:

Ps = PPE × (1 − (1 − Pmn)(1 − Psn)), (5)

where PPE , Pmn and Psn is the front-end, main node and

standby node availability (reliability), respectively.

Equation 6 computes the availability for the front-end

sub-model, which is composed of three components con-

nected in series: hardware, operating system, and man-

agement server. The front-end component is responsible

for identifying and managing the underlying virtualized

resources (i.e., the servers, network, and storage). The

hardware component corresponds to the physical parts of

a computer system (i.e., the memory, CPU, network, etc.).

The cloud OS primarily manages the operation of one or

more virtual machines within a virtualized environment,

while the management server executes the cloud services

in the operating system.

Ps = PHw × POS × PMg (6)

where PHw, POS and PMg is the hardware, operating

system, and management server availability (reliability),

respectively.

Equation 7 computes the availability for the main node.

This node represents the computer resources for the

deployment of virtual machines, and is composed of five

components in series: hardware, operating system, man-

agement server, virtual machine, and service. Similar to

the main node, the standby node is composed of five

components in series: hardware, operating system, man-

agement server, virtual machine, and service. We assumed

that the components of the standby node have the same

dependability characteristics as the main node; i.e., the

same MTTFs and MTTRs.

Ps = PHw × POS × PMg × PMg × PVm × PSv (7)

where PHw, POS and PMg is the hardware, operating sys-

tem, management server, virtual machine, and service

availability (reliability), respectively.

The availability model representing the base cloud envi-

ronment depicted in Eq. 5 operates in a hot-standby

redundancy configuration (indicated by the parallel con-

figuration). That is, when the main node fails, the redun-

dant component replaces it without a delay in activation.

This type of redundancy improves the system availabil-

ity, because when the main node fails, the hot-standby

node automatically takes its place. Nevertheless, RBDs

equations cannot easily handle detailed failure/repair

behavior. The warm-standby and cold-standby replica-

tion mechanisms cannot be fully represented in RBD

models, due to the dependency between states of com-

ponents. Therefore, such mechanisms are represented by

SPNs. More specifically, in this paper the warm-standby

and cold-standby replication mechanisms are adopted

for the main node and virtual machines components;

Fig. 3 presents an example of an SPN model for a node

with cold-standby redundancy. Note that the hierarchi-

cal model solution is computed by passing the outputs

of lower-level sub-models as inputs to the higher level

sub-models. For example, the results from an SPN model

representing a redundant VM are passed as values to the

base cloud environment model. The base model is then

solved to compute dependability metrics.

Cold standbymodel

A component with cold standby redundancy is based on

a nonactive spare module that waits to be activated when

the (main) active module fails. Hence, when the main

module fails, the spare module’s activation takes a certain

amount of time to be activated. This time period is named

mean time to activate (TACT). As the spare component

is switched off, it is considered that it does not fail until

becoming operational.

Figure 4 depicts an SPN model that illustrates this

mechanism. The model uses two virtual machines in

four possible places: VM1_ON, VM1_OFF, VM2_ON,

and VM2_OFF. The places represent the operational and

failure states for both main and spare modules. The spare

module (VM2) is initially deactivated, so no tokens are

stored in places VM2_ON and VM2_OFF. When the main

module fails (VM1), the transition TACT is fired, and con-

sequently the spare module is activated. The immediate

transition D_VM2 represents the deactivation of the spare
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Fig. 3 An illustrative example of a SPN model for a node with a cold-standby redundancy

module when the main module is recovered. This redun-

dancy mechanism fails if both modules fail. Thus, the

operating mode can be expressed as

ColdOperational = (VM1_ON=1 OR VM2_ON=1) (8)

where a token in the places VM1_ON or VM2_ON, defines

the operational state of the environment.

Warm standbymodel

A component with warm standby redundancy is based

on a nonactive spare module that waits to be activated

when the active module fails. The difference with the cold

standby redundancy is that the active and spare modules

have failure rates λ and spare module has a failure rate φ

when it is de-energized, considering 0 � φ � λ.

Fig. 4 SPN for cold-standby

Figure 5 illustrates an SPN warm standby model. The

warm standby model has an active module with a full fail-

ure rate λF (1/MTTF_VM1), and the standby is operating

with a reduced failure rate αF (1/MTTF_OPVM1). This

redundancy mechanism has the spare module configured,

but unavailable; it also ensures that the environment has

continuouslymirrored data. The sparemodule is activated

in the presence of a fault in the environment, and conse-

quently the time before activation will be shorter than in

the cold standby approach.

