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   Abstract—Shared  control  schemes  allow  a  human  driver  to
work with  an  automated  driving  agent  in  driver-vehicle  systems
while retaining the driver’s abilities to control. The human driver,
as an essential agent in the driver-vehicle shared control systems,
should  be  precisely  modeled  regarding  their  cognitive  processes,
control strategies, and decision-making processes. The interactive
strategy  design  between  drivers  and  automated  driving  agents
brings an excellent challenge for human-centric driver assistance
systems  due  to  the  inherent  characteristics  of  humans.  Many
open-ended  questions  arise,  such  as  what  proper  role  of  human
drivers should act in a shared control scheme? How to make an
intelligent  decision capable  of  balancing the  benefits  of  agents  in
shared control systems? Due to the advent of these attentions and
questions,  it  is  desirable  to  present  a  survey  on  the
decision making  between  human  drivers  and  highly  automated
vehicles,  to  understand  their  architectures,  human  driver
modeling,  and  interaction  strategies  under  the  driver-vehicle
shared schemes.  Finally,  we give a  further discussion on the key
future challenges and opportunities. They are likely to shape new
potential research directions.
    Index Terms—Automated  vehicle,  decision-making,  human  driver,
human-vehicle interaction, shared control.
 

I.  Introduction

INCREASINGLY  powerful  technologies  have  facilitated

autonomous  vehicles  to  prevent  traffic  accidents,  improve
traffic  efficiency,  and  make  cars  available  for  everyone,  but
many  social  and  technical  obstacles  remain  on  the  road  to
fully  autonomous  driving  [1],  [2].  Overcoming  these
challenges  to  enable  autonomous  cars  to  drive  in  highly
complex driving situations safely may require some time [3].
Analogous  to  the  levels  of  automation  which  range  from
complete human control to complete computer control [4], [5],
the  Society  of  Automotive  Engineer  (SAE)  International
defines five levels to describe autonomous vehicles and have
been  adopted  by  the  U.S.  National  Highway  Traffic  Safety
Administration  (NHTSA)  in  Washington,  D.C.,  as  the
government’s  template.  As  a  transition  to  autonomous
vehicles, partially  automated car,  in  which  the  human driver
and  automated  driving  agent1 share and  complete  a  driving
task,  becomes  a  compromise  plan  before  the  era  of  fully
autonomous vehicles [6]. Level 3 of automated driving, called
conditionally  autonomous  driving,  enables  vehicles  to
mutually  transit  driving  modes  between  fully  automated
driving and full manual control [7], but this would degrade the
vehicle  performance,  primarily  when  transferring  the  vehicle
control  authority  from  car  to  a  driver  [8],  [9].  Because  it
requires a transition period for the driver to be resumed in the
driving  process  [10],  which  can  often  pose  difficulties  when
the driver has not been actively engaged in the driving process
to  reacquire  situation  awareness  [7].  Research  demonstrates
that vehicle automation2 harms mental workload and situation
awareness  [12],  [13]  and  that  reaction  times  increase  as  the
level of automation increases [14]. Another kind of automated
driving  is  called  semi-automated  driving,  in  which  the
automation system does not take full authority from the driver,
that is, the driver should keep eyes firmly on the road, though
the  driver  feet  off  the  pedal,  hand off  the  steering wheel  [8].
However,  humans will  be bored and distracted during a low-
level supervision task [8], [15] and will show over-trust [16],
[17],  neglect  [18],  and  complacency  [19]  on  automated
driving systems, which requires a long time to resume control
from  the  automation  system  in  critical  situations  [10].
Therefore,  Gordon  and  Lidberg  [8]  hold  that  semi-
autonomous  driving  does  not  alleviate  the  regular  task  of
anticipating traffic hazards.
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1An automated driving agent refers to as a well-designed automatic controller
in automated vehicle systems.  
2 Automation  is  a  technology  that  actively  selects  data,  transforms  informa-
tion, makes decisions, or controls processes [11].
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Human interaction with automated driving agents  is  a  kind
of  human-robot  interaction  (HRI),  and  one  of  the  most
influential  concepts  for  HRI  was supervisory  control [20].
Supervisory  control  usually  involves  a  human  supervisor
setting  up  the  goals  while  the  automated  driving  agent
applying  control  actions  to  achieve  the  goals  [21].  However,
practically  it  would  be  difficult  to  establish  a  sharing  of
control  between  the  human  supervisor  and  the  automated
agent in this context [22]. Sheridan and Verplank [5] defined
two  sub-concepts  to  explain  the  idea  of  supervisory  control
further. One is traded control which requires that both human
and computer are active at the same time, and the other one is
shared control in which at one time the computer is active, at
another the human is [23].

The shared control scheme presents a tractable paradigm to
tackle  the  driving  authority  transition  issues  [24],  [25]  in
Level 3. It features achieving a continuous authority transition
between  the  human  driver  and  automated  driving  agent.
Though  the  authorized  levels  of  automated  driving  were
issued  in  2016,  the  underlying  shared-control  concept  has
already  been  introduced  in  other  fields  [20],  [21],  [23]  and
will  be  the  sharp  end  of  cooperation  between  agents  [26].
Each  agent  in  the  shared  control  scheme  can  take  their
advantages when performing a specific driving task [27]. It is
well known that manual control is prone to human errors. On
the other  hand,  fully  automated tasks  are  currently  subject  to
wide-ranging  limitations  in  decision-making  and  situation-
awareness.  To  exploit  full  potentials  of  both  of  human  and
automation  while  overcoming  the  barriers  of  car-to-driver
transition,  Mulder et  al.  [24]  presented  an  entirely  different
control  scheme – shared control  systems3.  The  human driver
and  the  automated  driving  agent  continuously  share  and
cooperatively  complete  a  specific  driving  task,  thereby
allowing  drivers  to  enjoy  driving  while  keeping  in  control
consistently.  Moreover,  the  shared-control  scheme  can
synergize  innate  human  capacities  and  technological
capabilities  to  enable  us  to  realize  our  full  potential  [28].
Previous  research  experimentally  demonstrates  that  keeping
driver’s  haptic  control  authority  in  the  loop  with  continuous
haptic  feedback  to  the  driver  not  only  outperforms  the
conventional binary switches between supervisory and manual
control  [29]  but  also  reduces  distraction  on  a  secondary  task
[30]  and  drivers’ workload  [31]. Fig. 1 presents  a  driver-
vehicle system where the human driver and automated driving
agents cooperatively share and achieve the same driving task.
The  shared  control  over  manual  control  has  shown  the
advantages  in  many  applications  such  as  lane  keeping
assistance  [35],  [36]  and  steering  assistance  system  [31],
[37]–[39].

To  some  extent,  driver-vehicle  shared  control  is  a  kind  of
driver  assistance  system,  and  from this  point  of  view,  which
includes  three  categories: perception  enhancement (e.g.,
informational  assistance), action suggestion (e.g.,  decision or
action  selection),  and function  delegation (e.g.,  action

implementation) [4], [40]–[42]. The first two types have been
reviewed  in  [3],  except  for  the  third  type,  in  which  both
human  drivers  and  automated  driving  agents  can  exert  their
inputs  to  vehicles  simultaneously  to  carry  out  a  specific  task
such  as  the  active  steering  assistance  systems.  A  well-
designed driver-vehicle shared control system should allow all
engaged  agents  to  know  each  other  very  well  [43],  which
requires  addressing  the  following  fundamental  research
questions:

1)  What  kind  of  role  should  the  human  driver  act  in  the
shared control system with changing situations?

2)  How to  allocate  the  driving  responsibility  and  authority
according to the ability of two agents?

3) How to on-line evaluate the respective trust levels among
drivers and automated driving agents?

4)  What  are  the  temporal  scales  of  human  adaptation  and
learning in changing situations?

5)  What  novel  system  identification  techniques  for  driver
state and intent exist that could allow us to study time-varying
and possibly nonlinear shared control systems?

