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We show that the steady state entropy production rate of a stochastic process is inversely pro-
portional to the minimal time needed to decide on the direction of the arrow of time. Here we
apply Wald’s sequential probability ratio test to optimally decide on the direction of time’s ar-
row in stationary Markov processes. Furthermore the steady state entropy production rate can be
estimated using mean first-passage times of suitable physical variables. We derive a first-passage
time fluctuation theorem which implies that the decision time distributions for correct and wrong
decisions are equal. Our results are illustrated by numerical simulations of two simple examples of
nonequilibrium processes.
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Processes that take place far from thermodynamic
equilibrium are in general irreversible and are associated
with entropy production. Irreversibility implies that a
sequence of events that takes place during a process oc-
curs with different probability than the same sequence
in time-reversed order. Irreversibility and the thermo-
dynamic arrow of time can be illustrated considering a
movie displaying the evolution of a complex dynamic pro-
cess. Such a movie can be run either forward in time or in
reverse. For an irreversible process it is possible to decide
whether the movie is run forward or in reverse defining
the direction of the arrow of time by the direction in
which entropy increases on average [1]. For a system
at thermodynamic equilibrium, however, even though all
atoms or molecules move rapidly in all directions, it is
impossible when watching a movie to tell whether it runs
forward or in reverse. This raises the following ques-
tion: Can the time τdec needed to decide between two
hypotheses (movie run forward or in reverse) be related
quantitatively to the degree of irreversibility and the rate
of entropy production?

Decision theory provides a general theoretical frame-
work to optimally make decisions based on observations
of stochastic processes [2]. An important question of de-
cision theory is what is the earliest time to make a de-
cision d between two competing hypothesis H1 and H0

with a given reliability, while observing a stochastic pro-
cess. In 1943, A. Wald made a pioneering contribution
to this problem by introducing the sequential probabil-
ity ratio test (SPRT) [3], which provides the minimal
mean decision time for a broad class of stochastic pro-
cesses [4]. Wald’s SPRT states that the decision d = 1
(d = 0) should be made when the cumulated logarithm
of the likelihood ratio L(t) for the first time exceeds
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FIG. 1. Log-likelihood ratio of the sequential probability ra-
tio test in the arrow of time as a function of time in a drift-
diffusion process with diffusion coefficient D = 0.52µm2/s
and drift velocity v = 65µm/s. The simulation time step is
∆t = 0.1ms. The thresholds of the test are shown as hor-
izontal lines for symmetric error probabilities equal to 20%
(red) and 1% (blue). The thresholds L0 and L1 correspond
to the choice of one of the two hypotheses: the sequence runs
forwards (L1) or backwards (L0) in time. With 20% error
probability, the decision is made faster (red circle and verti-
cal red dashed line) than for 1% error probability (blue circle
and vertical blue dashed line).

(falls below) a prescribed threshold L1 (L0) (see Fig.
1). The thresholds L1 and L0 are determined by the
maximally allowed probabilities to make a wrong deci-
sion α1 = P (d = 1|H0) and α0 = P (d = 0|H1). Here, α1

(α0) is the probability to incorrectly make the decision
d = 1 (d = 0) when the hypothesis H0 (H1) is true.
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In this Letter, we derive a general relation between
the average entropy production rate in a nonequilibrium
steady state and the mean time to decide whether a sta-
tionary stochastic process runs forwards (H1) or back-
wards in time (H0) using the SPRT. Furthermore, we in-
troduce a fluctuation theorem for the first-passage time
probability distribution of the total entropy changes and
obtain a fluctuation theorem for the decision time distri-
bution of the SPRT in the arrow of time. Our work re-
veals that entropy production can be estimated measur-
ing first-passage times of stationary stochastic processes.

