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Abstract

Computation offloading enables intensive computational tasks to be separated into multiple computing resources for over-
coming hardware limitations. Leveraging cloud computing, edge computing can be enabled to apply not only large-scale and
personalized data but also intelligent algorithms based on offloading the intelligent models to high-performance servers for
working with huge volumes of data in the cloud. In this paper, we propose a getaway-centric Internet of Things (IoT) system
to enable the intelligent and autonomous operation of IoT devices in edge computing. In the proposed edge computing, IoT
devices are operated by a decision-making model that selects an optimal control factor from multiple intelligent services
and applies it to the device. The intelligent services are provided based on offloading multiple intelligent and optimization
approaches to the intelligent service engine in the cloud. Therefore, the decision-making model in the gateway is enabled to
select the best solution from the candidates. Also, the proposed [oT system provides monitoring and visualization to users
through device management based on resource virtualization using the gateway. Furthermore, the gateway interprets scenario
profiles to interact with intelligent services dynamically and apply the optimal control factor to the actual device through
the virtual resource. For implementing the improved energy optimization using the proposed IoT system, we propose two
intelligent models to learn parameters of a user’s residential environment using deep learning and derive the inference models
to deploy in the intelligent service engine. The inference models are used for predicting a heater energy consumption that is
applied to the heater. The heater updates the environment parameters to reach the user-desired values. Moreover, based on
two energy consumption values, the decision-making model brings a smaller value to operate the heater to enable reducing
the energy consumption as well as providing a user-desired environment.

Keywords Internet of things - Edge computing - Intelligent systems - Decision-making - Energy management - Neural
networks - Smart homes

Introduction

<X Dohyeun Kim

kimdh@jejunu.ac kr Recently, the Internet of Things (IoT) tries to connect

massive entities such as devices, applications, and informa-
tion through the Internet to provide heterogeneous services
in various industrial domains. As an emerging engineer-
ing paradigm, the IoT inspires industries to deploy smart
and autonomous systems based on connected devices. The
pervasive IoT applications involve multiple technologies
including identification, networking of sensor and actuator,
cloud and edge computing, and big data with approaches
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of stochastic and heuristic [1,2]. Heterogeneous IoT appli-
cations have been deployed in many industrial domains for
monitoring, control, security, and intelligent systems [3-5].
According to the development of IoT technologies, the num-
ber of Internet-connected devices is increasing rapidly for
providing ubiquitous and seamless services in various indus-
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trial domains without human touch to operate smart and
autonomous scenarios day and night [6,7]. For managing
the massive IoT devices, the identifiers including Identifier
(ID) and Uniform Resource Identifier (URI) are assigned to
identity cyber resources for linking the physical resources
through the registered information of devices in the IoT net-
works [8]. The virtualization enables the cyber resources to
represent the physical resources on the Internet and enhances
the functionality through integrating multiple resources to
provide improved services [9,10]. However, these services
require a sufficient environment for computation and net-
work to support complex computation and service scenarios
based on the virtualization of resources in the cyber world.

Most IoT devices are developed for a constrained hard-
ware environment with limited power supply, processor,
storage, and network capability which is difficult to support
a sufficient computation and network requirement [11-13].
For supporting IoT devices to implement complex applica-
tion scenarios based on a rich hardware environment, cloud
computing is a solution to provide applications and databases
to handle the massive [oT data and service requests [14—16].
However, supporting a low-latency delivery of data between
IoT devices and cloud servers is difficult due to network band-
width and computation load [17,18]. Edge computing brings
the cloud to the edge of networks for deploying the com-
putation and storage close to the constrained IoT devices to
support computation based on low-latency communications
[19-21]. As an intermediate layer between device and cloud,
the entities in this layer bridge IoT devices and the Internet-
connected entities such as web servers and clients to support
message translation, computational offloading, and device
management [22-25]. An edge gateway is a device that is
deployed in the entry of the network edge to provide ser-
vices to the IoT devices and the Internet-connected entities
based on processor, storage, and network modules [26-28].
For extending the computation and storage of IoT devices to
provide improved services, the edge gateway is the key to
enable complex computation and service scenarios close to
the constrained environment.

Nevertheless, heavy computation tasks can be offloaded to
cloud servers to process the increasing data and computing
demands through remote execution [29-31]. Computation
offloading enables intensive computational tasks to be sep-
arated into multiple computing resources to overcome the
hardware limitation. Leveraging the cloud computing, the
edge computing can be supported to apply not only large-
scale and personalized data but also Artificial Intelligence
(AI) algorithms based on offloading AI approaches to high-
performance servers to work with huge volumes of data in the
cloud [32]. Machine Learning (ML) is a stochastic approach
to implement the Al base on sample data to make predictions
or decisions. For providing an intelligent approach based
on ML, first, the learning model derives an inference model
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using training data with an ML algorithm. Then, the infer-
ence model can be deployed to predict the environment with
required input parameters. Besides, online ML is a mecha-
nism to extend the knowledge of the existing inference model
through continuous input data [33,34]. The updating process
of the existing inference model using new training data can be
executed parallelly in the cloud, while the intelligent service
is provided based on the existing inference model. Therefore,
deploying Al approaches to the cloud and providing web ser-
vices to edge computing can enable intelligent operations of
IoT devices in personalized spaces based on edge gateways.