Although  many  works  of  literature  have  been  done  for
specific  topics,  there  is  no  paper  to  review and  discuss  these
research  questions  comprehensively.  To  bridge  the  gap,  we
provide  an  overview  of  the  field  of  decision-making  scheme
design and human driver modeling in shared control systems,
by reviewing more than 200 closely related literature covering
the  keywords:  shared  control,  driver  model,  shared  cognitive
control,  self-driving,  and  human-automation/robot/computer
interaction.  Instead  of  reviewing  rigorous  mathematical
algorithms  of  decision-making  and  controller  design,  we
mainly  focus  on  the  scheme  design  of  decision-making,
human  driver  modeling,  and  the  open  issues  with  potential
solutions  in  shared  control  systems,  thus  benefiting
researchers  working  on  the  considered  topic.  Some  other
partially  related  literature  on  psychology  and  ergonomics  is
only  involved  and  referred  without  in-depth  discussion
because of page limitation. Section II describes the underlying
architectures  of  driver-vehicle  shared  control  systems.
Section  III  reviews  the  decision-making  of  two agents  in  the
driver-vehicle  shared  control  system from the  state-of-the-art
literature.  Section  IV  details  human  driver  modeling.
Section V shows and discusses some open-ended, challenging,
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Fig. 1.     Illustration  of  the  interactions  between  the  human  driver  and  the
automated driving agent [32]–[34].
 

  
3 The definition of shared control  is  slightly different  over different  research
fields  because  there  is  no  single  definition  for  shared  control  that  is  used
across  application  domains.  More  detailed  descriptions  are  referred  to  see
Section II in review paper [21].
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inevitable  scientific  questions.  Section  VI  gives  further
discussion and conclusion. 

II.  Shared Control Architectures

Before  giving  an  insight  review,  we  first  discuss  the
architecture  of  the  driver-vehicle  shared  systems.  A  shared-
control system consisting of a human driver and an automated
driving agent refers to as a two-agent system that is capable of
accepting  and  executing  commands  from  a  human  driver,  or
an automated driving agent, or a combination of the two [44].
According  to  the  role  that  the  human  driver  plays  in  the
driver-vehicle shared systems, the shared control can occur at
two  different  levels:  the  task  level  and  the  servo  level  (as
shown in Fig. 2). 

A.  Task-Level Shared Control
In  the  task-level  shared  control4 scheme  [44]–[46],  human

drivers  usually  act  as  a  guide  and  deliver  a  task-specific
command to the automated driving agent. Namely, the human
driver  can  allocate  subtasks  to  the  automated  driving  agent
while authorizing other subtasks to achieve a complete driving
task. After being informed the subtasks, the automated driving
agent will perform the subtasks based on the current situation
condition and predefined algorithms to cooperatively achieve
the  whole  driving  task  together  with  the  human  driver.  The
task-level shared control scheme fully exploits the strength in
both machines and humans, which could alleviate the driving
burden  of  a  human.  A  very  intuitive  example  is  that  human
drivers  manually  activate  the  adaptive  cruise  control  (ACC)
systems  when  driving  on  the  highway  [47]  to  allocate
longitudinal  control  authority  to  the  ACC  agent  while
authorizing lateral control by himself/herself.
 

B.  Servo-Level Shared Control

us

uh

uc

Servo-level  control  in  the  driver-vehicle  system  usually
focuses on servo control. The control input ( ) to a vehicle is
typically  the  combination  of  human  drivers’ operations  ( )
and automated driving agents’ output ( ), as shown in Fig. 2(b).
In the servo-level shared control, differing from the task-level
shared  control  situations  where  the  automated  driving  agent
will take  over the  task-specific  control,  human  drivers  will
always be engaged in the control process of vehicle movement
at  the  servo  level.  The  combination  of  outputs  from  human
drivers and automated driving agents should be well designed.
Analogous  to  human-robot  shared  control,  researchers
[48]–[52] combine them intuitively by
 

us = λuh+ (1−λ)uc (1)
λ ∈ [0,1]

uh uc us

λ

λ = 1

λ = 0 λ

λ

where  is  the  weighted  coefficient  to  adjust  the
proportion  of  and  in .  The  allocation  of  driving
authority for a human driver and an automated driving agent is
determined  by  which  can  be  either  fixed  or  continuously
adaptive. Pure human control is achieved when  and pure
automatic  control  when .  Therefore,  the  value  of  can
impact the shared control scheme by determining if the driver
is  presented  in  the  loop.  This  parameter  can  be  modulated
manually (e.g., in [53]) and automatically based on the driver’s
states in certain situations in which the driver needs assistance
to perform more rapidly and safely (e.g., in [49]). The design
of the  will be discussed in Section III.

Different from linearly combining the human driver’s input
with  the  automated  agent’s  input  by  (1),  some  probabilistic
models [54] have also been proposed by explicitly taking into
account  the  uncertainty  in  the  interaction  and  modeling  this
combination as a joint probability distribution [55].

uh ucThe  approaches  of  combining  and  can  differ  from
each  other  in  different  servo  systems.  As  a  consequence,  the
servo-level  shared  control  can  be  further  divided  into direct
shared control and indirect shared control [56], [57].

1) Direct Shared Control: The direct shared control allows
both  human  drivers  and  automated  driving  agents  to
simultaneously  exert  actions  on  a  control  interface,  of  which
the  output  remains  the  direct  input  to  vehicle  systems,  as
shown  in Fig. 2(b).  Such  systems  are  usually haptic  shared
control [58] since both human drivers and automated driving
agents will  directly influence the inputs on the haptic control
interface  (e.g.,  steering handwheel  and brake/throttle  pedals).
Also,  human  drivers  can  even  percept  the  assistance  torque
applied by automated driving agents through the shared haptic
interface.  A general  architecture  of  haptic  shared  control  can
be seen in [59].

us = g(rh,rc,uh)

2)  Indirect  Shared  Control: Differing  from  the  direct
shared-control  scheme,  the  indirect  shared  control  scheme
shapes  the  input  to  the  controlled  vehicle  system  by  mixing
the  out  of  control  interface  (usually  as  a  result  of  human
contributions) and output of the automated driving agent [37],
[38],  [58],  formulated by  as  shown in Fig. 3.
A  typical  application  in  the  human-vehicle  systems  is  steer-
by-wire  (SBW)  systems  [60]  which  estimates  the  driver’s
desired  steering  angle  from  the  driver  operations  and  then
generates  and  applies  the  steering  angle  directly  to  front
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Fig. 2.     Two  kinds  of  shared  control  architectures:  (a)  Task-level  shared
control;  and  (b)  Servo-level  shared  control.  and  represent  the  expected
trajectories  to  be  followed  for  human  driver  and  automated  driving  agent,
respectively;  is  the  input  of  vehicle,  and  are  the  human  driver’s
operation output and automated driving agent’s output, respectively.
 

  
4 The task-level shared control refers to as a shared-control system that allows
human drivers to decompose a whole driving task into subtasks and allocate
some of them to the automated driving agent (namely, share at the task level
[44]  rather  than  the  servo  level),  which  is  slightly  different  from  the  traded
control [5], [20], [21].
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wheels. 

III.  Decision-Making in the Servo-Level Shared
Control Scheme

This paper mainly focuses on the decision-making in servo-
level  shared  control  scheme  rather  than  the  task-level  shared
control  scheme.  A well-described  model  of  the  entire  driver-
vehicle  system  can  offer  one  a  better  understanding  of  how
each subsystem works and what the relationship between them
is.  Some  researchers  hold  that  driver  modeling  should  be
integrated into the road-vehicle system for control purposes to
improve  the  mutual  understanding  between  the  driver  and
automation  [61],  [62].  Hence,  a  driver-in-the-loop  (DHL)5

vehicle  model  [61],  [64],  [65]  is  usually  incorporated  into  a
shared  control  system  and  then  describes  the  complete  DIL
systems from a control perspective.