When the main module fails, the secondary module

is fully activated and replaces the faulty main com-

ponent. The transition TACT represents the activation

event. Places VM1_ON, and VM1_OFF represent the oper-

ational and non-operational states of the main mod-

ule. Places OPVM2_ON and OPVM2_OFF represent the

spare module in the operational state when not available.

Places VM2_ON and VM2_OFF represent the situation in

Fig. 5 SPN for warm-standby
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which the secondary module fails before being activated,

because it is regularly synchronized with the main mod-

ule. When the main module fails, the transition TACT is

fired to activate the spare module, similarly to the cold

redundancy. The immediate transition is named D_VM2,

and has the same behavior in cold standby. The entire

model fails if both modules fail. Thus, the operating mode

can be expressed as

WarmOperational = (VM1_ON=1 AND OPVM2_ON=1)

(9)

where a token in places VM1_ON or OPVM2_ON represents

the operational state of the environment.

Figure 6 depicts the SPN active-active (A/A) redun-

dancy model. From this model, it is possible to estimate

the capacity-oriented availability considering the service

running on a set of VMs that are hosted an node. The NVM

and NND parameters allow such representation, where,

n > 1. The places VM_ON, ND_ON, VM_OFF, and

ND_OFF represent the operational and failure states for

both VMs and Nodes. The transition DE is activated when

there are no tokens in place ND_ON, that is, when all nodes

Fig. 6 An illustrative example of a SPN model for active-active (A/A)

redundancy

fail. Thus, VMs will be failing if they fail, or when all nodes

fail. The VM_DW place represents the failure state of the

VMs when all nodes are faulted. The RVM transition repre-

sents the return of the VMs to the operational state since

the nodes have been repaired.

Equation 10 presents the COA calculation for active-

active model considering a scenario with two virtual

machines and one physical node, i.e., NVM = 2 and

NND = 1.

COA = ((P{(#VM1_ON) = (1 × NVM)} × (1 × NVM))

+ (P{(#VM1_ON) = ((1 × NVM) − 1)}

× ((1 × NVM) − 1)))/(1 × NVM)

(10)

Cost model

The cost model uses the concept of Total Cost of Own-

ership (TCO) for evaluating and comparing the costs of

cloud computing environments. TCO is the process of

identifying costs categories other that price, transport,

and operational [29, 46]. From the details of each exper-

iment described above (such as the number of nodes,

and service availability and unavailability), we allocate a

period of time in which to estimate the total cost of each

cloud environment under study. The estimate includes

the cost of maintenance, operation, and rent of the cloud

environment. Equation 11 estimates the total cost of the

infrastructure.

TCe = Cr + Cm + Cop (11)

Cr, which is represented by Eq. 12, allows determination

of the costs associated with the rent of the cloud infras-

tructure.
∑

Lc represents the monetary value paid for the

components that make up the infrastructure, that is, the

amount of investment made in equipment and facilities to

keep the infrastructure in operation. N is the number of

nodes deployed, T is the assumed time period, and Av is

the availability of the infrastructure as a service.

Cr =
∑

Lc × N × T × Av (12)

Equation 13 is used to estimate the maintenance costs

(represented by Cm). Dwt is the downtime period. LbDw
represents the maintenance labor cost per hour when a

failure occurs. Sf is a service factor; i.e., customers may

pay more or less depending on the contracted service,

which affect the priority level for problem resolution.

N and VM represent the number of nodes and virtual

machines allocated by the contract, respectively. T is the

period of service specified in the contract, while
∑

Cr

represents the costs related to the replacement of cloud

components.

Cm = (Dwt×LbDw×Sf ×N×VM×T)+
∑

Cr (13)
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Equation 14 represents Cop, and allows the calculation of

the operational costs of the cloud environment. Ec is the

energy consumption, and Ep is the electricity price. LbUp
represents themonetary value of each hour spent on keep-

ing the infrastructure operational, while T, Sf, Av, N, and

VM represent the same parameters as presented in the

previous equations.

Cop = (Ec × Ep × N × T × Av)

+ (LbUp × Sf × Av × N × VM × T)
(14)

MiPACE: a multi-criteria tool for planning and
analysis of cloud environments
This section is dedicated to presenting the details of the

developed tool. MiPACE was developed to support the

planning of cloud infrastructures which consider cus-

tomer service constraints, and tool assists in the decision-

making process. It allows analysts, technicians, managers,

and users of cloud services to plan and analyze cloud scenar-

ios. The tool is written in the programming language C,

and the features implemented are described below.