For providing improved energy optimization, we pro-
pose a getaway-centric [oT system to enable intelligent and
autonomous operation of IoT devices through supporting
decision-making based on multiple intelligent services in
edge computing. The proposed IoT system is comprised of
IoT client, Application Service Provider (ASP), Intelligent
Service Engine (ISE), Edge Gateway (EG), and IoT device
to provide the smart service to users through offloading the
smart models in the ISE, The ISE provides services based
on the smart models that derive the intelligent and optimized
control factors. The models can be implemented based on
deep learning with user-specific data for providing person-
alized smart services in the edge computing environment.
Through interpreting the deployed scenario profile, intelli-
gent services can be invoked dynamically by the EG, and the
service results are used by the decision model to be selected as
the optimal control factor. Based on the proposed IoT archi-
tecture, a smart [oT device operation scenario is developed,
which derives the best energy consumption value to operate
the heater in the proposed edge computing environment. For
providing intelligent services from the ISE, two intelligent
models are proposed that are implemented based on deep
learning approaches with a user’s residential environment.
The models derive a heater energy consumption that is used
for operating the heater to update the environment parameters
to reach user-desired values. Therefore, the decision-making
model can select a smaller value from the ISE services to
apply on the heater to enable reducing the energy consump-
tion as well as providing a user-desired environment, which
achieves the proposed energy optimization for operating the
IoT devices in edge computing.

The rest of this paper is organized as follows. The sec-
ond section reviews the related works regarding intelligent
and optimization solutions based on IoT and edge comput-
ing and introduces referred technologies of the proposed IoT
system. The third section presents the proposed gateway-
centric IoT system architecture with the elements including
IoT client, ASP, ISE, EG, and IoT device. The fourth sec-
tion introduces the intelligent IoT scenario for providing
improved energy optimization. The fifth section introduces
the decision-making model and offloaded intelligent and
optimization solutions. The sixth section presents the imple-
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mentation details of the proposed IoT system and its results.
The seventh section evaluates the outputs of the IoT sys-
tem. Finally, we conclude this paper and introduce our future
directions in last section.

Related works

The IoT is a system that is comprised of heterogeneous
elements to provide autonomous and intelligent services in
various industrial domains. For developing the communica-
tion between the EG and IoT device, we use the IoTivity
that is a framework to develop a light-weight IoT system
based on CoAP [35-37]. IoTivity is implemented through
Open Connectivity Foundation (OCF) is an IoT standard
specification including the definition of connectivity, man-
agement, functions, and security [38—40]. The oneM2M is
another popular international IoT standard that includes all
required functions for operating an IoT system in large-
scale environments based on a high-performance machine
to provide the sufficient computing and data storage [41,42].
Therefore, oneM2M is not suitable for edge computing using
constrained devices. The Light-Weight Machine-to-Machine
(LWM2M) is an Open Mobile Alliance standard that aims
to develop an easy-deployment client and server modules
for constrained devices [43]. However, the LWM2M only
considers using CoAP for communication between device
and device without interworking with multiple protocols.
Cloudlet and mobile edge computing are solutions for imple-
menting cloud computing in mobile devices to provide a
small-scale computing and data repository on the edge of
the networks [44—48]. EdgeX is an emerging edge com-
puting framework that provides various functions based on
microservices and easily extends the functionality and inter-
acts with other solutions [49]. However, the core services
are fixed, which is not allowed to provide a domain-specific
data format and service scenario. The proposed architecture
includes the gateway that enables the devices have multiple
protocols to interworking with the cloud from the network
edge.

Deep learning trains a large dataset to derive an infer-
ence model based on connected nodes of a network such
as Deep Neural Network (DNN), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN).
LeCun et al. [50] present an overview of deep learning
including several popular models and future directions of
deep neural networks. In edge computing, task offloading
distributes computing resources to multiple machines for
reducing computational load. Recently, most of task offload-
ing solutions are used for enabling learning approaches in
the high-performance computing unit [51]. Computational
offloading solutions can be categorized as fully offloaded and
dynamically offloaded [52]. Qiao et al. [53] proposed a col-

laborative task offloading and output transmission approach
to efficiently merge mobile edge computing technology in
vehicular networks. Zhang et al. [54] proposed an efficient
offloading scheme to improve reliability for vehicular data
transmission failure through deep learning. Crutcher et al.
[55] proposed a utilized prediction approach through offload-
ing the learning mechanism to the cloud for reducing resource
consumption. Xuetal. [56] proposed an intelligent edge com-
puting based on an online learning algorithm that is used for
offloading the learning approach to the cloud for renewable
power supply. Rui et al. [S7] proposed an online algorithm
to select edge nodes based on distributed decision-making.
Zhang et al. [58] proposed an online learning offloading
framework to handle the computation offloading problem in
heterogeneous edge networks. Different from online learn-
ing, we propose parallel inferences to derive the results and
select the optimal control factor to apply to the environment.