For  this  purpose,  first,  the  road-vehicle  dynamic  model  is
usually formulated using the state-space representation
 

ẋ = Ax+B(uc+uh)+Bww (2)
x

Bw

uc uh

w

where  is the road-vehicle state, A is the road-vehicle system
matrix, B is the input matrix from road-vehicle system,  is
the system disturbance matrix,  is the controller input,  is
the  human  operation  input,  is  a  system  disturbance.  Then
the human driver is formulated from a control perspective as
 

uh =H(rh, x) (3)
rh

H(rh, x)

where  is  the  driver’s  desired  trajectory  or  reference
trajectory.  represents human driver model and can be
formulated  from  control  perspective  [66],  stochastic
perspective  [67]–[69],  or  cognitive  perspective  [70],  which
will be discussed in Section IV. The driver model towards the
applications  to  steering  system  control  (or  lateral  control,
path-following  control)  is  the  preview  driver  model  and  its
extensions (see review article [66]) since it is easy to integrate
them into the state-space-based vehicle model. Human drivers
output their operations and apply to the vehicle by comparing
the  desired  trajectory  and  the  current  trajectory  through  their
internal model [71], [72]. The internal model can estimate the
current/upcoming states of the subject vehicle and trajectories
of surrounding objects (e.g., vehicles, pedestrians, and bicycle
users). Substituting (3) into (2), the driver-vehicle model (i.e.,
DIL  model)  can  be  formulated  by  a  new  state-space
representation
 

ż = ADIL z+Bhuh+Bcuc+Bww (4)
z

ADIL

Bh Bc

where  is  the  augmented  state  consisting  of  human  driver
model state and road-vehicle system state,  is the driver-
vehicle system matrix,  is the human input matrix, and  is
the  controller  input  matrix.  The  common  DIL  models  based
on  the  state-space  representation  can  be  found  in  [61],  [64],
[73]–[77]  and  some  popular  cases  are  also  listed  in Table I.
The  state-space  DIL  model  provides  an  analytical  way  to
assess the stability of the shared control system [61], [90] and
an  standard  way  to  design  controllers  [50],  [91].  A  well-
designed decision-maker and controller for the shared control
system  should  assist  human  drivers  driving  safely  and
smoothly  while  without  causing  any  conflicts  with  human
drivers.  Based  on  the  incorporated  DIL  model  (4),  given  a
desired  trajectory/reference  and  the  human  driver  operations,
the  optimal  controller  input  can  be  obtained  by  solving  an
optimal problem in the general form
 

u∗c = argmin
uc

J(·) (5)

J(·)

uc uh us

λ

where  is  the  objective  function  that  could  encompass
human  driver’s  input  and  other  constraints  (e.g.,  vehicle
dynamics  and  human  driver’s  physical  limitations).  To  solve
the  optimization  problem  between  a  human  driver  and  an
automatic  controller,  one  of  the  biggest  challenges  is  to
formulate  the  relationship  between , ,  and ,  e.g.,
allocation  of  the  control  authority, .  In  what  follows,  the
shared control strategies can be formulated according to prior
knowledge  or  dynamic  programming.  Thus,  two  ways  to
design  the  decision-making  strategies  are  listed:  rule-based
and game theory-based. 

A.  Rule-Based

λ(t)

For the rule-based method, one direct way is to use (1) with
the requirement of designing . Most research predefined a
different kind of rule according to prior knowledge, which can
be  roughly  grouped  into  three  categories  and  discussed  as
follows.

λ(t)

Rs Rh

Rd λ(t)

1)  Piecewise  Function: Due  to  the  complexity  of  dynamic
environment and disturbance, an intuitive way to design  is
using rule-based piecewise function. The piecewise function is
primarily  developed  to  tackle  the  shared-control  issues  in
robotics  such  as  wheelchair  and  industrial  robots  [92],  [93]
and  then  is  introduced  to  intelligent  vehicles  afterward
because of its robustness and practicality in terms of controller
design  [94]–[96].  For  instance,  Jiang  and  Astolfi  [92],  [96]
defined three space sets to divide the reachable set  into three
parts  by  judging  the  level  of  safety  —  safe,  close,  and
dangerous.  Correspondingly,  a  three-level  piecewise  function
consisting of the safe , hysteresis , and dangerous subsets

 was proposed to design :
 

λ(t) =



















f1(x(t),uh(t),uc(t)), if (x(t),uh(t)) ∈ Rs

f2(x(t),uh(t),uh(t)), if (x(t),uh(t)) ∈ Rh

f3(x(t),uh(t),uc(t)), if (x(t),uh(t)) ∈ Rd

. (6)

If  human  behaves “dangerously” then  the  feedback
controller  (i.e.,  automated  agent)  is  active  and  resumes  the
control  authority;  if  human behaves “safely” then the vehicle
only  responses  to  human’s  operations;  if  human  behaves  in

 

Human driver
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Controller
Vehicle

x

uh

rh
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Fig. 3.     Illustration  of  an  indirect  shared  control  scheme  [56],  also  called
“input-mixing shared control” [58].
 

  
5 The “loop” can refer to an information processing control loop (i.e., attentive
to driving task) or a sensory-motor control loop (i.e., vehicle control), or both
[63]. Here, the “loop” refers to as a sensory-motor control loop.
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“hysteresis” set,  then  the  vehicle  runs  under  a  predesigned
shared-control law.

λ(t)

Besides, the piecewise function is an analytical way to take
account human factors and driving situations in the light of its
practical  integration  with  human’s  prior  knowledge.  For
example,  Li et  al.  [49]  utilized  two  piecewise  functions  to
assess  driving  situations  and  vehicle  performance  separately
based  on  their  empirical  knowledge  and  then  fused  these
piecewise  functions  as  the .  Saito et  al.  [25]  used  an
exponential  function of the steer-wheel torque applied by the
human  driver  to  estimate  how  much  torque  assistance  the
assisting agent should deliver.

λ

2)  Exponential  Function: The  second  approach  to  obtain  a
seamless and smooth  is to use the family of the exponential
function:
 

λ(t) =
1

1− e
α1(

α0
αsafe

−ζ(t))
(7)

ζ(t) α0 α1

αsafe

λ(t)

where  is  the  activity  factor,  and  are  the  tuning
parameters,  and  is  the  parameter  to  guarantee  safe  and
model convergence. The exponential function has been widely
used  in  human-robot  shared  control,  and  then  introduced  to
tackle  control  authority  transfer  and  allocation  in  human-
vehicle shared control afterward. For example, Sentouh et al.
[50]  integrated  the  discrete  driver  state  (distraction)  into  the
exponential  function  to  obtain  a  continuous  shared  control
factor . Wang et al. [37] designed a shared steering control
law  using  an  exponential  function  with  considering  different
driving  styles  to  improve  vehicle  performance  and  reduce
drivers’ workload when taking curve negotiation. However, a
religious  setting  should  be  made  when  applying  this
exponential  function,  since  the  derivative  of  (7)  could  be
discontinuous  when  the  denominator  switches  between

positive and negative.
λIn order to determine a continuous weighted coefficient ( )

for  the  shared  control  systems,  researchers  also  combine  the
piecewise  function and exponential  function to  evaluate  the
safety  level  for  decision-making  in  human-robot  shared
control  [97].  This  kind  of  shared  control  strategy  has  been
carefully  borrowed  to  improve  human-vehicle  shared  control
performance.  For  example,  Sentouh et  al.  [50]  utilized  the
function in the format of (7) to obtain a continuous authority
allocation factor from a discrete driver drowsiness monitoring
factor.  Besides,  some  probabilistic  shared  control  strategies
towards  complex,  dynamic  environments  were  also  proposed
by  modeling  both  the  human’s  intentions  and  the  automated
agent as a probabilistic function to improve the shared control
performance with a exponential function [91], [98].

Ta = µ(a)Ts

µ(a) Ts

a

3)  U-Shape  Function: Another  approach  is  to  directly
compute  how much  assistance  the  driver  needs  based  on  the
U-shape  function,  i.e.,  the  relationship  between  drivers’
workload and performance as well as the need for assistance,
as  shown  in Fig. 4.  For  instance,  Nguyen et  al.  [64],  [101]
designed  an  assistance  torque  to  reduce  drivers’
workload and improve vehicle performance using the U-shape
function  of  drivers’ activity ,  where  is  the  required
input  torque  from  the  vehicle,  and  is  the  drivers’ activity
denoted  as  steering  angle.  Oufroukh  and  Mammar  [88]  also
proposed  a  similar  computation  model  to  compute  the
assistance  torque  using  U-shape  representations  during  lane
keeping or obstacle avoidance maneuver. 