(i) Mercury tool: The Mercury tool [40] was developed

by the MODCS research group, and allows the

creation and evaluation of performance and

dependability models. It implements the following

formalisms: Continuous Time Markov Chains

(CTMCs), Reliability Block Diagrams (RBDs), Energy

Flow Models (EFMs), and Stochastic Petri nets

(SPNs). The Mercury tool is used along with the

MiPACE tool to create hierarchical models, and to

solve the experimental study design scenarios.

(ii) Integration module: Because MiPACE does not

implement the RBD and SPN formalisms, this

module was implemented to integrate the results

obtained from the Mercury tool into MiPACE. That

is, an input file is created with all of the results

obtained from the design of experiment studies, and

then uploaded into the MiPACE tool.

(iii) Design of experiment editor: This feature allows

users to plan experiments. Initially, it is necessary to

choose a number of factors to be combined. The user

then indicates the number of levels for each factor.

Note that the tool supports the full factorial method,

which involves testing every combination of factors

against each other. As explained earlier, the

experiment design is adopted to investigate the

effects of variations of one or more parameters in the

base cloud environment; we therefore generate

distinct SPN models from the SPN model that

represents the base cloud environment, and

investigate the impact of such modifications on the

adopted metrics. Thus, the purpose of this feature is

to provide a set of scenarios that will be modeled and

analyzed by the Mercury tool.

(iv) Ranking generator: When the results obtained from

the experiment study designs have been uploaded

into MiPACE, this tool then ranks a set of optimal

solutions. At this stage, the user of the tool must

define the criteria function (e.g. availability or cost)

and the objective which be minimized or maximized

the criteria previously defined. The user can then

choose the distance measure for ranking the

solutions, such as the Euclidean, Manhattan or

Minkowski distances [16]. These distance measures

are used for similarity comparisons. Finally, the user

can add weights to the criteria function previously

defined to prioritize one variable over another; for

example, the user could use this option to prioritize

cost over high availability.

(v) Report tool: The results that consider each criterion

are displayed in the tool panel. MiPACE also

generates two output files containing the ranking of

the architectures, with one output file used for

visualization and the other for plotting purposes. If

necessary, the user can change the criterion function

or objective, and repeat the ranking step.

Results and discussion
This section discusses a case study to illustrate the appli-

cability of the proposed approach when considering avail-

ability, capacity-oriented availability, reliability and cost

requirements. The approach assists individuals in iden-

tifying an ideal cloud infrastructure, and takes service

constraints into account. The availability and cost models

are useful during the design and analysis of cloud infras-

tructures, because they represent the characteristics of

cloud environments. The results obtained by the evalua-

tion of these models serve as the input to the MiPACE

tool, which then finds a set of optimal solutions.

Evaluation of the base cloud environment

The first part of this case study aims to demonstrate

the applicability of the availability models, and presents

the results obtained for the base cloud environment. The

base cloud environment represented in Fig. 2 was mod-

eled (shown in Eqs. 6 and 7), and the availability models

combined to represent the whole cloud infrastructure.

Equation 5 illustrates the RBD model for the base cloud

environment. The reliability importance index1 (RI) was

the adopted to identify which component of the system

required further attention to increase the availability level.

Assuming only the Front-End and Main nodes of the

devices present in Fig. 2, the RI index for the nodes was,

0.153201 and 0.219544, respectively. The main node is the

most critical component, and it is most important when

adopting a redundancy mechanism. Three redundancy
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Table 1 Cost parameters

Parameter Value

Ep 0.1547 (USD)

Ec 0.4 (kWh)

LbUp 0.04 (USD)

LbDw 0.40 (USD)

Gold 1.42

Silver 1.26

Bronze 1.15

strategies hot, cold, and warm were used to increase the

availability levels, and these mechanisms are presented in

Eqs. 4 and 5, respectively.

Table 1 shows the parameter values adopted for esti-

mating the cost of the cloud environment. The Ep and

Ec parameters represent the energy price (in USD) and

the energy consumption per kilowatt-hour [13], respec-

tively. Such parameters only take the servers into account.

The LbUp (operation) and LbDw (maintenance) parameters

indicate the labor cost per hour, while Rt represents the

rental rate for the cloud infrastructure. The type of service

is categorized as gold, silver, or bronze, and these reflect

the capacity of the cloudmaintenance team to support dif-

ferent quality levels; a reduction of 10% in the mean time

to repair the silver service in comparison to the gold ser-

vice assumed, with a reduction of 20% in the mean time

to repair the bronze service in comparison to the gold

service.

Table 2 presents the Mean Time to Failure (MTTF) and

Mean Time to Repair (MTTR) used for the availability

model (Eq. 5). Those values were obtained from [2, 8, 20],

and are used to compute dependability-related metrics for

the sub-models, and then for the whole system.