The deep learning models also can be enabled by embed-
ded devices directly to provide intelligent services in the
environment. Liu et al. [59] proposed a deep learning appli-
cation for food recognition based on providing services in
an edge computing environment. However, the application
requires a high-performance computing unit in a mobile
device for processing image data that is a large size data.
Zhang et al. [60] used deep Q-learning in scheduling voltage
and frequency for real-time systems in embedded devices.
Alsheikh et al. [61] proposed an intelligent edge computing
architecture with two layers that deploy deep learning in the
mobile device and deploys Apache Spark to the cloud for dis-
tributing deep leaning tasks on multiple devices. Biswas et
al. [62] proposed an advanced hardware architecture to pro-
vide a CNN training approach in the low-power embedded
machines. Zhang et al. [63] proposed a distributed real-time
object detection in an embedded device based on NVIDIA
Jetson TX1 that brings similar performance using lower
power. Beatriz et al. [64] implemented a low-power and
real-time deep learning-based multiple object visual tracking
using the NVIDIA Jetson TX2 development kit that inte-
grates a powerful ML-specific processor in a mobile device.
Nevertheless, offloading the large-scale computing to the
cloud is proposed in this paper for distributing the computa-
tional load.

Controlling energy consumption is important in buildings
for keeping the environment at a comfortable level with min-
imal cost. For the thermal comfort, multiple environmental
parameters are considered including temperature, humidity,
and air velocity [65]. Optimization models are proposed to
provide optimal factors for controlling the actuators to update
the environment [66—68]. Leveraging fuzzy inference mod-
els, the environmental parameters also can be updated based
on parameter settings by experts [69]. Also, using the user
data to train an RNN model can forecast energy consumption
for the user-desired environment [70]. Furthermore, based on
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the decision making, the control factor can be derived from
multiple prediction models for a user-desired environment
using lower energy consumption.

Proposed gateway-centric loT system based
on edge computing

The proposed IoT system is composed of IoT client, Appli-
cation Service Provider (ASP), Intelligent Service Engine
(ISE), Edge Gateway (EG), and IoT devices to provide device
management, visualization, and intelligent services. Multiple
entities can be deployed for each IoT element in the proposed
IoT system. At the edge of a network, an EG is the center to
link a group of IoT devices.

For depicting the proposed IoT system, a four-tier hier-
archical architecture is presented in Fig. 1. The hierarchical
architecture is divided into four layers including the layer of
client, cloud, edge, and device.

The device layer includes sensors and actuators with IoT
devices to provide IoT services based on collecting envi-
ronment data through sensors and effecting the environment
through actuators. IoT devices can be deployed to make a
group for serving an environment where can be an environ-
ment of indoor and outdoor. [oT devices are equipped with
limited computing capabilities for the constrained environ-
ment. Therefore, the computational tasks are distributed to
the edge and cloud layer.

The edge layer is a local network that bridges [oT devices
to the cloud layer through EGs. An EG is a gateway device
that is deployed at the edge of the Internet with IoT devices.
An EG is used for a group of [oT devices to forward registra-
tion, sensing, status data to the ASP, and deliver command
data to IoT devices from the ASP. For supporting energy
optimization based on intelligent services, a service scenario
is used through deploying a profile on an EG. Based on the
service scenario, the EG interacts with the intelligent layer
and IoT devices. The decision-making model is deployed in
EG to derive the control factor for operating IoT devices. The
model requires the reference factors that are provided by the
ISE based on intelligent services.

The cloud layer includes servers that are equipped with
high-performance computing units and sufficient repository
to support functions of data storage and computation. The
servers are categorized into the service layer and intelligence
layer for distinguishing the types of services base on the con-
sumers. The APS is a service provider that provides services
to clients for presenting information to users and delivering
commands to IoT devices. The clients of these services are
the IoT clients in the client layer as well as other devices
such as ISEs in the intelligent layer. The ISEs run intelli-
gent solutions based on a large amount of data which are
retrieved from the APS. Also, for registering IoT devices to
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manage these devices, the registration service is provided to
IoT devices through the edge layer. In the intelligence layer,
ISEs are deployed to provide intelligent services to the IoT
environment. ISEs are service providers that are deployed on
the Internet to provide intelligent services through support-
ing ML algorithms based on the pre-trained models. ISEs can
be provided by multiple organizations to solve various indus-
trial domains’ problems. Therefore, users can have multiple
choices to solve their problems by interacting with ISEs.