B.  Game-Theory-Based

λ(t)

Differing  from  the  rule-based  method  where  a  predefined
shared  control  law  is  adopted,  some  researchers  treated
human  drivers  and  automated  driving  agents  in  the  shared-

 

TABLE I  
DIL Model Using State-Space Representation Towards the Applications in Vehicle Dynamic Control

Year Reference Application Vehicle model Driver model

2001 [73] Rollover prevention 3 DOF yaw-roll model UMTRI driver model [78]

2007 [74] Steering system control 12 DOF vehicle model Single-point preview driver model [79]

2008 [80] – Linear yaw/sideslip vehicle model Path-following controller with NMS

2009 [81] Path-following task 2 DOF bicycle model 3-level driving steering control model

2010 [82] Shared lateral control 2 DOF bicycle model Two-point visual preview model

2013 [61] DIL stability analysis 2 DOF vehicle model Two-point visual driver model with NMS

2014 [62] LKA system Nonlinear road-vehicle model Preview driver model

2014 [83] Path-following task 2 DOF bicycle model Preview model with time delay

2014 [75] Path-following task 8 DOF nonlinear vehicle model Modified preview model

2016 [76] Steering system control – Driver model incorporated sensory dynamics

2016 [84] LKS and LDA 3 DOF vehicle model Fuzzy controller

2016 [85] DIL simulation Carsim Speed-steering control driver model

2017 [86], [87] Collision avoidance 10 DOF vehicle model Compensatory and anticipatory model

2018 [39] Steering assistance system Nonlinear vehicle model Preview model with NMS

2014, 2017 [64], [88] LKA system 2 DOF bicycle model Two-point visual control model [89]

2019 [75] Path-following task 2 DOF bicycle model Two-point visual preview model
DOF – Degree of freedom; NMS – Neuromuscular systems; LKA – Lane keeping assistance; LDA – Lane departure assistance; Carsim – Vehicle simulation
software.
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control  system  as  two-player  with  dynamic  interaction,  as
shown  in Fig. 5.  The  two-player  assumption  enables  game-
theoretic  approaches  to  be  available  to  tackle  the  relations
between human drivers and automated driving agents.

Game-theoretic  approaches  have  been  widely  applied  to
tackle  the  dynamical  decision-making  problem where  two  or
more  agents  make  decisions  that  influence  one  another
welfare [102] such as vehicle-to-vehicle [103]–[105], grid-to-
vehicle  [106],  [107],  collision  avoidance  at  an  intersection
[108].  Applications  of  game  theory  in  modeling  road  user
behaviors and traffic or transportation can refer to the review
literature  [109],  [110].  Na  and  Cole  made  a  comprehensive
classification  for  dynamic  games  as  shown  in Fig. 6.
Depending on the interactive type between human drivers and
automated agents, the dynamic games between two agents can
be  classified  into  noncooperative  and  cooperative  games
[112], as illustrated below.

1) Noncooperative: Drivers  and  automated  driving  agents
consider  themselves  as  individuals  and  concentrate  on
pursuing  their  interest.  More  specifically,  in  the
noncooperative  game  theory,  the  strategy  type  of  driver  and
automated  driving  agent  can  be  derived  using  Nash
equilibrium and Stackelberg equilibrium. A Nash equilibrium
emerges  in  situations,  where  drivers  and  automated  driving
agents derive their strategies by considering others’ strategies,

and  they  act  simultaneously.  A  Stackelberg  equilibrium
emerges in situations,  where one agent  (i.e.,  human driver  or
automated  driving  agent)  is  the  leader,  and  the  other  one
serves as a follower.

2) Cooperative: Drivers and automated driving agents have
a  sense  of  collectivity  and  attempt  to  enter  into  a  binding
agreement  of  interest,  where  the  goal  of  each  agent  is
identical,  and  their  strategies  are  derived  from  global
optimality [113].

Usually,  the  two  agents  are  assumed  to  be  rational  with
individual  objectives  [111],  [114]–[116].  The  vehicle  is
controlled by a human driver and an automated driving agent,
modeled as
 

ẋ(t) = f (t, x(t),uc(t),uh(t)). (8)
The goal of a human driver and automated driving agent is

to minimize their objective function.
 

u∗h = argmin
uh

Jh(t, x(t), xref
h (t),u∗c,uh) (9)

 

u∗c = argmin
uc

Jc(t, x(t), xref
c (t),uc,u

∗

h) (10)

Jh(·) Jc(·)

x
ref
h

(t)

x
ref
c (t)

x uc uh

where  and  are the objective functions of the human
driver  and  automated  driving  agent,  respectively;  and

 are  the  desired/reference  trajectories  of  the  human
driver  and  automated  driving  agent,  respectively.  The
objective  functions  (9)  and  (10)  both  depend  on  the  vehicle
state  and  the  two  agent’s  inputs,  and .  Here,  (9)  and
(10)  can  be  same  or  different. Table II lists  some  literature
using  game  theory  to  tackle  the  driving  authority  between
human  drivers  and  automated  driving  agents.  We  notice  that
the means of modeling relations between a human driver and
automated driving agent using game-theoretic approaches has
been introduced since 2011.

u∗
h

Taking  the  case  where  (9)  and  (10)  are  symmetric  for
example,  it  is  necessary  to  priorly  know  the  human  driver’s
input  if we want to solve the optimization problem in (10).
However,  the  human  driver’s  actions  also  strictly  depend  on
the  automated  driving  agent’s  actions,  as  shown  in  (9).
Different  assumptions  can  result  in  different  game-theoretic
schemes:

1) Noncooperative  Nash Scheme,  where  the  automated
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Fig. 4.     U-shape  representation  of  driver’s  need  for  assistance  [8],  [99],
[100].
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Fig. 5.     Dynamic games between a human driver and the automated driving
agent.
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Fig. 6.     Classification of dynamic games [111].
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driving  agent  will  compensate  for  human  drivers’ erroneous
actions  to  imitate  the  possible  opposite  effects,  and
simultaneously,  human  drivers  will  also  estimate  action
applied  by  the  automated  driving  agent,  and  to  neutralize  its
influence by further changing her/his inputs;

2) Noncooperative  Stackelberg Scheme,  where  the
automated  driving  agent  will  compensate  for  human  drivers’
erroneous actions to imitate the possible opposite affects, and
sequentially human  drivers  will  generate  actions  when  they
have  a  very  well  knowledge  of  the  actions  applied  by
automated agents, and vice versa;

3) Cooperative  Pareto Scheme,  where  both  human  drivers
and  automated  driving  agents  try  to  account  for  each  other’s
desired trajectory, and simultaneously will react to both each
other’s actions.

The Nash and Stackelberg equilibriums can be employed to
solve  the  closely  coupled  optimization  problem  in  driver-
vehicle  interactions.  Either  analytical  or  approximated
solutions  can  be  derived  as  the  human  driver’s  and  the
automated  driving  agents’ control  actions.  When  the
approximated  solution  is  concerned,  the  following  two
expressions hold:
 

u∗h ≈ ũh (11)
 

u∗c ≈ ũc. (12)
For  example,  Flad et  al.  [116]  introduced  an  approximated

Stackelberg  solution  [122]  to  solve  the  problem  between  a
human  driver  and  ADAS  controller  (i.e.,  automated  driving
agent) by treating one of them as a leader and the other one as
a  follower.  In  [77],  Li et  al.  designed  a  continuous  role
adaptation  of  human-robot  shared  control  using  the  Nash-
equilibrium,  where  human  and  the  automatic  controller  (i.e.,
automated  driving  agent)  can  simultaneously  exert  control  to
the  robot,  instead  of  directly  using  the  Stackelberg  solution
[114],  [107].  An  adaption  law  was  also  designed  by
comparing  the  difference  between  measured  human  drivers’
inputs  and  predefined  Nash  equilibrium.  Besides,  the  game
theory could also integrate the uncertainty from human drivers
and external factors into the shared control system [121] with
a stochastic dynamic programming solver.

