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Abstract
This position paper reflects on the state-of-the-art in decision-making under uncertainty. A classical assumption is that
probabilities can sufficiently capture all uncertainty in a system. In this paper, the focus is on the uncertainty that goes beyond
this classical interpretation, particularly by employing a clear distinction between aleatoric and epistemic uncertainty. The
paper features an overview of Markov decision processes (MDPs) and extensions to account for partial observability and
adversarial behavior. These models sufficiently capture aleatoric uncertainty, but fail to account for epistemic uncertainty
robustly. Consequently, we present a thorough overview of so-called uncertainty models that exhibit uncertainty in a more
robust interpretation. We show several solution techniques for both discrete and continuous models, ranging from formal
verification, over control-based abstractions, to reinforcement learning. As an integral part of this paper, we list and discuss
several key challenges that arise when dealing with rich types of uncertainty in a model-based fashion.

Keywords Decision-making under uncertainty · Markov decision process · Partially observable Markov decision process ·
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1 Introduction

Artificial intelligence (AI) enters our everyday life, often in
critical domains such as health, defense, energy, or trans-
portation. AI systems have to make intelligent decisions
within such domains that are often safety-critical, yet, at
the same time, have to deal with the inherent uncertainty
that arises in the real world. This position paper reflects on
a particular branch of AI, called decision-making under un-
certainty [86].

How does uncertainty affect AI decision-making? We dis-
cuss the concept of uncertainty beyond its generic use. Gen-
erally, uncertainty has been “largely related to the lack of
predictability of some major events or stakes, or a lack of
data” [11]. To name a few, there is uncertainty (1) in tech-
nological, social, environmental, or financial factors in the
business literature [139], (2) in greenhouse gas emissions
and concentrations for climate modeling [67], (3) about
sensor imprecision and lossy communication channels in

robotics [153], and (4) on the expected responses of a human
operator in decision support systems [86]. The level and type
of uncertainty affect the capabilities of AI systems to make
intelligent decisions [6, 86]. A deterministic environment
implies perfect information, and each decision has a single
outcome. The real world, however, is uncertain. Let us give
a small example [164]. A robot perceives its environment
and potential obstacles through a noisy sensor. A naive way
to deal with this uncertainty is to assume the sensor data is
always correct. Because of the imperfect measurements, the
robot may, at some point, make a disastrous decision. Alter-
natively, the robot may use Bayesian reasoning [60, 64]: the
probability that the sensor reading is correct is used to up-
date the belief about the robot’s environment. Over time, the
confidence in the position of the obstacles will grow. We dis-
tinguish aleatoric and epistemic uncertainty [140]. Aleatoric
uncertainty is intrinsic to the environment and quantifies un-
knowns, for instance, partial observability due to measure-
ment noise. Epistemic uncertainty indicates a lack of knowl-
edge and is reducible by collecting more data. For example,
by making more measurements, the robot can estimate the
level of noise of its sensor more accurately.

How to capture uncertainty within a model? State-of-the-art
approaches use models, in particular Markov decision pro-
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Fig. 1 A family of closely related uncertainty models that we cover in
this paper. Adversarial behavior increases from left to right. The left
and right columns are partially observable models. Finally, the bot-

tom row shows models that (in addition to probabilistic and adversarial
behavior) account for uncertainty in probability distributions

cesses (MDPs), to capture sequential decision-making prob-
lems for agents operating in uncertain environments [119].
Sensor limitations may lead to partial observability about
the system’s current state, giving rise to partially observ-
able Markov decision processes (POMDPs) [82]. MDPs aug-
mented with a model of adversarial behavior are stochastic
games (SGs) [45]. Their partially observable counterpart is
a POSG [35, 70]. Finally, all of these models have continu-
ous counterparts, which are often formalized as dynamical
models [12, 31].