The client layer includes users with IoT clients to con-
sume services from the cloud layer. The services are used for
delivering information to users through these client devices
through visualization functions using user interfaces. A client
device is an IoT client that is deployed on the Internet to
access services from the proposed IoT system. The gener-
ated data from the IoT device that can be stored in the DB
as well as provided to IoT clients directly. For interacting
with IoT devices and the smart space, the user interfaces
of an IoT client support functions of management, control
and data collection on an application based on a smartphone,
desktop computer, or web front-end client.

Figure 2 shows a network architecture to present the inter-
actions between elements in the proposed IoT system. ASP
and ISEs are deployed in the cloud layer to provide services
through the Internet for public network access. An Edge net-
work is a local network that includes EGs and IoT devices
to provide services for a private environment such as homes,
factories, and buildings.

The ASP provides multiple services to clients which are
devices such as mobile devices and desktop devices with
general users, administrators, and experts. In the cloud net-
work, the users through client devices consume IoT services
including management, visualization, control, and smart ser-
vices. The resources of ASP provide services to the Internet
as well as the edge network. Clients request the ASP for
retrieving data that are stored in the system or generated in
real time, and sending commands to the system including
IoT devices. For delivering service profiles to the edge net-
work, the ASP includes web client to forward the request
to an EG for applying a scenario. From the edge network,
IoT devices request the registration service to upload device
profiles and sensing data through EGs. ISEs are deployed
on the Internet to provide intelligent services for a specific
domain, private space, or collaborated in service scenarios.
Heterogeneous intelligent functions can be supported using
the services of ISEs. An intelligent function in an ISE that is
pre-developed based on analysis of data in a specific domain
or environment for supporting advanced solutions such as
prediction and decision-making. For supporting intelligent
services, ISEs interact with the ASP to request required data
from the repository. Based on the intelligent functions, the
controlling data are delivered to the edge network through
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EGs for updating the environments using actuators on the
IoT devices.

In the proposed edge computing, EGs are deployed to
interact with the Internet including the APS and ISEs as well
as [oT devices. The resources of EGs provides services to the
Internet for forwarding messages to the IoT devices. For reg-
istering the information of devices to the ASP, EGs forward
the profile to the ASP and store the data in its repository. The
mapping information in the repository enables messages that
can be forwarded to IoT devices through the EGs.

Proposed intelligent edge computing
scenario

Based on the proposed IoT architecture, multiple intelli-
gent models can be deployed in the cloud layer to provide
intelligent services that are used for the decision-making to
derive the optimal factor of IoT device operation. With the
information of specific IoT entities, this scenario is presented
in a profile that is interpreted by the EG to apply on the edge
computing.

Figure 3 shows a sequence diagram to present the IoT
device operating scenario based on the proposed IoT archi-
tecture. First, IoT devices register the information of IoT
resources to the EG to be discoverable in the edge network.
Then, the EG registers the information to the ASP to be
discoverable on the Internet. The resources of IoT devices
are represented in the edge network through the resources
of EG. The represented resources are virtual resources that
forward the request messages to the IoT devices. Once IoT
devices are registered to the ASP, the EG collects environ-
mental data including sensing data and actuator state from
IoT devices and sends the data to the ASP for accumulat-
ing historical data to be used in intelligent functions. Then,
the I0T client discovers the registered IoT resource on the
Internet through accessing the ASP, and publish the service
scenario profile for a group of IoT resources. The service
scenario profile is deployed in an EG that operates a scenario
based on the profile. In the process of operating a scenario,
the EG communicates with intelligent services of an ISE to
call the intelligent functions to get control values which are
the energy consumption values for operating a heater in a
testbed. The functions are built by intelligent ML models
using the analysis of data. Therefore, the historical data are
required in this process. Once the control values are received
by the EG, then the EG runs an internal function to compare
the values to get a minimum energy consumption value for
controlling the heater.

Figure 4 shows a data pipeline for operating the [oT device
operation scenario on the proposed intelligent edge gateway.
The data pipeline presents the process of device registration,
data collection, device discovery, scenario deployment, intel-
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ligent services operation, and control through the data flow
based on network communications. The IoT device includes
resources that are used for sensing and actuating through
10T services. The information of the IoT device including
resources is involved in the device profile. The IoT device
sends the profile to the EG, and the EG sends the profile to
the ASP. For collecting data from the IoT device, the requests
from the EG, and the resources return the data to the EG.
Then, EG requests to the ASP for storing the historical data.
Through the discovery service from the ASP, the IoT client
retrieves information of devices and resources, and deploys a
service scenario profile to an EG through the ASP. Once the
service scenario profile is applied to the EG, the EG requests
intelligent services from the ISE to call the functions for
getting results of intelligent models. The intelligent models
run ML functions which are required historical data to pre-
dict a power value that is used in a heater for affecting the
indoor environment. The EG calls multiple ML functions
through the intelligent services from the ISE, then compares
the results, and applies the minimal energy consumption to
the IoT device.