Although the above mentioned two typical methods offer us
ways to design the shared control strategies between a human
driver and automated driving agents, the two agents could also
fail  to  cooperate  when  a  wrong  estimation  of  current  states
regarding driving situation perception and human driver intent

occurs.  Also,  a  poor-designed  shared  control  strategy  could
even  bring  four  main  adverse  effects  [123],  [124]:  loss  of
expertise,  complacency,  trust,  and  loss  of  adaptivity.
Therefore,  studies  dealing  with  human-vehicle  cooperation
have  to  consider  the  human’s  characteristics  such  as
uncertainty  according  to  reduce  the  conflicts  with  the  driver.
In  what  follows,  we  will  discuss  about  modeling  human
drivers from different perspectives. 

IV.  Human Driver Modeling

In order to obtain well-designed shared control interactions
between  a  human  driver  and  a  highly  automated  vehicle,
Norman  [125]  stated  that  human  must  always  be  in  control,
must  be  actively  engaged  and  adequately  informed,  and  that
human  and  automated  vehicle  must  understand  each  other’s
intents  correctly  in  the  complex  driver-vehicle  systems.
Therefore,  understanding  and  modeling  human  drivers’
sensory  dynamics,  cognition  processes,  hidden  states,  and
operation  characteristics  are  equally  important  as  dynamic
vehicle  systems  for  driver-vehicle  shared  control  systems.
Human drivers usually complete a driving task at three levels
[126],  [127]  (Fig. 7): strategic level, tactical level,  and
operational (control)  level.  The  first  two  levels  involve
cognition while the third level involves execution. According
to  the  previous  review  of  all  literature,  we  introduce  and
discuss  the  driver  model  from  its  functional  modules,
modeling approaches, and driver’s intent inference as well as
state detection. 
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Fig. 7.     A  hierarchical  structure  for  modeling  human  drivers  when  driving
[126]. EI = Environment inputs.
 

 

TABLE II  
Game-Theoretical Applications in the Shared Control Between Human Driver and Automated Driving Agent

Year Reference Application Types of game theory

2011 [117] Stability/yaw control Noncooperative

2014 [118] Energy management Noncooperative

2013, 2015 [111], [119] Collision avoidance control Noncooperative/cooperative

2017 [114] Active steering control Noncooperative

2017 [115] Driver assisted steering Noncooperative

2019 [120] Obstacle avoidance Noncooperative

2019 [121] Lane change Noncooperative
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A.  Functional Module
1)  Sensory  Dynamics: A  recent  review  in  [128]

demonstrates  that  drivers’ sensory  dynamic  characteristics
play  an  important  role  in  driver-vehicle  system  design,
making them interact more friendly and safe. Driver’s sensory
dynamics used for vehicle speed and direction control mainly
include [128] (ranked by the level of importance for a regular
driving task [71]):

a)  Visual  — The visual  system is  the  human driver’s  only
means  of  detecting  the  future  road  trajectory.  A  general
review  of  overall  literature  demonstrates  that  visual
information  is  the  highest  significant  in  normal  driving
process,  accounted  for  about  90% of  all  sensory  information
[71]. Driver’s visual information (e.g., eye gaze [129], [130])
can  also  reflect  driver’s  underlying  intentions  (e.g.,  lane
change intents  [131],  readiness  to  take over  from automation
[132]), mental or physical states (e.g., fatigue detection [133]),
and upcoming actions [134].

b) Vestibular and kinesthetic — Human drivers usually use
the  motion  information  (e.g.,  acceleration  and  rotation  of
vehicles) derived from vestibular and kinesthetic channels as a
supplement to visual information for control task, which could
also  contribute  to  the  human  combined  arm-trunk  motion
[135].

c)  Somatosensory  — The  somatosensory  information  used
in control of vehicle steering and speed mainly includes tactile
and haptic information such as pressure on the gas/brake pedal
[136] and steering torque on the steering handwheel [39].

d) Auditory — The auditory information usually is used as a
supplementary  cue  within  a  multi-channel  environment  in  a
normal driving process.

The  sensory  dynamics  have  their  physical  characteristics
such  as  time  delay,  perception  limitations,  and  coherence
zones  because  of  human’s  physical,  biochemical,  mental
limitations  and  the  human’s  ability  to  perceive  and  process
information. A driver model which integrates human drivers’
sensory  dynamics  could  help  understand  humans,  thus  for
improving  comfort,  safety  and  driveability  of  driver-vehicle
shared  control  systems  and  reducing  the  incompatibility6 or
negative  interference  [123]  between  the  human  driver  and
automation. The haptic information on the steering wheel has
been  widely  used  in  the  shared  steering  control  systems  to
reduce the driver’s  mental/physical  workload and to  improve
driving skills [29], [138], [139]. A sensorimotor driver model
was developed to improve the shared-control performance by
considering  both  visual  and  kinesthetic  perception  and
including compensatory and anticipatory processes [81].

2) Cognition: John A. Michon has mentioned the cognitive
driver  model  from  a  critical  view  of  introducing  the
behavioral  sciences and psychology to understand the human
decision-making  processes  [126].  Much  of  the  decision-
making  generated  by  human  drivers  is  over  discrete  actions,
such as choosing whether/when/how to lane change [140]. To
capture  these  discrete  features,  researchers  modeled  human

drivers’ high-level tactical behavior (e.g., speed selection and
decision  making)  and  strategic  behavior  (e.g.,  route  planning
and  navigation).  One  of  the  most  utilized  means  is  based  on
the “adaptive  control  of  thought-rational  (ACT-R)  [141]”
cognitive where the discrete nature of drivers’ control actions
is  captured  from  a  cognitive  perspective.  For  example,
Salvucci et  al.  developed  an  integrated  cognitive  path-
following  driver  model  [142]  and  lane-change  driver  model
[143]  using  the  combination  of  the  ACT-R  cognitive
architecture and perceptual-motor process.

Some  researchers  also  developed  cognitive  driver  models
based  on  on-hand  knowledge  or  with  new  insights  in
experimental data. Misener et al. [144] developed a cognitive
car-following model to avoid rear-end crashes with a stopped
lead  vehicle  by  fusing  current  knowledge  derived  from
experimental  data.  Liang et  al.  [145]  developed  a  system  to
detect driver distraction in real-time by cognitively analyzing
three  indicators:  how  to  define  distraction,  which  data  were
input to the model, and how the input data were summarized.
Liang also demonstrated that  combining cognitive and visual
distractions  can  improve  vehicle  performance  than  each  of
them [146]. Much more literature on modeling and analyzing
drivers’ cognitive  distraction  can  see  references  [147]–[150].
A review paper  for  modeling  driver  behaviors  in  a  cognitive
architecture refers to [70], [72].

Based on the cognitive driver model,  a cognitive assist  can
be potentially provided in the context of driver-vehicle shared
control  to  reduce  harmful  interference  between  two  agents.
Cai and Lin [151] proposed a coordinating cognitive assist to
determine when an  assist  should  be  provided  and how  much
assistance to be supported for a steering assist control system.
The cognitive assistance was divided into three stages to assist
drivers  in  acquiring  information,  analyzing  information  and
making a decision, and implementing action [4].

3) Neuromuscular-Skeletal  Dynamics: Existed research has
demonstrated  that  a  good  understanding  of  neuromuscular-
skeletal  dynamics  has  constraints  upon  the  dynamics  of
perception-action coupling [152] and is  significantly vital  for
a well-designed shared control system, for example, avoiding
subtle  conflict  between  a  human  driver  and  automated  agent
[153].  For  human  drivers,  the  neuromuscular-skeletal
dynamics  in  human-vehicle  systems  mainly  include  the  arm
and  foot,  representing  the  lateral  and  longitudinal  control,
respectively.

For  the dynamic properties  of  a  driver’s  holding a  steering
wheel,  Pick  and  Cole  [154],  [155]  investigated  the  effect  of
the driver  opposing a constant  offset  torque and the effect  of
the  driver  co-contracting  the  muscles,  and  found  that  both
actions will increase the stiffness and damping of the arms. A
linear  model  of  the  neuromuscular  system,  muscles,  limbs,
and  the  vehicle  was  then  set  up  and  applied  to  a  driver
simulator  [156],  a  guideline  to  shared  control  [58],  a  path-
following  driver–vehicle  model  [157],  and  a  driver  lateral
control  model  [80],  [158].  Besides,  the  characteristics  of
driver  neuromuscular  dynamics  are  different  from each other
and affected by steering systems (e.g., active and passive) and
hand  positions  on  the  steering  wheel  [159],  which  should  be
considered when designing a controller.