We consider a physical system in a nonequilibrium
steady state. We denote by Xt = {X(s)}ts=0 a path de-
scribing the evolution of a state as a function of time
t. We denote by X̃t the time-reversed path X̃t =
{X(t−s)}ts=0 [5]. The state of the system is characterized
by the path probability P (Xt). The entropy production
associated with the path Xt can be defined as [6]

∆Stot[Xt] = k ln
P (Xt)

P (X̃t)
, (1)

where k is Boltzmann’s constant. We now perform a
SPRT of two hypotheses. Given a path Xt, we want
to decide whether it corresponds to a forward or time-
reversed trajectory of the nonequilibrium steady state.
We therefore consider the hypothesis H→ = H1 that
the path runs forward in time with the conditional
probability P (Xt|H→) = P (Xt); and the hypothesis
H← = H0 that the dynamics is time reversed, for which
P (Xt|H←) = P (X̃t). Using the SPRT, the decision is
made when the log-likelihood ratio or Turing’s weight of
evidence [7]

L(t) = ln
P (Xt|H→)

P (Xt|H←)
(2)

reaches for the first time one of the thresholds L1 = L and
L0 = −L, where we have chosen for simplicity a SPRT
with symmetric decision error probabilities α0 = α1 = α.
When L(t) is continuous, we have L = ln[(1− α)/α] [3].

The entropy production and the log-likelihood ratio
are related by

L(t) =
∆Stot[Xt]

k
. (3)

This provides a connection between decision theory and
stochastic thermodynamics. Moreover, it allows us to
obtain relations between average decision times in the
SPRT and the average rate of entropy production. Ap-
plying the SPRT to continuous time Markov processes
(See Supplemental Material [8] and Ref. [9]), we show
that the mean decision time for a stochastic process with
continuous L(t) is given by

〈τdec〉 =
L(1− 2α) + 〈Lex〉dec

〈dL/dt〉
. (4)

Here 〈. . . 〉 denotes an ensemble average in steady state.
An average over the ensemble which starts from an initial
distribution of states that equals the distribution of states
at the decision times is denoted by 〈. . . 〉dec. The excess
log-likelihood ratio Lex is defined as

Lex =

∫ ∞

0

[

dL
dt′
−

〈

dL
dt′

〉]

dt′ . (5)

The mean decision time of the SPRT for independent
identically distributed (i.i.d.) observations is a special
case of Eq. (4) for which 〈Lex〉dec = 0. This is because
for an i.i.d. process the state distribution is identical to
the stationary distribution.

We now apply the theory of decision times to the SPRT
on the arrow of time of a nonequilibrium process. The
relation (3) together with our Eq. (4) describing the av-
erage decision time can be used to express the average
entropy production rate in steady state as

1

k

〈

dStot

dt

〉

=
L(1− 2α) + 〈∆Sex〉dec/k

〈τdec〉
, (6)

where

∆Sex =

∫ ∞

0

[

dStot

dt′
−

〈

dStot

dt′

〉]

dt′ (7)

denotes the excess total entropy change.
In the limit of small α, the mean decision time becomes

large, 〈∆Sex〉dec/〈τdec〉 becomes small and, thus, Eq. (6)
simplifies to

1

k

〈

dStot

dt

〉

≃
L(1− 2α)

〈τdec〉
. (8)

Equations (6) and (8) show that the minimal average
time needed to decide whether a process runs forward
or backward in time is inversely proportional to the av-
erage entropy production rate. Approaching thermody-
namic equilibrium, the mean decision time diverges be-
cause L(t) = 0 in this limit. If the reliability of the
decision is increased, decision times increase correspond-
ingly. Because the average entropy production rate is a
property of the process only and not of the SPRT, the ra-
tio given in the right hand side of (8) is thus independent
of the error probability α.

Making decisions in the arrow of time provides a novel
way to estimate the entropy production rate of nonequi-
librium Markovian processes. Estimators for the steady
state entropy production rate can be obtained from the
first-passage times τ of a suitable physical observable
Γ(Xt). If we use the first-passage of a physical observable
through a threshold value to decide on the arrow of time
and if this decision has an error probability α, then it fol-
lows from the optimality of the SPRT that 〈τ〉 ≥ 〈τdec〉,
i.e., the mean first-passage time 〈τ〉 is larger or equal to
the mean decision time of the SPRT given in Eq. (8).
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The resulting estimator of the entropy production pro-
vides a lower bound to the exact value:

1

k

〈

dStot

dt

〉

≥
D[→ || ←]

〈τ〉
, (9)

where D[→ || ←] = D[P (d|H→)||P (d|H←)] = ln[(1 −
α)/α](1 − 2α) is the Kullback-Leibler divergence be-
tween the conditional probabilities of the decision vari-
able. When decisions in the direction of time are made
based on the log-likelihood ratio, i.e. when Γ = ∆Stot/k,
Eq. (9) becomes an equality.