The proposed intelligent edge computing provides a user-
desired environment through intelligent services. The ISE
includes intelligent models that are implemented through ML
models with the user data to predict heater energy consump-
tion for operating the heater to update the user environment
as depicted in Fig. 5. Tow time status is presented which are
time t for the current environment and time t+1 for the future
environment. The edge gateway derives the heater’s energy
consumption HP for t+1 environment. The heater consumes
the energy to update the current environment to be t+1 envi-
ronment. The prediction model is trained by the user data that
are comprised of time-sequence (TS), user-desired indoor
temperature (IT), user-desired indoor humidity (IH), outdoor
temperature (OT), outdoor humidity (OH), and heater energy
consumption (HP). Therefore, using these data, the model
can provide a predictable heater energy consumption for a
user-desired indoor temperature and humidity based on the
previous data. In the t+1 future environment, the updated
IT(t+1), IH(t+1), OT(t+1), and OH(t+1) are applied on the
environment that is a user-desired environment through oper-
ating the heater.

Decision-making based on intelligent-task
offloading

The proposed energy optimization approach is provided
through interacting with multiple intelligent services based
on the decision-making model in the edge gateway. The pur-
pose of energy optimization reduces the energy consumption
of [oT device operation and update the environment to be the
user-desired environment.
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For applying intelligent services in the proposed gateway-
centric [oT system, an RNN-based environment optimization
(REO) model and PMV-based comfort optimization (PCO)
model are developed and deployed in the ISE to provide
the energy consumption. The energy consumption value is
used for operating a heater in an indoor environment to
update indoor temperature and humidity to achieve a user
requirement. The power value selector (PVS) model is the
decision-making model that is deployed in the EG to select
a smaller energy consumption value to apply to the heater.

Figure 6 presents the proposed decision-making approach
based on invoking intelligent services from the ISE. The intel-
ligent services are provided through offloading the intelligent
tasks to the ISE. The tasks are processed by models that
are REO and PCO in the proposed IoT system. The models
are derived from RNN models that are trained with the user
data for inferencing a heater energy consumption. The heater
energy consumption is used for updating the indoor environ-
ment to be a user-desired environment. The EG includes the
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PVS model to make the decision for the selection of heater
energy consumption. The EG invokes the results from the
ISE, and selects a smaller value to apply on operating the
heater. Therefore, the heater can consume a smaller energy
consumption to make a user-desired environment based on
the inference model that is trained by the user data.

Figure 7 depicts the REO-based environment manage-
ment that is adopted in the proposed ISE to provide energy
consumption. The energy consumption is the heater’s power
value (HP) that is derived from the power prediction model.
The model is an inference model that is derived from an
RNN model. The prediction model outputs the HP for
the future and the future HP is used in the heater model
that is an emulator of the environment to update the envi-
ronmental parameters. Then, the power prediction model
outputs a new HP for the next future using the updated envi-
ronmental parameters. The data of parameters include 96
time-sequences that are collected for 1 day.
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management architecture
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Figure 8 depicts the PCO-based environment management
that is also adopted in the proposed ISE. The diffidence with
the REO is the PMV parameter is included in the inference
model. The PMV data for 96 time-sequences are provided
by the PMV calculator. The PMV parameter is included in
the power prediction model for providing an enhanced user-
desired environment to express the user’s wish.

The REO and RCO model is implemented by the RNN
model with the user data. An RNN model is deep learning
that derives a prediction model through training the leaning
using a dataset. In the training processing, the weights of
the entry to the nodes of the network are adjusted. Using
the derived prediction model, heater energy consumption is
provided for operating the heater to update the indoor envi-
ronment. As shown in Fig. 9, the proposed RNN model is
comprised of eight hidden layers based on LSTM cells. The
sequence length is 96 that is designed for receiving 1-day
data. Each input has multiple dimension which is imple-
mented for REO is 5-dimensions and RCO is 6-dimensions.
The output is the energy consumption value for operating a
heater. Therefore, the output dimension is 1 that is provided
by a fully connected layer. The t is presented for values of the
environmental parameters in the time-sequence. Therefore,
the output Y is a predicted value in t+1 time. The input X
includes 96 values that are in time-sequence from t-96 to t.

Figure 10 depicts the proposed environmental manage-
ment that is comprised of PVS, REO, and PCO to provide
optimal heater energy consumption. In the overall system,
the ASP and ISE are developed in the cloud, and EG and
environment emulator are deployed in the network edge. The
environment emulator includes IoT device and environment
that are demonstrated through the emulator. From the emula-
tor, the sensing values are collected to the ASP that provides
the data to the ISE through the EG. In the ISE, the REO and
PCO provide the heater power value to the PVS for making
the decision to apply on the environment for operating the
heater.