Precise probabilities are not enough. The likelihood of
uncertain events, such as a message loss in communi-
cation channels or specific responses by human opera-
tors, may only be an estimate from data. The models in-
troduced above capture uncertainty in the form of pre-
cise probabilities—either in their transition dynamics or in
their observation models. However, such point estimates
of probabilities from data carry the risk of statistical er-
rors. Moreover, the optimal policies for agents are usually
highly sensitive to small perturbations in transition proba-
bilities, leading to suboptimal outcomes such as a deteri-
oration in performance [68, 100]. Uncertainty models re-
move this assumption by incorporating uncertainty sets of
probabilities. In the literature, uncertain MDPs (uMDPs)
use, for example, probability intervals or likelihood func-
tions [66, 77, 108, 118, 162, 163, 165]. Similar extensions
exist for uncertain POMDPs (uPOMDPs), where uncertainty
may also affect the observation model [32, 33, 52, 76, 143].
To the best of our knowledge, there is no prior work on un-
certain POSGs (uPOSGs). Figure 1 shows a family of the
uncertainty models that we are interested in, capturing dif-
ferent types of uncertainty and their relation to each other.
The three different types of arrows indicate the addition of
(1) adversarial behavior, (2) uncertainty on probability dis-
tributions, and (3) partial observability from one model to
another.

Different solutions across the research areas. We focus on
decision-making scenarios that can sufficiently be described

by uncertainty models.1 A general problem is then to syn-
thesize a policy for such a model that satisfies a certain goal.
Such a goal may, for instance, refer to maximizing a reward
measure or satisfying a (formal) specification in temporal
logic [115]. This policy synthesis problem is the subject of
active research throughout different areas: AI, formal verifi-
cation, optimization, and control theory.

Challenges and perspectives. In this paper, we provide an
overview of techniques for decision-making under uncer-
tainty that stem from reinforcement learning (RL) [146],
model checking [23, 49], systems and control [168], and
convex optimization [30]. We highlight and discuss var-
ious assumptions and challenges that are central to these
techniques, such as prior knowledge, data availability, the-
oretical complexity, and the guarantees that are possible in
the various settings. For example, settings that exhibit strict
safety requirements require decisions that are verifiably ro-
bust against uncertainty [139]. Such considerations require
precise knowledge about the nature of uncertainty.

We structure this paper as follows. In Sect. 2, we highlight
various types of uncertainty models and their properties. In
Sect. 3, we describe state-of-the-art planning approaches to
solve them against different kinds of specifications. In Sect. 4,
we detail recent progress on dealing with uncertainty in re-
alistic, continuous spaces, and in Sect. 5, we discuss various
approaches in reinforcement learning that deal with uncer-
tainty. Finally, in Sect. 6, we discuss a number of important
challenges to this research area and provide an outlook on
potential future work and directions.

2 Modeling under uncertainty

Decision-making under uncertainty from a model-based
perspective classically revolves around Markov decision
processes (MDPs) [119]. An MDP is defined by a tuple
(S, si,A,P), where S is a set of states, si ∈ S is the initial

1 We do not assume per se that a model is available.
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Fig. 2 Examples of a classical MDP, POMDP, and SG

state, A is a set of actions, and P : S × A→ Distr(S) is the
probabilistic transition function that maps each enabled state-
action pair to a probability distribution over successor states.
The probabilistic transition function may be partial, reflect-
ing that not every action is necessarily enabled in every state.
An example of an MDP can be seen in Fig. 2a.

A policy (also called scheduler, strategy, or controller)
resolves the non-determinism of an MDP. Formally, a finite-
memory policy is a function π : (S× A)∗ × S→Distr(A) that
maps sequences of states and actions to a distribution over
actions. If the policy accounts for only a single state, i.e., it
is of the form π : S→ Distr(A), it is called memoryless. A
policy is deterministic if it maps each state to a single action,
i.e., π : S→ A.