  
6 Compatibility  here  is  referred  to  as  the  quality  describing  the  fit  or  match
[32]  between  a  human  driver  and  automated  driving  agents,  regarding  the
outer  (e.g.,  interfaces)  and  inner  (e.g.,  cognition)  interactions  [137]  between
them.
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For  the  dynamic  properties  of  a  driver’s  low  leg  and  foot
hitting the gas or brake pedal, researchers mainly focus on the
ankle-foot neuromuscular dynamics, which enables us to gain
insight  into  both  responses  to  visual  feedback  and  haptic
feedback.  Abbink et  al.  [136]  investigated  the  biomechanical
properties  of  the  ankle-foot  complex  (i.e.,  admittance)  [160]
and  developed  a  driver  support  system  that  uses  continuous
haptic  feedback  on  the  gas  pedal  to  inform  drivers  of  the
separation to the lead vehicle. 

B.  Modeling Approaches
1)  Control-Theoretic  Driver  Model: Understanding  the

potential  and  the  limits  of  a  tightly  coupled  driver-vehicle-
road  system  are  not  trivial.  Many  kinds  of  driver  models
towards  the  application  in  vehicle  dynamics  control  can  be
found in review articles [66], [161], [162], in which literature
before  2014  was  listed,  including  lateral  and  longitudinal
driver  models. Table I lists  some  popular  driver  models
toward  vehicle  dynamics  control  applications  and  indicates
that the single/two-point visual preview driver models or their
extensions  are  highly  preferred  since  they  are  easy  to  be
integrated  with  vehicle  models.  However,  one  of  the  most
significant  limitations  is  that  the  single/two-point  visual
preview driver models assume that human drivers’ references
or desired trajectories are exactly known, which is not always
available  in  the  real  application.  Besides,  for  such  two-point
visual  preview  models,  drivers’ essential  physical
characteristics  such  as  the  reaction  time  delay,  anticipatory
and  compensatory  can  be  reflected,  but  not  cognitive
characteristics such as neuromuscular dynamics of driver arms
and  decision-making  processes.  For  example,  the  control-
theoretic driver models (see review [66]) usually ignore issues
of  whether  or  how  to  perceive  the  model  inputs  from  the
external  environment  and  how drivers  correctly  interact  with
other automatic controllers [70] via visual, haptic, or auditory
sensors [71].

Most control-theoretic driver models have been used in the
driver-vehicle  shared  control  systems  with  a  game-theoretic
scheme.  With  this  purpose,  the  human  driver  and  the
automated  driving  agent  should  be  first  modeled,  which
makes it  feasible to estimate each other’s actions.  One of the
most  popular  approaches  for  modeling  automated  driving
agents is using control theory (e.g.,  model predictive control)
since it can describe drivers’ ability to predict vehicle’s future
states  [163]  based  on  their  internal  model  or  individual’s
driving  skills  [164].  Na  and  Cole  [111],  [114]  applied  the
combination  of  the  distributed  MPC  and  linear  quadratic
dynamic  optimization  (LQDO)  to  formulate  human  drivers
and  automated  driving  agents.  The  objective  function  with
quadratic structure is also widely used to design an automated
driving agent considering human drivers’ forthcoming motion
primitives  [115]  or  drivers’ haptic  inputs  on  the  control
interface [77].

2) Learning-Based Driver Model: Though the driver models
as  mentioned  above  could  describe  and  predict  drivers’
behavior,  actions,  and  states  with  relatively  satisfied
performance,  they  did  not  concern  the  dynamic,  stochastic
decision-making processes of driver behavior, which requires

models capable of connecting temporal and spatial processes.
For this purpose, some researchers also utilized learning-based
approaches  to  deal  with  highly  nonlinear  properties  of  driver
behaviors,  such  as  neural  networks  [165],  [166].  Research  in
[68],  [167]–[169]  demonstrates  that  the  Markov  models
combined  with  Gaussian  mixture  models  achieve  a  satisfied
performance of capturing driver intent and action. Besides, the
Bayesian  inferences  [170],  [171],  autoregressive  exogenous
(ARX)  [172],  and  deep  learning  [173]  were  also  developed.
These  learning-based  approaches  highly  depend  on  the
collected  training  data,  and  some  of  them  are  data-hungry
such as deep neural networks [174]. 

C.  Intent Inference and State Detection
Correctly inferring drivers’ intents  and states  is  profoundly

essential  to  design  an  automatic  controller  capable  of
delivering  an  adequate  input  not  only  to  follow/track  the
desired  trajectories  but  also  to  avoid  intrusive  interventions
between  the  human  driver  and  the  automated  driving  agent
[175].

1)  Intent  Inference: Steering  wheel,  as  a  direct  interface,
allows human drivers and automated driving agents to act and
exchange  information  in  a  simultaneous  and  continuous  way
[176], [177]. Therefore, human drivers’ intents can be directly
captured through the torque applied on the steering wheel by
drivers.  For  example,  in  a  torque-based  steering  assistance
system  [39],  the  automated  driving  agent  uses  sensors  to
obtain  the  steering  torque  forced  by  drivers,  and  inversely,
human  drivers  can  also  react  to  his/her  haptic  perception
information from the steering wheel. Nguyen et al. [74], [101]
utilized the torque applied to the steering wheel by drivers as
an  indicator  to  compute  how  much  assistance  torque  an
automated  driving  agent  should  provide.  Li et  al.  [77]
proposed  a  continuous  adaption  law  for  the  human-robot
shared  control  system  to  determine  the  automated  driving
agent’s  role  (i.e.,  leader  or  follower)  by  comparing  the
measured torque applied by the human to the predefined Nash
equilibrium computed through optimal control techniques.

In addition to using the torque applied on the steering wheel
by  a  human,  the  dynamic  neuromuscular  analysis  of  driver
arms  or  legs  can  also  provide  a  guideline  for  shared  control
design of  a  steering system [39],  [58],  [80],  [157],  [177]  and
the gas/brake pedal control [136], [177]. For instance, in order
to  reduce  the  intrusive  intervention  between  human  drivers
and  automated  systems,  Ziya et  al.  [39]  modeled  human
drivers’ steering  behavior  by  combining  the  neuromuscular
response  of  drivers  and  the  desired  steering  angle  that  was  a
function  of  vehicle  states  and  road  geometry.  Moreover,  the
impedance of a haptic torque was used as an indicator of the
drivers’ intents.  Some  researchers  also  designed  a  guidance
torque to assist drivers to keep the vehicle in the driving lane
[178] and to improve vehicle safety for fatigue-related driver
behavior [179].

Much literature on modeling human drivers’ neuromuscular
dynamics of  steering behavior  has been found in [76],  [155],
[157].  The  model  of  driver’s  arm  and  steering  dynamics
usually  combines  with  a  path-following  control  model,
obtaining a linear driver model with neuromuscular dynamics
[80]:
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(Jd + Js)θ̈s+ (Bd +Bs)θ̇s+ (Kd +Ks)θs = Tm−
MT

ns

(13)

J∗ ∗ ∗
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MT

Tm θs

where  are  the  inertia,  damping  and  stiffness  of ,  with 
being  driver  arm  or  steering  systems;  is  the  steering  gear
ratio;  is the torque arising from the lateral forces and self-
aligning  moment;  is  the  muscle  torque;  and  is  the
steering  wheel  angle.  Model  (13)  has  been  used  to  infer
drivers’ intents.  For  example,  the  changes  of  damping  and
stiffness  of  driver’s  arms  can  reflect  whether  the  automatic
controller’s  outputs  satisfy  drivers’ desired  trajectory  or  the
conflict  level  between  drivers  and  automated  driving  agents
[58], [59], [154]. Instead of using indirect cues (e.g., steering
angle,  vehicle  dynamics),  direct  human-observing  cues  (e.g.,
body  gesture,  head,  hands,  feet,  and  gaze  direction)  can  also
be used to predict driver intent [180]–[183].