The stochastic nature of decision making in the arrow
of time can be characterized by the probability density
P (τdec) of making a decision at time τdec. The connec-
tion between decision theory and thermodynamics im-
plies a relation between the decision time distribution
and the distribution of entropy production ∆Stot. For
Markovian processes, the probability density P (∆Stot; t)
of entropy production ∆Stot during the time interval
t is related by a fluctuation theorem to the proba-
bility density to reduce entropy by the same amount:
P (∆Stot; t)/P (−∆Stot; t) = exp(∆Stot/k) [10–14]. In
addition, we find that the probability distribution of the
first-passage time τ of entropy production also obeys the
following detailed fluctuation theorem if the transition
probabilities are translationally invariant [15] (see Sup-
plemental Material [8]):

P (τ ; ∆Stot)

P (τ ;−∆Stot)
= exp (∆Stot/k) . (10)

Here, P (τ ; ∆Stot)dτ denotes the probability to reach the
value ∆Stot for the first time in the time interval [τ, τ +
dτ ] given that the entropy production has not reached
−∆Stot before.

The relation between entropy production and the log-
likelihood ratio (3) together with the first-passage time
fluctuation theorem (10) implies for the SPRT in the ar-
row of time

P (τdec;L)

P (τdec;−L)
= exp (L) . (11)

Here, P (τdec;L) is the probability distribution of the
decision time of the SPRT for a given error rate α.
P (τdec;L) is also the distribution of first-passage times to
reach the threshold L for the first time without reaching
the threshold −L before, given H→ is true. The probabil-
ity distributions in (11) are equal to the joint probability
densities to make a decision d ∈ {→,←} at time τdec,
P (τdec,→) = P (τdec;L), and P (τdec,←) = P (τdec;−L).
Equation (11) thus implies

P (τdec,→)

P (τdec,←)
= exp (L) . (12)

From Eq. (12) it follows that P (d =→)/P (d =←) =
exp(L), consistent with previous results obtained for two-
boundary first-passage time processes [16, 17]. Using
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FIG. 2. Estimation of the steady state entropy production
rate of a drift-diffusion process with periodic boundary con-
ditions (e.g., particle in a ring, see inset) by a sequential
probability ratio test in the arrow of time. The estimator
L(1 − 2α)/〈τdec〉 is shown as a function of the error prob-
ability α for different simulation time steps ∆t/τc and nor-
malized by τc = 1/[〈dStot/dt〉/k] = D/v2. For the vertical
axis we use the empirical mean of τdec and L is the threshold
for the decision. The data is obtained from 1000 numerical
simulations with drift velocity v = 65µm/s and diffusion co-
efficient D = 0.52µm2/s. The horizontal line corresponds to
the steady state entropy production rate.

P (τdec, d) = P (τdec|d)P (d), we then find that the con-
ditional probability densities for the decision time obey

P (τdec|→) = P (τdec|←) . (13)

This implies that even though decisions are made with
different probabilities, the conditional decision time dis-
tributions have the same shape for both outcomes. We
therefore call Eq. (13) the Fluctuation Theorem in the
Arrow of Time (FTAT). Equations (8) and (13) are the
main results of this paper.

To illustrate how Eq. (8) provides an estimator for
the steady state entropy production rate, we discuss two
paradigmatic examples of nonequilibrium stochastic pro-
cesses. We first consider a drift-diffusion process with
periodic boundary conditions of a particle with position
x(t), average drift velocity v, and diffusion coefficient D.
If Einstein’s relation holds, D = kT/γ where γ is a fric-
tion coefficient, the steady state entropy production rate
is 〈dStot/dt〉/k = v2/D = F 2/(γkT ), where F = γv is
the friction force and T is the temperature of the thermal
bath [18]. Figure 2 shows L(1−2α)/〈τdec〉 obtained from
1000 numerical simulations of the SPRT in the arrow of
time (markers) as a function of the error probability α for
different values of the simulation time step ∆t together
with 〈dStot/dt〉/k (blue solid line). For the drift-diffusion
process, the log-likelihood ratio for the SPRT in the ar-
row of time is simply given by L(t) = (v/D)[x(t)−x(0)].
As long as the simulation time step obeys ∆t≪ τc, where
τc = k/〈dStot/dt〉 = D/v2, the SPRT in the arrow of
time provides an accurate estimator of entropy produc-
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FIG. 3. Conditional distributions of the decision time
P (τdec| →) and P (τdec| ←) obtained from 106 numerical
simulations of a drift diffusion process with diffusion D =
0.52µm2/s and drift v = 65µm/s. The simulation time step
is ∆t = 0.1ms and the error probability α = 0.01.