The approach of the decision-making in the PVS model
is presented by Eqgs. (1) and (2)

, My} ()
r =min(M), 2)

M ={mj, mp, m3,...

where the M is a set of models that are deployed in ISE. The
set M can include more than two model for comparing and
making decision to apply on the environmental control. In
the proposed IoT architecture, we include two models that
are REO and PCO for predicting the energy consumption.
For selecting the minimal energy consumption, the results of
the models in the set M are considered to control the envi-
ronment.

Implementation details and results

For implementing the proposed intelligent edge computing,
various frameworks and libraries are included to develop
each element. Several frameworks and platforms are pub-
lished for building the IoT and edge computing to provide
services, process and store data, manage information, and
secure privacy as well as data. OCF is mainly used for
implementing the IoT management and communication in
the proposed system, as presented in Table 1. The imple-
mentation framework of OCF is IoTivity that is included
EG and IoT devices to enable device registration and deliv-
ering the commands. We implement ASP and ISE on the
high-performance computer with Windows 10 Pro 64 bit
operating system. The server application of the ASP is
implemented based on Spring Framework 4.3.3. MyBatis
3.4.2 is used for managing the MySQL database in the
ASP. The libraries Commons File Upload 1.3.1, Apache
HTTP Client 4.5.3, Fasterxml JSON 2.8.6, and ORG JSON
20160810 are used for implementing the functions in the
ASP. The libraries Jquery 3.1.1, Bootstrap v3.3.7 are used
for implementing the client functions and interface which
are displayed in the web client. In the development of ISE,
the Spring Boot 2.1.0 is used for implementing the services,
Apache HTTP Client 4.5.3 is used for requesting EGs. The
library org.tensorflow:tensorflow:1.8.0 is used for operating
the inference models REO and PCO in the server appli-
cation. For developing the REO and PCO model with the
user data, libraries of TensorFlow 1.10.0, Numpy 1.15.1 are
adopted in the Python 3 environment. EG and IoT device is
implemented for constrained environments based on Android
platform with IoTivity. EG includes server application for
providing services to IoT device and ASP through Jetty. The
environment emulator also includes an ML solution to pro-
vide a virtual environment that is implemented based on a
DNN with the user dataset.

Figure 11 shows environmental data for implementing
inference models that are used on REO, PCO, and environ-
ment emulator. The models are derived from DNN and RNN
models that are trained with the environmental data. The data
are collected by Oak Ridge National Laboratory (ORNL)
which is located in Campbell, USA [81]. The collected data
are comprised of many columns that are pre-processed to
keep the indoor and outdoor temperature and humidity and
heater energy consumption. The heater energy consumption
affects the indoor temperature and humidity in the room
where the heater and sensors are deployed. The data are col-
lected every 15 min from 00:00 on 1 October 2013 to 23:45
on 31 December 2013, from 00:00 on 1 January 2014 to
23:45 on 30 September 2014.

Figure 12 shows the implementation result including the
details of each entity in the proposed IoT system. The
deployed entities are IoT client, ASP, ISE, EG, and IoT
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Table 1 Development environment

Components Platform Frameworks and Library

ASP Windows 10 Pro 64 bit Spring Framework 4.3.3, MyBatis 3.4.2, Commons File Upload
1.3.1, Apache HTTP Client 4.5.3, Fasterxml JSON 2.8.6, ORG
JSON 20160810, Jquery 3.1.1, Bootstrap v3.3.7

ISE Windows 10 Pro 64 bit Spring  Boot  2.1.0, Apache HTTP  Client 4.5.3,
org.tensorflow:tensorflow:1.8.0, TensorFlow 1.10.0, Numpy 1.15.1

EG Android Things 1.0, SDK API Level 28 Jetty 9.1.0.v20131115, slf4j- 1.7.21, Volley 1.1.0, Fasterxml JSON

Android 7.0, SDK API Level 24
Windows 10 Pro 64 bit

ToT device emulator

Environment emulator

2.9.7, IoTivity 1.3.1
ToTivity 1.3.1, Volley 1.1.0, Fasterxml JSON 2.9.7

Spring Boot 2.1.0, org.tensorflow:tensorflow:1.8.0
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Fig. 11 Environmental data for experimental environment: a user-desired indoor temperature. b User-desired indoor humidity. ¢ Outdoor temper-
ature. d Outdoor humidity. e PMV based on user desired environment. f Heater energy consumption

device with the environment emulator. The ID of EG is
jnu.mcl.emulator.001 that is deployed in a local network
with an [oT device. The IoT device collects the sensing data
from the environment emulator that provides indoor/outdoor
temperature and humidity data. The environment is updated
by the heater that is based on a DNN. The IoT device pro-
vides services through OCF resources including resources of
/heater, /it, /ih, /ot, /oh that are registered to the ASP through
the EG. Through the registration, the virtual resources are
generated in the EG that represents the actual resources to

@ Springer

the Internet. The ASP provides the services for accessing
the registered resources by the IoT clients. Using the inter-
faces, users can retrieve the information of resources and
sending commands for controlling actuators and collecting
sensing data. In the ISE, the REO and PCO models are
deployed to provide intelligent services. The intelligent ser-
vices are exposed through the resources of /web/functionl
and /web/function2 that are provided by the server applica-
tion based on Spring Boot. The EG calls intelligent services
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Fig. 12 Proposed IoT system implementation result

to get the results that are used in the decision-making to get
the optimal factor for operating the heater.