Table 3 shows the parameter values used for the sub-

model (Eq. 6), based on [2, 8, 20].

Table 4 shows the input parameters for the cold-standby

SPNmodel based on [2, 8, 20]. The parameter values used

for evaluating the model may bemodified to represent, for

example, different service repair policies. It is thus possi-

ble to analyze situations where the firing of transitions is

shorter or longer depending on the adopted repair policy.

Table 2 Parameters for the front-end submodel

Component Value (hr)

MTTF_Hw-front 8760

MTTR_Hw-front 1.67

MTTF_OS-front 1440

MTTR_OS-front 1

MTTF_Mng-front 788.4

MTTR_Mng-front 1

Table 3 Parameters for the cloud node sub-model

Component Value (hr)

MTTF_Hw-node 8760

MTTR_Hw-node 1

MTTF_OS-node 1440

MTTR_OS-node 1

MTTF_Mng-node 788.4

MTTR_Mng-node 1

MTTF_VM-node 2880

MTTR_VM-node 0.5

MTTF_Service 6865.3

MTTR_Service 0.17

Furthermore, values regarding the mean time to failure

or mean time to repair may represent components with

higher or lower reliability. These models can assist indi-

viduals in identifying service repair policies that fit their

needs.

Table 5 shows the input parameters for the warm-

standby model. Like the cold-standby model, the values

relating to the mean time to repair and mean time to

failure can be modified in order to represent, for exam-

ple, more reliable repair policies. Such modifications help

individuals in planning cloud environments that fit their

needs and budgets.

Table 6 presents the evaluation of the base cloud envi-

ronment under distinct configurations. The first configu-

ration is composed of the front-end and the main node,

while the second comprises the front-end, the main node

and a hot-standby redundancy of the main node. The

third configuration includes the front-end, the main node

and a cold-standby redundancy of the main node. Lastly,

the fourth configuration is composed of the front-end,

the main node, and warm-standby redundancy of the

main node. After evaluation of the models that repre-

sent each of these configurations, it is possible to note the

differences between each configuration in terms of avail-

ability, capacity-oriented availability, reliability and cost.

Furthermore, the importance of redundant mechanisms is

illustrated by comparing the first configuration to config-

urations (2, 3 and 4).

Table 4 Parameters for the cold-standby SPN model

Transition name Value (hr)

MTTF_VM1 2028

MTTR_VM1 0.40

MTTF_VM2 2028

MTTR_VM2 0.40

D_VM2 -

TACT 0.35
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Table 5 SPNWarm-Standby parameters

Transition name Value (hr)

MTTF_VM1 2028

MTTR_VM1 0.40

MTTF_VM2 2028

MTTR_VM2 0.40

MTTF_OPVM1 2434

MTTR_OPVM1 0.40

TACT 0.1667

D_VM2 -

The downtime for each configuration was also cal-

culated. We considered the downtime in minutes over

a period of one month, and the following values were

obtained: (1) 193.99 min, (2) 93.05 min, (3) 120.88 min,

and (4) 108.60 min. As expected, the hot-standby mech-

anisms had the lowest downtime in relation to the other

configurations, followed by warm, cold and finally the

configuration without redundancy.

The third column of Table 6 describes the values

obtained for the reliability analysis of each configura-

tion. The reliability metric was obtained through transient

analysis over a time (T) period of 24 hours. The reliabil-

ity analysis assumes that the system cannot be repaired.

The last column of Table 6 shows the estimated total cost

(TCe) for each configuration; as expected, configuration 1

had the lowest TCe because it has the simplest configura-

tion. In the next subsection, a n experiment study design

is performed with the base cloud environment, in order

to generate a set of scenarios that will be ranked using an

MCDMmethod.

Planning for design of experiments

From the base cloud environment, we designed an

experiment to identify which of the variables have the

greatest influence on the adopted metrics (i.e., capacity

oriented-availability, availability or cost). Table 7 illus-

trates the experimental plan that considers the variables

from Table 8. We generated 72 configurations, where each

case received sequential numbering (1 to 72). However,

we have removed 36 because some of these configura-

tions cannot be represented in the availability models.

This can happen due to the full factorial method adopted.