tion independent of the error probability α. For larger
∆t, the estimator is only accurate for small α but pro-
vides a lower bound to the steady state entropy produc-
tion rate for larger α. In our simulations, we also cal-
culated empirical conditional decision time probabilities
P (τdec| →) (green) and P (τdec| ←) (purple), which are
shown in Fig. 3 for α = 0.01. Figure 3 demonstrates the
validity of the FTAT given in (13) for the drift-diffusion
process.

The drift-diffusion process is a simple example and
serves as an illustration of our results. We now test
whether our results also hold in more complex nonequi-
librium stochastic processes that involve discontinuous
jumps of the state variables. We therefore discuss the
SPRT in the arrow of time for the case of a flashing
ratchet with periodic boundary conditions. We con-
sider a Brownian particle with diffusion coefficient D,
subject to a piecewise linear periodic potential that is
switched on and off stochastically at a constant rate
ω [19]. The log-likelihood ratio of the SPRT in the arrow
of time in steady state can be approximated by the cu-
mulated work W exerted on the particle during switches
L(t) = W (t)/kT . Here W (t) =

∑

i ∆Vi, where ∆Vi is the
potential energy change during the switching event i and
the sum is done over all switches that occur before time
t [20]. Figure 4 shows the estimate of L(1−2α)/〈τdec〉 as
a function of the reliability 1−α. The plot shows that the
SPRT in the arrow of time provides a lower bound for the
steady state entropy production rate (blue open circles)
and converges for high reliability to the correct value. In
addition, Fig. 5 shows the conditional distributions of the
decision times revealing that the FTAT holds to good ap-
proximation for high error probabilities despite that the
propagator is not translationally invariant.

When using the estimator given by Eq. (6), which in-
cludes the excess entropy production, the entropy pro-
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FIG. 4. Estimation of the entropy production rate using the
SPRT in the arrow of time in a flashing ratchet model using
the right hand side in Eq. (8) (blue open circles) and the right
hand side in Eq. (6) (blue open diamonds) as a function of the
reliability of the test. Red open squares are given by the ratio
between D[→ || ←] and the mean first-passage time 〈τ〉 of the
position of the particle in Eq. (9). The results were obtained
from 1000 numerical simulations with time step ∆t = 1µs,
diffusion coefficient D = 1µm2/ms, V0 = 10 kT , a = 1/3µm,
and ω = 10 kHz. The characteristic time τc = 0.07ms is
the numerical estimate of k/〈dStot/dt〉 obtained from a single
stationary trajectory of 107 data points. Inset: Correction
term in (6) given by [〈∆Sex〉dec/k〈τdec〉] τc as a function of
1−α (blue triangles). The solid line is a linear fit of the data.
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FIG. 5. Conditional distributions of the decision time
P (τdec|→) and P (τdec|←) obtained from 106 numerical sim-
ulations of the flashing ratchet with the same simulation pa-
rameters as in Fig. 4. The two figures show the distributions
for two different error probabilities α.