Through the IoT client, the scenario profile can be
deployed to the EG. Once the scenario is deployed, the EG
operates the scenario to access the corresponding services
and functions that are models such as REO, PCO, and PVS.

Figure 13 presents an example of a service scenario profile
that is used in the presented experiment to operate a service
scenario through function 1, function 2, and function-local.
Scenario profiles are written in JSON format, and functions
are presented in JSON array such as functionl, function2,
and function-local. The functions describe the models that
run on ISE and EG. The operation interval is defined as 10
s which is considered by EG to invoke the services based on
the scenario profile. The params key is used for defining the
required resources. The resources are virtual resources of EG.
The definition is interpreted for retrieving the data from the
database of ASP. The results of functionl and function2 are
delivered to the function-local by the definition of operators.
The result of function-local is used for the resource /vr/jun-

mcl-emulator-001/heater that is the virtual resource of the
heater.

Figures 14 and 15 show prediction results using the REO
and PCO model that predicts the heater energy consumption
value for operating a heater 15 minutes to update indoor tem-
perature and humidity. The user-desired environment data
are used for training the NNs. With the environment data,
the heater energy consumption is also adopted to training the
NNs. The heater energy consumption is used for updating
the environment to be a user-desired environment. For the
REO model, the TS (t), IT (t), IH (t), OT (t), and OH (t)
are the input and HP (t + 1) is the output to train the RNN
model. For PCO, in the input layer, the PMV (t) is added to
train the RNN. The total size of the training data is 26,210
and the testing data are 8830. According to the results of
REO and PCO, the heater energy consumption data are simi-
lar. Nevertheless, most of the values are diffident in different
time-sequences. Therefore, the updated values of IT and IH
are also presented with different results.
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Fig. 13 Service scenario profile
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"it": "/vr/jnu-mcl-emulator-001/it",
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"oh": "/vr/jnu-mcl-emulator-001/oh"
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"uri": "http://192.168.1.2:8088/web/function2",
"params": {
"it": "/vr/jnu-mcl-emulator-001/it",
"ih": "/vr/jnu-mcl-emulator-001/ih",
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"name": "power",
"uri":"/vr/jnu-mcl-emulator-001/heater"

1]
5

Interval <" “interval": 10000
H

Using the proposed REO and PCO models, the EG con-
trols the heater to update the environment. In this process,
the IoT device collects the environment data and sends the
data to the ASP through the EG. Then, by the request from
the EG, the ISE requests the data and operates an inference
model. The model derives a controlling factor to the EG, and
EG applies on the heater. For experimenting with the sce-
nario, we apply 479 rows with REO, PCO, and PVS model
on the proposed system to get results of updated IT, IH, and
heater energy consumption data, as shown in Fig. 16. From
the second row, only outdoor temperature and humidity data
are applied with the updated indoor temperature and humid-
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ity. Each result is compared with the original data to get the
accuracies and differences for presenting the performance.

Performance evaluation

For providing improved energy optimization using decision-
making based on the EG, we proposed REO and PCO models
that are deployed in the ISE to provide intelligent services.
The PVS model is deployed in the EG to select a smaller
value for operating the heater. The REO and PCO models are
derived by the RNN with the user-desired data that includes
user-desired environmental data and heater energy consump-
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Fig. 14 Prediction results of REO model. a User-desired indoor temperature. b User-desired indoor humidity.
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Table2 Performance of

prediction results between REO

and PCO

Measure ITHM1 ITHM2 IHHM1 IHHM2 HPHM1 HPHM2
MAPE 0.0392 0.0392 0.0314 0.0314 0.106 0.0856
MAD 0.8293 0.8297 1.65 1.6488 4.257 3.3106
MSE 0.9569 0.9587 3.107 3.104 29.6308 20.1247
RMSE 0.9782 0.9791 1.7627 1.7618 5.4434 4.4861
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Table 3 Performance of

experiment results Measure ITEM1 ITEM2 ITEM IHEM1 IHEM2 IHEM HPEM1 HPEM2 HPEM
MAPE 0.0171 0.0152  0.0153 0.0355 0.0363  0.0365 0.2129 0.1328 0.1546
MAD 0.4037 0.3586  0.3593  2.0904  2.1344  2.1471 8.1481 5.5803 6.3183
MSE 02934  0.2398  0.2402 5.8864  6.0854  6.1501 847111 51.9885 63.6227
RMSE 0.5417  0.4897  0.4901 24262 24669 24799 9.2039 7.2103 7.9764

tion. The heater energy consumption is used for updating  accuracy of updated indoor temperature and humidity, and

the environment to be a user-desired environment. The REO
and PCO models are used for predicting the energy con-
sumption for the user-desired environment. Table 2 presents
the performance of the REO and PCO models. In the table,
ITHM stands for indoor temperature, IHHM stands for
indoor humidity, HPHM stands for heater energy consump-
tion, the number 1 stands for the REO model, and 2 stands for
the PCO model. The performance is presented through the