Table 6 Results obtained by solving the models for the base

cloud environment

Configuration Av. (%) COA (%) Rel. (%) TCe (USD)

Conf. (1) 99.55095747 99.76543388 89.447 306.31

Conf. (2) 99.78461098 99.97929139 94.797 348.84

Conf. (3) 99.72018536 99.92583000 94.888 338.83

Conf. (4) 99.74862082 99.94998263 94.788 331.84

Table 7 Planning for design of experiments of the first and

second scenarios

Conf. Node VM TS RT Conf. Node VM TS RT

1 1 1 Gold N/R 34 2 2 Bronze Hot

5 1 1 Silver N/R 35 2 2 Bronze Cold

9 1 1 Bronze N/R 36 2 2 Bronze Warm

14 1 2 Gold Hot 38 2 4 Gold Hot

15 1 2 Gold Cold 39 2 4 Gold Cold

16 1 2 Gold Warm 40 2 4 Gold Warm

18 1 2 Silver Hot 42 2 4 Silver Hot

19 1 2 Silver Cold 43 2 4 Silver Cold

20 1 2 Silver Warm 44 2 4 Silver Warm

22 1 2 Bronze Hot 46 2 4 Bronze Hot

23 1 2 Bronze Cold 47 2 4 Bronze Cold

24 1 2 Bronze Warm 48 2 4 Bronze Warm

26 2 2 Gold Hot 50 3 3 Gold Hot

27 2 2 Gold Cold 54 3 3 Silver Hot

28 2 2 Gold Warm 58 3 3 Bronze Hot

30 2 2 Silver Hot 62 3 6 Gold Hot

31 2 2 Silver Cold 66 3 6 Silver Hot

32 2 2 Silver Warm 70 3 6 Bronze Hot

This method involves testing every combination of fac-

tors against each other, and some combinations cannot

be applied in a real cloud environment. Service providers

or individuals that adopt this approach, must check the

experimental plan to identify any inconsistencies. For

example, if the experimental planning generates a scenario

where the number of nodes and the number of VMs are

equal to 1, the redundancy mechanism factor should only

be assigned to the no redundancy (N/R) level (see Table 8).

This is because modelling a configuration with redun-

dancy requires the number of nodes or VMs to be greater

than 1. Thus, we kept the numbering initially generated

after the removal of several scenarios that could not be

represented.

Table 8 presents an overview of the factors (i.e., vari-

ables, (k)) and the levels (ni) applied in the design of the

experiments. We considered two levels of redundancy for

the node factor, and considered up to three levels for the

VM factor. The type of service (TS) factor represents the

Table 8 Factors and levels

Factors Levels

Nodes 1 2 - -

VMs per node 1 2 3 -

Type of service Gold Silver Bronze -

Redundancy Type N/R Hot Cold Warm
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maintenance factors adopted in this paper, and reflects

the capacity of the cloud maintenance team to support

different levels of maintenance quality. In this sense, we

consider a reduction of 10% in the mean time to repair

using a silver service compared to a gold service, and a

reduction of 20% in the mean time to repair using a bronze

service compared to a gold service.

The redundancy type (RT) factor refers to the provision

of support for the redundancy feature. Hot redundancy

is commonly used when the system must not go down,

even briefly, under any condition. This mechanism uses a

spare component in the same regime as the primary one,

and the redundant unit is fully capable of supporting the

primary unit. Cold redundancy switches to the reserve

unit only after failure of the primary unit. For the switch

to take place, a time is scheduled for the substitution of

the primary module for the reserve module.Warm redun-

dancy tends to decrease the switching time for the reserve

Table 9 Dependability and cost results for each configuration

Conf. Availability (%) COA (%) Reliability (%) Downtime (Min) TCe (USD)