In  addition  to  directly  using  the  haptic  information,  driver
intent can also be inferred and predicted according to dynamic
driving  environments  such  as  peripheral  vehicles  [184]  and
vehicle  position  to  lane  edges  [185].  The  dynamic  Bayesian
networks  (DBN)  [186],  [187],  Markov  decision  processes
(MDP) [167], [181], and partially observable Markov decision
processes  (POMDP)  [188]  are  one  obvious  place  to  start,
assuming that one can extract the underlying latent processes
of driver behavior which is a dynamic and stochastic process.
Besides,  the correlation between human driver  gaze behavior
and  steering  moments  will  decrease  while  increasing  the
allocation  ratio  of  control  authority  for  intelligent  driving
agents  [189],  indicating  that  driver  gaze  behavior  could  be
used to infer driver’s intent and avoid conflict.

2)  State  Detection: Correctly  detecting  driver  state  (e.g.,
sleepiness, drowsiness, fatigue, distraction, impairment) offers
an  opportunity  to  make  a  practical  decision  of  authority
allocation,  thus  improving  vehicle  safety.  For  example,
Saito et  al.  [36]  proposed  a  dual  control  scheme  for  lane-
keeping  assistance  systems  by  detecting  the  driver’s
sleepiness  level  using  eye  blinking  frequency  and  facial
information. More driver intent detection and inference using
direct  human-observing  cues  can  refer  to  the  review  paper
[133], [190].

Visual  distraction  or  cognitive  distraction  have  been
investigated  by  combining  vehicle  state  [36],  [147],  [148],
drivers’ visual state [145]–[147], [149], and operations [147],
[149],  [191].  Answers  to  the  question  of  how  to  measure  a
driver’s  cognitive  distraction  have  been  given  in  [150].
Learning-based approaches such as deep sparse autoencoders
[192],  deep  belief  networks  or  DBNs  [188],  support  vector
machines (SVM) [145], [193] have been widely used to detect
and classify driver distraction. 

V.  Future Challenges and Opportunities

Due  to  the  limited  ability  to  understand  human  drivers,
many open-ended questions still exist in driver-vehicle shared
control  systems.  This  section  will  present  and  discuss  some
open-ended,  challenging,  inevitable  questions  regarding  the
shared control strategies, the trust or over-trust, and authority
allocation, followed by future opportunities.

1)  How  to  design  the  adaption  law  or  adaptive/adaptable
shared  control?  Also,  what  kind  of  role  of  the  human  driver

should be in driver-vehicle shared control systems?
In  Section  III,  we  have  discussed  different  ways  to  design

adaptive  shared  control  between  the  human  driver  and  an
automated  driving  agent.  Most  of  them  were  from  U-shape,
noncooperative  game  theory,  and  the  torque  applied  on  the
steering  wheel  by  the  human.  The  role  of  human  drivers  in
highly automated vehicles can be defined as

a)  Convertible  role  between  leader  and  follower  [115]
(game theory);

b)  Symbiotic  relations  with  the  automated  driving  agent
(page 24 in [194]);

c) Being an active driver, passengers, or passive drivers, but
they may still be required to take over control [190];

d) Or being parallel [46], [195].
The  different roles of  human  drivers  in  driver-vehicle

systems  result  in  various  shared-control  paradigms.  In  terms
of  the  methods  researchers  utilized,  the  shared  control
performance  can  be  improved  by  considering  individual
characteristics,  classifying  the  levels  of  human-automation
interaction, and integrating with cognitive psychology.

The  U-shape  control  law  only  qualitatively  describes  the
relations  between  drivers’ workload  and  the  needs  for
assistance  as  well  as  the  driving  performance,  but  not  a
quantitative expression. As a result, the adaption control laws
derived  from  U-shape  was  greatly  different,  for  example,  in
literature  [64]  and  [88].  Many  factors  could  cause  the
difference,  such  as  the  diversity  in  individuals’ driving
experience  and  physical/psychological  status.  Classifying  the
type  of  human  driver  [196],  regarding  their  abilities  and
characteristics,  and  then  designing  a  personalized  driver
model  [197]  capable  of  describing  and  adapting  this  driver’s
characteristics  [198]  could  be  an  efficient  way  to  tackle  this
kind of problems.

In terms of the game-theory-based adaptive law, researchers
usually modeled human drivers by assuming that drivers had a
perfect  internal  model  [72]  for  understanding  and  predicting
vehicle states as the same with an automatic controller, that is,
both agents had an identical, deterministic objective functions
[114],  [115],  [119].  In  the  real  world,  however,  humans
driving  is  not  always  a  deterministic  process  [199],  but  in
nature,  a  stochastic  and  dynamic  process  [167],  [200],  and
even impaired behaviors  (e.g.,  fatigue and drunk).  Therefore,
the stochastic driver behavior and divergences among drivers
should be modeled and accounted in future work. Besides, the
underlying relations (the role of a human driver in the driver-
vehicle  system with  shared control  schemes)  between human
drivers and automated driving agents remain open-end.

In response to the problems above, classifying the types and
levels  of  human-automation  interaction  [4],  [12],  [201]  and
increase the agent’s adaptability [202] could be an applicable
approach. The automation functions usually cover four types:
information  acquisition,  information  analysis,  decision  and
action  selection,  and  action  implementation.  Within  each  of
these  types,  the  automation  is  defined  and  treated  as  a
continuous  level  from  low  (i.e.,  fully  manual)  to  high  (i.e.,
fully  automatic).  Human  performance  consequences  in  terms
of  types  and  levels  constitute  primary  evaluative  criteria  for
automation  design.  This  approach  has  been  used  in  driver
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assistance system design [151].
Besides,  Beetz et  al. [203]  and  Heide  and  Henning  [204]

proposed  the  idea  of  cognitive  car  separately  —  a
technological cognitive system that can perceive itself and its
environment, as well as collect and structure information in an
autonomous  way.  In  the  cognitive  cars,  some  key  issues
remain  regarding  action  implementation  (i.e.,  function
delegation):

a) What kind of actions should be implemented?
b) When to add the actions?
c) How to implement the function delegation appropriately?
To  date,  we  are  not  able  to  answer  the  three  questions

systematically,  but  most  research  focuses  on  i)  the  effects  of
haptic  support  systems  on  driver  performance;  ii)  vehicle
stability  control  for  collision  avoidance,  and  iii)  active
steering  system  with  adaptive  assisted  systems.  One  of  the
potentially useful approaches is to consider and built cognitive
cooperation  based  on  cognitive  psychology,  as  mentioned  in
[123]. Li et al. also holds that the cognitive cars will be a new
frontier advanced driver assistance system for research [205].
Besides,  the  Petri  net  modeling  has  been  demonstrated  as  an
alternative solution [206].

2)  What  is  the  appropriate  trust?  Alternatively,  would
drivers take a seat as passive occupants, who fully trust their
vehicles?

Over-reliance on automated driving and driver complacency
are  often  problematic  [19],  thus  resulting  in,  for  example,  a
long  reaction  time  [10].  The  driver,  who  fully  and  deeply
trusts  the  ability  of  driving  automation,  therefore  failed  to
intervene and take manual  control  even as  the driver  crashed
the  car  [11],  [17].  Fortunately,  human  drivers  have  an
appropriate level of trust in the automated driving agent, such
as  being  aware  that  the  automation  system  can  better  sense
and  faster  response  [207]  and  displaying  system  situation
awareness  [208],  but  sometimes  can  also  make  mistakes.
Driver  performance  can  also  be  improved  by  effectively
conveying  the  limitations  of  automated  driving  to  human
drivers  [209],  [210].  Besides,  an  appropriate,  elaborate
practice  for  drivers  could  mitigate  the  negative  impact  of
over-trust  in  the  automated  driving  agent  on  reaction  time
[41].