duction rate is estimated more accurately at low reliabil-
ities (Fig. 4, blue diamonds). The inset in Fig. 4 confirms
that the correction term in Eq. (6) tends to zero for α
small. Note that the estimator L(1−2α)/〈τdec〉 in Eq. (8)
provides a lower bound at small α because of the discon-
tinuous jumps in the state variables. Using an heuristic
estimator given by the ratio D[→ || ←]/〈τ〉, where τ is
the first-passage time of the position of the particle, also
bounds from below the steady state entropy production,
as follows from Eq. (9) (Fig. 4, red squares).
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The dynamics of a stochastic nonequilibrium process
provides evidence on the arrow of time to an observer.
Reliable decisions on the direction of the arrow of time
can be made measuring first-passage times of physical
observables. When the physical observable used is the
entropy production, the decision time is minimized. In
addition, measuring first-passage times of physical ob-
servables provides estimators for the steady state entropy
production rate that are lower bounds to the true value.
This follows from the optimality of the SPRT. Using this
method to estimate entropy production, it is not nec-
essary to sample the whole space of stochastic trajecto-
ries as required in previous approaches [21–23]. Interest-
ingly, our fluctuation theorem for the two-boundary first-
passage time distribution of entropy production (10) im-
plies that the shape of the distributions of decision times
for correct and wrong decisions are equal even though
the probabilities in both cases are different. The connec-
tion between decision theory and thermodynamics pro-
vided here could be of particular interest in the context
of nonequilibrium processes that involve feedback con-
trol, often found in biology and engineering.
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SUPPLEMENTAL MATERIAL

S1. MEAN DECISION TIME OF THE SPRT IN
CONTINUOUS-TIME STATIONARY MARKOV

PROCESSES

The aim of this section is to show the derivation of
Eq. (4) in the Main Text. We first review the SPRT for
Markov chains (Sec. S1A) and the corresponding mean
decision time formula obtained in Ref. [9] (Sec. S1B). Us-
ing these results we then derive Eq. (4) in the Main Text
relating the mean decision time to the rate of change of
the log-likelihood ratio for the SPRT between continuous
time Markov processes (Sec. S1C). Finally we provide a
full derivation of Eq. (30) to help the reader (Sec. S1D).

A. Sequential probability ratio test for stationary
Markov chains

We consider a discrete-time sequence Xn
1 =

(x1, x2, · · · , xn) where the variables xi are elements of
a countable set of observations Ω. The sequence is de-
scribed by a stationary Markov process and therefore
P (Xn

1 ) = Pss(x1)P (x2|x1) · · ·P (xn|xn−1), where Pss(·)
is the stationary distribution and P (xj |xi) is the transi-
tion probability from xi to xj . Based on the sequence
Xn

1 , we consider two competing hypotheses H0 and H1

for which P (Xn
1 |H0) = Pss(x1)P0(x2|x1) · · ·P0(xn|xn−1)

and P (Xn
1 |H1) = Pss(x1)P1(x2|x1) · · ·P1(xn|xn−1), re-

spectively. Here we consider the case where the station-
ary distribution is the same under both hypotheses. The
sequential probability ratio test (SPRT) between H0 and
H1 follows the evolution in time of the following log-
likelihood ratio Ln

Ln = ln
P (Xn

1 |H1)

P (Xn
1 |H0)

, (14)

=
n−1
∑

i=1

ln
P1(xi+1|xi)

P0(xi+1|xi)
. (15)

When L0 < Ln < L1 the test continues and a new obser-
vation xn+1 is taken. When Ln ≥ L1 the test terminates
and the hypothesis H1 is accepted and when Ln ≤ L0

the test terminates and the hypothesis H0 is accepted.
The threshold values are approximatively given by

L1 = ln

(

1− α1

α0

)

, (16)

L0 = ln

(

α1

1− α0

)

, (17)

with α0 the allowed error probability to decide for H1,
when the hypothesis H0 is true, and α1 the allowed error
probability to decide for H0, when the hypothesis H1 is
true. For a continuous-time sequence of observations the

threshold values are exact when the log-likelihood ratio
is a continuous function in time [3].

One can equivalently write the transition matrices in
Dirac’s bra-ket notation as follows: P (xj |xi) = 〈j|P|i〉,
P0(xj |xi) = 〈j|P0|i〉 and P1(xj |xi) = 〈j|P1|i〉. Similarly,
for the stationary distribution Pss(xi) = 〈i|pss〉.