1 99.5509574705 99.7654338777 89.4469247967 196.68062793 306.315

5 99.5048180576 99.7398556502 89.4469247967 216.88969077 301.106

9 99.4587108348 99.7142905588 89.4469247967 237.08465436 297.616

14 99.5706543903 99.8728535266 90.2149434700 188.05337705 306.292

15 99.5616066096 99.7759681848 90.4897545045 192.01630500 306.302

16 99.5650001940 99.7793663489 90.4925359715 190.52991502 306.299

18 99.5280378157 99.8576135555 90.2149434700 206.71943671 301.090

19 99.5194114138 99.7543530012 90.4897545045 210.49780078 301.096

20 99.5233822554 99.7583295360 90.4925359715 208.75857214 301.093

22 99.4854486046 99.8423824134 90.2149434700 225.37351118 297.605

23 99.4774397512 99.7329443057 90.4897545045 228.88138896 297.608

24 99.4818832542 99.7373945400 90.4925359715 226.93513466 297.607

26 99.7846109835 99.9792913946 94.7970536818 94.34038921 348.837

27 99.7201853569 99.9258299977 94.8881075626 122.55881369 338.826

28 99.7486208259 99.9499826254 94.7885068480 110.10407827 331.844

30 99.7638083387 99.9741786568 97.970536818 103.45194767 348.939

31 99.6976733870 99.9196490290 94.8881075626 132.41905652 349.264

32 99.7272945753 99.9445963495 94.7885068480 119.44497603 349.119

34 99.7430013430 99.9690494692 94.7970536818 112.56541175 338.735

35 99.6754125418 99.9136202473 94.8881075626 142.16930671 339.006

36 99.7060521418 99.9392534800 94.7885068480 128.74916191 338.883

38 99.7846995558 99.9763972167 94.8827293630 94.30159457 331.721

39 99.7282517140 99.9363941560 94.9415323833 119.02574928 331.913

40 99.7534014438 99.9641014864 94.8717737486 108.01016760 331.828

42 99.7639238067 99.9712822680 94.8827293630 103.40137265 612.144

43 99.7061245286 99.9341938729 94.9415323833 128.71745648 612.275

44 99.7322176473 99.9633095757 94.8717737486 117.28867048 612.216

46 99.7431470289 99.9661503994 94.8827293630 112.50160136 601.884

47 99.6841904563 99.9323432327 94.9415323833 138.32458013 601.965

48 99.7110986022 99.9626569150 92.7019871643 126.53881225 601.928

50 99.7851593857 99.9802082869 95.1170633317 94.10018905 594.981

54 99.7644824363 99.9752797697 95.1170633317 103.15669289 594.997

58 99.7438139525 99.9703513633 95.1170633317 112.20948879 595.012

62 99.7851596846 99.9802044071 95.1242439537 94.10005812 612.095

66 99.7644828673 99.9752736682 95.1242439537 103.15650413 601.855

70 99.7438147914 99.9703425762 95.1242439537 112.20912137 595.012
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module. Lastly, the N/R level (present in Table 8) means

that the environment does not consider any redundancy

approach.

When the design of experiments and the modeling of

each scenario were complete, the next step was to assess

the hierarchical models based on the RBDs and SPNs.

We considered the following dependability metrics: avail-

ability, reliability and unavailability. Table 9 presents the

results obtained for each scenario. For the analysis of

downtime, we considered a time interval of one month

(720 h), and the reliability was obtained by transient anal-

ysis over 24 h. The results for each scenario are described

in Table 9. This table serves as input for our proposed

approach, in that we present two case scenarios examining

distinct customer constraints.

First case scenario

To demonstrate the applicability of the multi-criteria

approach, the first case considers a situation in which

a given cloud user wishes to select a cloud environ-

ment with: lower cost and higher capacity-oriented avail-

ability. The distance measure selected for this case

was the Euclidean distance. Table 10 illustrates the

ranking of cloud environments considering the criteria

and distance measure selected. Note that this ranking

was automatically computed by the MiPACE tool (see

“MiPACE: a multi-criteria tool for planning and analysis

of cloud environments” section).

Table 10 Configurations ranking for the defined criteria (i.e.

minimize cost and maximize coa)

Ranking Configuration Ranking Configuration

1 38 19 20

2 40 20 19

3 34 21 5

4 28 22 24

5 26 23 23

6 30 24 50

7 39 25 54

8 36 26 58

9 32 27 70

10 27 28 66

11 31 29 46

12 35 30 48

13 14 31 47

14 18 32 62

15 22 33 9

16 16 34 42

17 15 35 44

18 1 36 43

As Table 10, cloud configuration 38 is the best option for

the defined criteria. This environment has the following

configuration: two nodes and two VMs with hot-standby

redundancy, and a gold service type. The second-best

option in the ranking is configuration 40, which showed

an increase in cost (0.03%) and decrease in COA (0.69%).

The third-best option (configuration 34) had an increase

in cost of 2.11% and an decrease in COA of 0.007% when

compared to the first option. The worse scenario in the

ranking (environment 43) had a increase in cost of 84.57%

and in COA of 0.04% when compared to the best option.

Table 11 illustrates the components adopted for each

cloud configuration.

Figure 7 summarizes the configuration ranking gener-

ated for the first case scenario. Figure 7a gives an overview

of all configurations described in Table 10, while Fig. 7b

shows a set of optimal configurations. The y-axis rep-

resents the COA, while the x-axis represents the cost

of the cloud configurations. The optimal set of results

are plotted near to the x and y-axis, in accordance with

the defined criteria (i.e., higher COA and lower cost).

Figure 7b presents the optimal set of configurations at

higher level of detail, and shows that configuration 38 is

optimal.

Second case scenario

The second case scenario considers a situation in which

a company or service provider wish to choose a cloud

environment with higher reliability and lower cost. In this

context, the multi-criterion function aims to maximize

the first goal and minimize the second. When the deci-

sion variables (reliability and cost) have been selected, the

ranking is applied using the MiPACE tool. As in the first

case scenario, the Euclidean distance method was adopted

to find a set of optimal solutions.