@ Springer

heater energy consumption. The accuracy is calculated with
the original data based on Mean Absolute Percentage Error
(MAPE), Mean Absolute Deviation (MAD), Mean Squared
Error (MSE), and Root Mean Square Error (RMSE). The
results illustrate that the prediction performance of REO and
PCO is sufficient to inference the heater energy consumption
to make a user-desired environment.
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Then, we apply REO and PCO on the ISE to collect the
results 479 times separated through operating the [oT device
using the EG. Also, the PVS model is applied to collect the
optimized energy consumption with indoor temperature and
humidity. However, compare with the original data through
MAPE, MAD, MSE, and RMSE, the results are insufficient
than the independent operation of models, as shown in Table
3. In the table, ITEM stands for indoor temperature, IHEM
stands for indoor humidity, HPEM stands for heater energy
consumption, and extended number 1 stands for REO-model-
only, 2 stands for PCO-model-only, and no-extended number
stands for PVS model based on the REO and PCO models.

Figure 17 shows the performance comparison of exper-
imental results with heater energy consumption. For this
analysis, 479 values are collected through operating the
heater using REO, PCO, and PVS based on REO and PCO
models. For adopting the REO model, the result is presented
by HP(t+1)E_M1, the result of the PCO model is presented by
HP(t+1)E_M2, and the result of PVS model is presented by
HP(t+1)E_M. The HP(t+1) is the original data that are simi-
lar to compare with others. Therefore, in the time-sequence,
the heater energy consumption is enabled to affect the heater
to update the environment to be a user-desired environment.
Although, at some moment, the consumption is predicted
less than the original. For this issue, we can set a threshold
to increase the heater energy consumption.

The proposed improved energy optimization is enabled by
selecting a smaller energy consumption from multiple intel-

ligent solutions that provide the heater energy consumption
for making a user-desired environment. As shown in Fig. 18,
the comparison is presented for the total energy consump-
tion of original data (HP(t+1)), REO (HP(t+1E_M1)), PCO
(HP(t+1)E_M2), and PVS(HP (t+1) E_M). As we declared,
the predicted energy consumption is smaller than the original
data in some moments. The total value is presented, the orig-
inal data are highest, and the optimized result is the smallest.
According to the proposed decision-making approach, the
result must be the smallest because of the selection mech-
anism. The MAPE is 15.46% for the comparison between
the result and original data for the time with the same ini-
tial environmental data and outdoor data. Nevertheless, the
updated indoor temperature and humidity data are similar to
the original data using the reduced energy consumption.

The calculation of the total energy consumption using
each model is presented in Eq. (3)

n
E= Zm (TS, IT, IH, OT, OH) ,

i=1

3)

where the m is a model that is used in the experiment. The
model requires the parameters TS, IT, IH, OT, and OH to
predict the energy consumption for a time. The total con-
sumption is sum of the all times for the predicted energy
consumption. In this experiment, the total count of the pre-
diction is 479 which is also the value of n.
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Conclusions and future directions

We proposed an IoT system based on the EG to enable intelli-
gent and autonomous operation of IoT devices. For providing
improved energy optimization using the decision-making
approach in the EG, inference models are developed based
on a deep learning approach to provide intelligent services
through the ISE. Then, the EG can call intelligent services
to make a decision for selecting an optimal factor to apply
on the IoT device. In the experiment, the optimal factor is
the heater energy consumption that is used for operating the
heater to update the environmental parameters such as indoor
temperature and humidity. For providing the intelligent ser-
vices to the EG, the REO and PCO models are deployed in the
ISE. REO and PCO models are derived by learning a user’s
residential environment data through the RNN model. In this
training process, the inputs are the user-desired environment
data, and the output is the heater energy consumption that
is used for operating the heater to affect the environment.
Furthermore, the PVS model is deployed in the EG to make
the decision for selecting a smaller value from the REO and
PCO to operate the heater. Therefore, the proposed approach
enables reducing energy consumption as well as providing a
user-desired environment.

As future directions, we will offload more deep learning
approaches to the ISE for providing intelligent services from
various perspectives. Also, the decision-making approach
of the EG needs to consider various elements to derive
an optimal factor. Moreover, multiple control factors can
be provided through complex consideration based on the
decision-making approach.
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