B. Mean number of observations in the SPRT for
Markov chains

Given a sequence of observations, ndec is defined as the
number of observations taken until the test terminates.
The mean number of observations E[ndec] to make a de-
cision (for either H0 or H1) over all possible sequences
is, following Phatarfod’s derivation, given by [9]

E[ndec] =
E[Lndec

]− 〈l′1(0)|pss〉+ E [〈l′1(0)|xndec
〉]

λ′1(0)
.(18)

Note that in the corresponding equation (3.10) in Ref. [9]
there is a typo and the sign of the last two terms in
the numerator are swapped. Here E denotes an average
over all possible infinitely long sequences1. The first term
in the numerator E[Lndec

] is the expected value of the
log-likelihood ratio when the decision is taken. The rest
of the terms can be defined in terms of the following
generating matrix,

P(z) =
∑

i,j∈Ω

|i〉〈j| 〈i|P|j〉 exp

[

z ln

(

〈i|P1|j〉

〈i|P0|j〉

)]

,(19)

where z ∈ R. The matrix P(z) has eigenvalues λi(z) with
corresponding right eigenvectors |ri(z)〉 and left eigen-
vectors 〈li(z)|. Here λ1(0) = 1 is the Perron root of
the transition matrix P and λ1(z) is the corresponding
eigenvalue of P(z). Thus |r1(z)〉 is the right eigenvector
of λ1(z) and 〈l1(z)| is the corresponding left eigenvector.
In the limit of z → 0, |r1(0)〉 = |pss〉 and 〈l1(0)| = 〈1|
for which 〈1|i〉 = 1 for all i ∈ Ω. The denominator in
Eq. (18) equals λ′1(0) = limz→0

d

dz
λ1(z) and 〈l′1(0)| =

limz→0
d

dz
〈l1(z)|. The remaining term E [〈l′1(0)|xndec

〉]
contains the ensemble average of the right eigenvector
|xndec

〉 corresponding to the value of the observation xndec

when the decision is taken: 〈j|xndec
〉 = δj,xndec

, where δ
denotes the Kronecker delta.

C. Mean decision time formula in the continuous
time limit

We first revisit matrix perturbation theory and then
apply it to determine the different terms in Phatarfod’s
mean decision time formula given by Eq. (18).

1 The expectation E[·] corresponds to the ensemble average 〈·〉 in

the Main Text. This is because we use the bra-ket notation for

vectors and matrices.
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1. Revision of matrix perturbation theory

We will use some results from perturbation theory, see
Chapter 2 of [24]. For two matrices A and B which satisfy
the relations |〈i|A|j〉| < 1 and |〈i|B|j〉| < 1 we consider
the perturbed matrix C(z)

C(z) = A+ z B , (20)

with z ∈ R the perturbation parameter. The simple
eigenvalues λk(z) of C(z), and their corresponding eigen-
vectors |rk(z)〉 and 〈lk(z)| are given by a convergent
power series in the perturbation parameter z

λk(z) = λk(0) + z λ′k(0) +
z2

2
λ′′k(0) + · · · (21)

|rk(z)〉 = |rk(0)〉+ z |r′k(0)〉+
z2

2
|r′′k(0)〉+ · · · (22)

〈lk(z)| = 〈lk(0)|+ z 〈l′k(0)|+
z2

2
〈l′′k(0)|+ · · · (23)

for sufficient small values of |z|. The first order terms of
the power series are given by [24]

λ′k(0) =
〈lk(0)|B|rk(0)〉

〈lk(0)|rk(0)〉
(24)

|r′k(0)〉 =
∑

i∈Ω\{k}

|ri(0)〉〈li(0)|B|rk(0)〉

(λk(0)− λi(0))〈li(0)|ri(0)〉
(25)

〈l′k(0)| =
∑

i∈Ω\{k}

〈lk(0)|B|ri(0)〉〈li(0)|

(λk(0)− λi(0))〈li(0)|ri(0)〉
(26)

2. Calculation of the mean decision time

The expansion of the exponential in Eq. (19) for z small
yields

P(z) = P+ z P′ +O(z2) . (27)

with P the transition probability matrix and

P′ =
∑

i,j∈Ω

|i〉〈i|P|j〉〈j| ln

(

〈i|P1|j〉

〈i|P0|j〉

)

. (28)

Identifying in Eqs. (24) and (26) C(z) as P(z), A as P

and B as P′, we obtain

λ′1(0) =
∑

i,j∈Ω

〈i|P|j〉〈j|pss〉 ln

(

〈i|P1|j〉

〈i|P0|j〉

)

. (29)

We further have (see Appendix)

〈l′1(0)|p〉 =
∑

i,j∈Ω

〈i|P|j〉 ln

(

〈i|P1|j〉

〈i|P0|j〉

)

×

[

∞
∑

n=0

(〈j|pn〉 − 〈j|pss〉)

]

(30)

with |pn〉 = Pn|p〉 with |p〉 a distribution on phase space
or in other words a normalized right eigenvector with
〈1|p〉 = 1. For |p〉 = |pss〉, we thus have 〈l′1(0)|pss〉 =
0, and therefore the second term in the numerator in
Eq. (18) vanishes.