Table 12 presents the ranked configurations when con-

sidering the defined criteria, while Table 13 describes

the components of the first and last configurations. Con-

figuration 39 is the best-ranked configuration, and has

the following components: two nodes and two VMs with

cold-standby redundancy, and the gold service type. The

second configuration in the ranking is configuration 38,

which shows a reduction in reliability of 0.062% and a

Table 11 Summary of the components used to rank the

configurations (First case)

Ranking Configuration Node VM TS RT

1 38 2 4 Gold Hot

2 40 2 4 Gold Warm

3 34 2 2 Bronze Hot

. . . . . . . . . . . . . . . . . .

36 43 2 4 Silver Cold
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a

b

Fig. 7 Ranking of the configurations generated for the first case

scenario. a Overview of all ranked configurations. b Optimal

configurations

reduction in cost of 0.058% (USD 0.19), when compared

to the best-ranked configuration. The third-best config-

uration (40) had a reduction in reliability and cost of

0.074% and 0.026% respectively, when compared to the

best-ranked configuration. The worst configuration in the

ranking is configuration 48, which shows a decrease in

reliability of 2.416% and an increase in cost of 44.858%

when compared to the best configuration. Despite the

reduction in cost of the configurations ranked in second

and third positions, their reliability also decreased due to

the type of redundancy adopted.

Figure 8 summarizes the configurations rankings gen-

erated for the second case scenario. Figure 8a presents

an overview of all configurations described in Table 12,

while Fig. 8b presents the details of the optimal set of

configurations. The y-axis indicates the reliability of the

cloud environment and the x-axis represents the cost. The

defined criteria of maximizing reliability and minimizing

cost, therefore mean that the optimal set of configurations

are shown by points plotted in the lower right side of the

figure (Fig. 8a). Figure 8b shows that configuration 39 is

optimal.

Table 12 Configuration ranking for the defined criteria (i.e.

maximize reliability and minimize cost)

Ranking Configuration Ranking Configuration

1 39 19 22

2 38 20 18

3 40 21 14

4 28 22 50

5 27 23 54

6 35 24 70

7 34 25 58

8 36 26 66

9 31 27 47

10 26 28 46

11 30 29 62

12 32 30 9

13 24 31 5

14 20 32 1

15 16 33 42

16 23 34 43

17 19 35 44

18 15 36 48

Third case scenario

The third case scenario considers a situation in which a

company or service provider wishes to choose a cloud

environment with higher COA and lower cost. In order

to contemplate this case, we adopt the active-active (A/A)

redundancy model and consequently generate another

design of experiments. Table 14 illustrates the factor val-

ues and levels and Table 15 presents an overview of the

factors (i.e., variables, (k)) and the levels (ni) applied in the

design of the experiments.

Table 16 presents the ranked configurations when con-

sidering the defined criteria, while Table 17 describes the

components of the first and last configurations. Config-

uration 31 is the best-ranked configuration and has the

following components: eight nodes and sixteen VMs with

active-active redundancy, and the gold service type. The

second configuration in the ranking is configuration 1,

Table 13 Summary of the components used to rank the

configurations (Second Case)

Ranking Configuration Node VM TS RT

1 39 2 4 Gold Cold

2 38 2 4 Gold Hot

3 40 2 4 Gold Warm

... ... ... ... ... ...

36 48 2 4 Bronze Warm



Araujo et al. Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:7 Page 16 of 19

a

b

Fig. 8 Ranking of the configurations generated for the second case

scenario. a Overview of all ranked configurations. b Optimal

configurations

which shows a decrease in COA (0.002%) and decrease in

cost (61.89%) when compared to the best-ranked config-

uration. The third-best configuration (4) had a decrease

in COA of 0.002% and decreased in cost (41.26%) when

compared to the best-ranked configuration. The worst

configuration in the ranking is configuration 60, which

shows an increase in the cost of 1229.35% when compared

to the best configuration. In spite of the increase in the

number of nodes and VMs, and consequently an increase

in the cost of the classified configurations, we noticed that

the COA remained close.