Besides,  when  the  desired  trajectories  derived  from  the
driver and the automated driving agent are similar, the vehicle
inputs  from  both  of  them  locally  differ  but  combine  without
conflict. However, when the desired trajectories of two agents
are  different,  things  will  become  intractable  and  bring  a
question: which one input should be trusted and exerted to the
vehicle? One potential way for tackling this issue is to develop
a  psychologically-grounded  cognitive-physical  model  [194]
capable  of  correctly  describing  and  predicting  the  driver’s
desired trajectory from the operational level, tactical level, and
strategic  level  by  understanding  information  processes
(neuroscience)  and  cognitive  abilities  (psychology)  of  the
driver.  The  cybernetic  driver  models  integrating  visual
(including  anticipation  and  compensation)  systems  with
neuromuscular  systems  (or  motor  processes)  are  an  efficient
way  to  benefit  shared  control.  The  readers  can  refer  to  the
review  paper  [211]  for  details  about  the  model  structure  and

parameter identification. Another potential way is to design a
metric to evaluate and analyze the conflicts between a human
driver  and  automated  driving  agent  [212].  Many  indicators
have been developed to evaluate shared control performance,
and  they  mainly  concern  four  aspects:  accuracy  (e.g.,  path-
tracking  errors)  [49],  [50],  [211],  safety  (e.g.,  risk  metrics
such as time to lane crossing) [49], [120], compatibility (e.g.,
existing conflicts or not) [50], [211], and robustness (e.g., the
vibration  in  the  resonance  response  of  vehicle)  [50],  [61].  In
the haptic shared control system, the directions and periods of
the torque applied to the steering wheel by a human driver and
automated  driving  agent  are  most  commonly  used.  For
example,  researchers  in  [211]  considered  four  aspects  of
steering  torque  to  evaluate  conflicts  in  haptic  shared  control:
consistency  rate,  resistance  rate,  contradiction  rate,  and
contradiction level.

3)  Which  way  is  the  best  transition  in  authority,  ability,
responsibility, and control (A2RC)?

Before  presenting  the  open-ended  questions,  we  should
define  some  basic  concepts  in  interactions  between  human
driver and automated driving agents according to [213]:

a) Authority,  which  can  be  defined  by  what  the  human
driver  or  automated  driving  agent  is  allowed  to  do  or  not  to
do.  Further,  the  authority  can  be  partially  and  continuously
transferred between human drivers and automated agents.

b) Ability,  which  can  be  defined  as  the  possession  of  the
means or  skill  to  perceive and select  adequate  action and act
appropriately.

c) Responsibility,  which  can  be  assigned  beforehand  to
motivate  certain  actions  and  evaluated  afterward,  where  the
human driver  or  automated driving agent  is  held accountable
or  to  blame for  a  state  or  action of  the  driver-vehicle  system
and consequences resulting thereof.

d) Control,  which means having the power to influence the
vehicle states.

Fig. 8 shows the relations between the four concepts. Based
on  these  basic  definitions,  the  issues  that  existed  in  human-
automation  interaction  systems  are  also  encountered  in  the
human-vehicle  shared  control  systems  since  the  highly
automated  vehicle  is  a  case-specific  automation  system  [4],
[213], for example:

i)  How  do  we  balance  between  exploiting  increasingly
powerful  technologies  and  retaining  authority  for  human
drivers?

ii)  How  can  we  define  clear,  safe,  efficient  and  enjoyable
roles between human drivers and automated agents?
 

Ability

Authority

Responsibility

Should not be

smaller than

Should not be

smaller than

Control Responsibility
motives causes

hints

hintsallows

enables

 
Fig. 8.     Relations  between  ability,  authority,  control,  and  responsibility
[213].
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iii)  Which  of  the  subsystems  of  future  human-vehicle
systems should have which ability, which authority and which
responsibility?  Alternatively,  which  system  functions  should
be automated and to what extent?

iv) What other concepts besides authority and responsibility
do  we  need  to  describe  and  shape  a  dynamic  but  stable
balance between human drivers and automated driving agent?

According  to  these  predefined  terms,  there  is  an  allocation
problem  in  terms  of  A2RC  between  human  drivers  and
automated driving agents. Most literature only focuses on the
control  authority  between  human  drivers  and  automated
driving  agents,  but  ignore  the  relations  regarding  the  A2RC.
In  the  real  world,  the  authority,  ability,  responsibility,  and
control  are  not  independent.  In  [99],  an  A2RC  diagram  was
developed  to  analyze  and  design  human-machine  systems,
which can be used to tackle the transition issues of  A2RC in
driver-vehicle shared control systems. Besides, Acarman et al.
[214]  also  proposed  a  control  authority  transition  system  for
collision and accident avoidance considering drivers’ physical
and cognitive capacities as well as the situation/danger/hazard
analysis.  In  addition  to  the  A2RC,  the  H-metaphor  (H-mode
or horse metaphor) [215], i.e., a metaphor of the relationships
between a horseback rider and the horse, could be as a guide
to open new horizons in the shared-control systems, which has
shown  its  remarkable  achievement  in  aircraft  co-pilot  design
[216] and highly automated driving [217].

On  the  other  hand,  exploiting  brain-related  signals  could
directly  offer  rich  information  about  human  driver  intent,
ability  and  thus  allow  us  to  optimize  the  allocation  of
authority and reduce the conflict between two agents. A well-
designed  human-vehicle  interaction  interface  integrated  with
human  driver  psychological  and  psychobiological  charac-
teristics  [218],  [219]  and  active  capabilities  [220]  could
benefit  shared-control  tasks  by  offering  much  cognition
information.  Moreover,  the  feedback  from  the  interaction
interface could also show if a poor-designed interface, adverse
effects on human driver [221], and control performance [222].
Similar  to  the  human-computer  interaction  design  (see  pages
29–48  in  [223])  from  an  empirical  research  perspective,
human  factors  regarding  perception  sensors  (i.e.,  vision,
vestibular  and  kinesthetic,  somatosensory,  and  auditory,  as
discussed  in  Section  IV-A-1)),  action  responders  (i.e.,  limbs
and  legs,  as  discussed  in  Section  IV-A-3)),  and  brain  factors
(i.e.,  perception,  cognition,  and  memory,  as  discussed  in
Section  IV-A-2))  could  be  carefully  considered  and
implemented  based  on  the  methods  of  human-robot  shared
control  (see the review literature in [224],  [225]).  One of  the
typical  applications  is  to  use  brain-related  signals  to  enhance
shared-control  performance  through  the  brain-vehicle
interface  [226]–[229].  Various  brain-vehicle  interfaces  with
different  capabilities  (e.g.,  adaptive  brain-vehicle  interface
[230]) have been designed based on EEG signals [231]). More
literature refers to the review literature [21], [232].

Moreover,  human  factors  (e.g.,  the  way  to  shared
information  with  the  human  driver)  can  influence  the
transitions  of  A2RC.  An  inefficient  design  of  shared  control
interface  would  cause  conflicts  between  human  drivers  and
automated driving agent, even the catastrophic consequences.

Eriksson et  al.  [233]  investigated  different  ways  to  support
driver  decision-making  during  automation-to-manual  transi-
tions  in  a  take-over  scenario.  Most  related  works  have  been
comprehensively  discussed  in  the  recent  review  paper  [234].
However,  it  is  still  not  entirely  clear  about  the  influence  of
different  ways  (such as  torque,  steering  angle,  and vibration)
to  information  transition  between  a  human  driver  and
automated  driving  agents  on  the  performance  during  shared
control. 

VI.  Discussion and Conclusion

The motivation for this review paper is to illustrate how to
model  a  driver-vehicle  shared  control  system and understand
the challenges and opportunities for highly automated vehicles
with human drivers still retained in the control loop. We have
discussed  the  architectures  of  driver-vehicle  shared  control
systems,  the  approaches  to  modeling  the  complex  systems,
and the future challenges and opportunities. We have provided
a  survey  of  the  progress  over  the  past  decades  in  driver-
vehicle shared control technologies. In order to understand the
complex driver-vehicle systems, we decoupled it into different
subsystems and summarized how to model them by reviewing
the  state-of-the-art  literature.  Finally,  we  have  provided
discussions  on  the  challenges  and  opportunities  in  this  field.
While  advanced  driver  assistance  systems  have  been
developed and introduced over the past  decade,  a  deeper and
more  holistic  understanding  of  the  relationship  between
human drivers and automated driving agents and the way that
human  drivers  cognitively  interact  with  the  driving
environment will remain an active area of research in next few
years.
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