Using the results shown above we can rewrite Phatar-
fod’s mean decision time formula (18) as

E [ndec] =
γL0 + (1− γ)L1 + Edec[Lex]

∑

i,j∈Ω〈i|P|j〉〈j|pss〉 ln
(

〈i|P1|j〉
〈i|P0|j〉

) (31)

where γ is the probability to hit L0. For deriving Eq. (31)
we have used that the log-likelihood ratio at the decision
Lndec

reaches exactly one of the two values L0 or L1,
and therefore E[Lndec

] = γL0 + (1− γ)L1. We have also
defined the expected value of the excess log-likelihood
ratio starting from the state at the decision time

Edec[Lex] =
∑

i,j∈Ω

〈i|P|j〉 ln

(

〈i|P1|j〉

〈i|P0|j〉

)

×

[

∞
∑

n=0

(〈j|Pn|pdec〉 − 〈j|pss〉)

]

, (32)

with pdec = E[xndec
]. It is now possible to take the con-

tinuous time limit of the log-likelihood ratio in Eq. (15)
which yields for Eq. (31)

E[τdec] =
γL0 + (1− γ)L1 + Edec[Lex]

E[dL/dt]
, (33)

where dL(t)/dt = lim∆t→0(1/∆t)[L(t+∆t)−L(t)]. For
symmetric error probabilities, α0 = α1 = α, L0 = −L1 =
−L and therefore γL0 + (1 − γ)L1 = L(1 − 2α). In this
case, Eq. (33) corresponds to Eq. (4) in the Main Text.

D. Derivation of Eq. (30)

Let us rewrite Eq. (26) identifying C(z) as P(z), A as
P and B as P′,

〈l′1(0)|p〉 =
∑

i∈Ω\{1}

〈1|P′|ri〉〈li|p〉

(1− λi)〈li|ri〉

=
∑

m,j∈Ω

〈j|P|m〉 ln

(

〈j|P1|m〉

〈j|P0|m〉

)

〈m|Q p〉 ,

(34)

where we have defined the matrix Q as

Q =
∑

i∈Ω\{1}

|ri〉〈li|

〈li|ri〉
(1− λi)

−1 , (35)

and for simplicity we have used the notation λi = λi(0),
|ri〉 = |ri(0)〉 and 〈li| = 〈li(0)|. Since P is a transition
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probability matrix, its eigenvalues i 6= 1 satisfy |λi| < 1,
and therefore we can write

(1− λi)
−1 =

∞
∑

m=0

λm
i . (36)

As a result,

Q =

∞
∑

m=0

∑

i∈Ω\{1}

|ri〉λ
m
i 〈li|

〈li|ri〉
. (37)

which thus is:

Q =

∞
∑

m=0

(Pm − |r1〉〈l1|) (38)

=

∞
∑

m=0

(Pm − |pss〉〈l1|) (39)

Substituting Eq. (39) in (34) yields Eq. (30).

S2. FLUCTUATION THEOREMS FOR
FIRST-PASSAGE TIME DISTRIBUTIONS

Here we derive the fluctuation theorem for the distri-
bution of the first passage times of entropy production
given by Eq. (10) in the Main Text.

For a translationally invariant and steady state Marko-
vian process X, the transition probability P (x|x′; t, t′)
denotes the probability density of X(t) given that
X(t′) = x′. The transition probability satisfies
P (x|x′; t, t′) = P (x − x′|0; t − t′, 0) = P (x − x′; t − t′).
Let us assume that the transition probability fulfils a
standard fluctuation relation [11–14],

P (x; t)

P (−x; t)
= eηx , (40)

where η is a positive real number. We now define three
different first-passage time distributions:

1. The probability Ψ(t;x)dt that X passes for the first
time through a single boundary located at a relative
coordinate x in the time interval [t, t+ dt].