Figure 9 summarizes the configurations rankings gen-

erated for the third case scenario. Figure 9a presents an

overview of all configurations described in Table 17, while

Table 14 Factors and levels

Factors Levels

Nodes 2 4 8 16 -

VMs per node 2 4 8 16 32

Type of service Gold Silver Bronze - -

Redundancy type A/A - - - -

Table 15 Planning for design of experiments of the third scenario

Conf. Node VM TS RT Conf. Node VM TS RT

1 2 4 Gold A/A 31 8 16 Gold A/A

2 2 4 Silver A/A 32 8 16 Silver A/A

3 2 4 Bronze A/A 33 8 16 bronze A/A

4 2 8 Gold A/A 34 8 32 Gold A/A

5 2 8 Silver A/A 35 8 32 Silver A/A

6 2 8 Bronze A/A 36 8 32 Bronze A/A

7 2 16 Gold A/A 37 8 64 Gold A/A

8 2 16 Silver A/A 38 8 64 Silver A/A

9 2 16 Bronze A/A 39 8 64 Bronze A/A

10 2 32 Gold A/A 40 8 128 Gold A/A

11 2 32 Silver A/A 41 8 128 Silver A/A

12 2 32 Bronze A/A 42 8 128 Bronze A/A

13 2 64 Gold A/A 43 8 256 Gold A/A

14 2 64 Silver A/A 44 8 256 Silver A/A

15 2 64 Bronze A/A 45 8 256 Bronze A/A

16 4 8 Gold A/A 46 16 32 Gold A/A

17 4 8 Silver A/A 47 16 32 Silver A/A

18 4 8 Bronze A/A 48 16 32 Bronze A/A

19 4 16 Gold A/A 49 16 64 Gold A/A

20 4 16 Silver A/A 50 16 64 Silver A/A

21 4 16 Bronze A/A 51 16 64 Bronze A/A

22 4 32 Gold A/A 52 16 128 Gold A/A

23 4 32 Silver A/A 53 16 128 Silver A/A

24 4 32 Bronze A/A 54 16 128 Bronze A/A

25 4 64 Gold A/A 55 16 256 Gold A/A

26 4 64 Silver A/A 56 16 256 Silver A/A

27 4 64 Bronze A/A 57 16 256 Bronze A/A

28 4 128 Gold A/A 58 16 512 Gold A/A

29 4 128 Silver A/A 59 16 512 Silver A/A

30 4 128 Bronze A/A 60 16 512 Bronze A/A

Fig. 9b presents the details of the optimal set of config-

urations. The y-axis indicates the cost of the cloud envi-

ronment and the x-axis represents the capacity-oriented

availability (COA). The defined criteria of minimizing cost

andmaximizing COA, thereforemean that the optimal set

of configurations are shown by points plotted in the lower

right side of Fig. 9a. Figure 9b depicts that configuration

31 is optimal.

Final remarks
In this paper, we presented an approach to model and ana-

lyze cloud infrastructures while considering availability,

capacity-oriented availability (COA), reliability and cost

requirements. This approach uses stochastic models and

a multiple-criteria decision-making method to calculate
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Table 16 Configuration ranking for the defined criteria (i.e.

maximize COA and minimize cost)

Ranking Configuration Ranking Configuration

1 31 31 47

2 1 32 29

3 16 33 14

4 4 34 43

5 19 35 41

6 7 36 26

7 46 37 56

8 22 38 44

9 34 39 48

10 10 40 51

11 49 41 54

12 37 42 57

13 25 43 36

14 13 44 3

15 52 45 18

16 40 46 33

17 28 47 6

18 35 48 21

19 32 49 9

20 50 50 12

21 2 51 24

22 17 52 39

23 5 53 15

24 20 54 30

25 8 55 59

26 23 56 58

27 55 57 42

28 53 58 27

29 11 59 45

30 38 60 60

dependability-related metrics, and to rank cloud infras-

tructures. A hierarchical strategy was used to modeling

and planning cloud infrastructures, combining a multiple-

criteria decision-making to find the most appropriate

from the set. A case study was presented to illustrate the

feasibility of the proposed approach. The results show

Table 17 Summary of the components used to rank the

configurations (Third Case)

Ranking Configuration Node VM TS RT

1 31 8 16 Gold A/A

2 1 2 4 Gold A/A

3 16 4 8 Gold A/A

. . . . . . . . . . . . . . . . . .

60 60 16 512 Bronze A/A

a

b

Fig. 9 Ranking of the configurations generated for the third case

scenario. a Overview of all ranked configurations. b Optimal

configurations

that our approach enables service providers or individuals

who are interested in building their own clouds, to choose

the most appropriate cloud infrastructure; the approach

allows multiple criteria such as reliability, downtime, and

cost to be considered.

As future work, we plan to apply our approach in a more

complex environment by utilizing otherMCDMmethods.

We also consider evaluating other metrics like response

time, throughput, and CPU usage.

Endnote
1The index indicates the impact of a particular compo-

nent in the overall system reliability [21].
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