2. The probability Φ(t;x)dt that X passes for the first
time x in the time interval [t, t + dt] without hav-
ing reached −x before. Analogously, Φ(t;−x)dt is
the probability that X reaches −x for the first time
without having reached a barrier located at x be-
fore.

3. The probability Ω(t;x)dt that X passes for the first
time through x in the time interval [t, t+ dt] after
having crossed −x at least once before.

The event, that X reaches unconditionally the single bar-
rier at x equals the probability of the two disjoint events

that X has crossed the boundary at −x or has never
crossed the boundary at −x:

Ψ(t;x) = Φ(t;x) + Ω(t;x) . (41)

We first derive a fluctuation relation for the one-
boundary first-passage time distribution Ψ(t;x). Ψ(t;x)
satisfies the following fluctuation relation

Ψ(t;x)

Ψ(t;−x)
= eηx . (42)

As we will show in the following, Eq. (42) follows from
the relationship between the transition probability and
the one boundary first-passage time distribution [25],

P (x; t) =

∫ t

0

dt′ Ψ(t′;x)P (0; t− t′) , (43)

and the Laplace transform of the transition probability
equals to

P̃ (x; s) = Ψ̃(s;x)P̃ (0; s) . (44)

Here we have introduced the Laplace transforms

P̃ (x; s) =

∫ ∞

0

dt e−stP (x; t) , (45)

Ψ̃(s;x) =

∫ ∞

0

dt e−stΨ(t;x) . (46)

Since the fluctuation relation is independent of time, the
Laplace transform of the transition probability satisfies

P̃ (x; s)

P̃ (−x; s)
= eηx , (47)

which together with the factorization property given by
Eq. (44) yields a fluctuation theorem for the Laplace
transform of the first-passage time distribution Ψ:

Ψ̃(s;x)

Ψ̃(s;−x)
= eηx , (48)

which implies the fluctuation relation (42).
We now derive the fluctuation relation for the first-

passage time distribution Φ(t;x) of the two boundary
scenario, given by Eq. (9) in the Main Text.

The probability that the process X reaches the bound-
ary at x having crossed −x at least once before equals
the probability that X reaches −x at t′ and then reaches
unconditionally the barrier at x in the time interval t− t′

summed over all mutually exclusive events over t− t′:

Ω(t;x) =

∫ t

0

dt′Φ(t′;−x)Ψ(t− t′; 2x) . (49)

Using Eq. (41) and Eq. (49), Ψ(t;x) equals to

Ψ(t;x) = Φ(t;x) + Ω(t;x)

= Φ(t;x) +

∫ t

0

dt′Φ(t′;−x)Ψ(t− t′; 2x) .
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Taking Laplace transforms in both sides we obtain

Ψ̃(s;x) = Φ̃(s;x) + Φ̃(s;−x)Ψ̃(s; 2x) . (50)

We thus have that

Ψ̃(s;x)

Ψ̃(s;−x)
=

Φ̃(s;x)

Φ̃(s;−x)
+ Ψ̃(s; 2x)

1 + Φ̃(s;x)

Φ̃(s;−x)
Ψ̃(s;−2x)

. (51)

Solving for the ratio Φ̃(s;x)/Φ̃(s;−x) and using the fluc-
tuation theorem in Ψ̃ given by Eq. (48) we obtain

Φ̃(s;x)

Φ̃(s;−x)
=

eηx − Ψ̃(s; 2x)

1− eηxΨ̃(s;−2x)

= eηx

(

1− e−ηxΨ̃(s; 2x)

1− eηxΨ̃(s;−2x)

)

= eηx . (52)

Equation (52) expresses a fluctuation theorem for the

Laplace transform of the first-passage distribution Φ:

Φ̃(s;x)

Φ̃(s;−x)
= eηx , (53)

which yields equivalently

Φ(t;x)

Φ(t;−x)
= eηx . (54)

Equation (54) corresponds to Eq. (9) in the Main Text
for x = ∆Stot and η = 1/k.

Equation (54) holds for processes where the transition
probability is translationally invariant and satisfies the
fluctuation theorem given by (40). Fluctuation theorem
(13) with x = ∆Stot for the fluctuations of entropy pro-
duction is known to hold for a wide class of processes
including stochastic diffusive processes [12–14], chaotic
systems [11] and sheared fluids [10].
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