MDPs can be extended with a reward function R : S×A→
R, assigning a real-valued reward to each state-action pair.
Let rt be the reward collected at time t when following pol-
icy π, and γ ∈ (0,1] a discount factor. We refer to the accu-
mulated (discounted) rewards under π and γ as the return
G =

∑
t γ

trt . Then, the goal is to find a policy π that maxi-
mizes the expected return:

argmaxπEπ [G] . (1)

In this paper, we primarily focus on temporal logic objec-
tives [115]. For temporal logic objectives, the goal is to find a
policy that maximizes the probability with which a temporal
logic formula ϕ is satisfied:

argmaxπPπ [ϕ] ,

where Pπ is the probability measure of the Markov chain in-
duced by the MDP with policy π (see, e.g., [23] for details).
We particularly employ reachability (ϕ = ♦T ) and reach-
avoid (ϕ = ¬B UT ) objectives or their time-bounded ana-
logue, where T is a set of target states, and B is a set of “bad”
states to be avoided. Computing policies that optimize for
reachability or expected reward is decidable in polynomial
time, and 2EXPTIME-complete for general temporal logic
specifications [23].

Example 2.1
For the MDP given in Fig. 2a, an optimal memoryless de-
terministic policy for eventually reaching s2 with probability
1 is, for instance, choosing a1 in s0 and s3, and a2 other-
wise. �

2.1 Partial observability

Partially observable MDPs (POMDPs) are a common ex-
tension of MDPs to account for limited information in the
decision-making problem [82]. Formally, a POMDP is a tu-
ple (S, si,A,P,Z,O), where (S, si,A,P) forms an MDP, Z is
a set of observations, and O : S × A→Distr(Z) is the prob-
abilistic observation function. An example POMDP with
state-based observations represented by shaded states is pre-
sented in Fig. 2b.

A POMDP is equivalent to a fully-observable, infinite-
state MDP, called the belief MDP. Each state of this MDP
represents a belief: a probability distribution over the (fi-
nite) states of the POMDP that summarizes the history of all
observations and actions so far. Upon taking an action and
receiving an observation, the current belief can be updated
to a new belief via the standard belief update function [82].

A policy in a POMDP is a policy in the belief MDP. That
is, a function that maps beliefs to actions, π : Distr(S) → A.
Alternatively, we may also consider only a part of the full
history. Then, π is of the form π : (Z × A)∗ × Z→Distr(A),
and is called a finite-memory policy. Where computing opti-
mal policies in MDPs is decidable, and even in polynomial
time for expected reward or reachability properties [23], it is
undecidable in POMDPs [98]. Restricting to finite-memory
policies renders the problem decidable, but the resulting poli-
cies may be sub-optimal. Randomizing over the actions may
be used to trade off memory size. Already computing a mem-
oryless randomized policy, i.e., of type π : Z→Distr(A), is
NP-hard in POMDPs [159].

Example 2.2
For the POMDP in Fig. 2b, an optimal policy for reaching
state s2 exists, but requires either finite-memory or random-
ization. The key problem is that an agent needs to distinguish
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between states s1 and s3, since in s1 action a2 is the optimal
choice, and in s3 the agent should choose a1. By (for in-
stance, uniformly) randomizing over action a1 and a2 when
the observation is “blue”, the agent will eventually reach s2
with probability 1. �

Most POMDP methods rely on the reduction to a belief
MDP to then perform value iteration [82, 137], policy it-
eration [69, 101], or point-based methods [114, 142, 160].
Alternatively, approaches exploit a reduction to an optimiza-
tion problem [7, 81], or employing recurrent neural networks
as policy representation [37–39, 71].

2.2 Adversarial behavior

Besides partial observability, we may also extend MDPs with
one (or multiple) adversaries, effectively defining a stochastic
game (SG). In a two-player stochastic game, the set of states
is partitioned into two parts, and each player may control the
actions in their states.

Example 2.3
A two-player SG is shown in Fig. 2c, where the shape of
the states (squares and circles) indicates which player the
state belongs to. In this SG, the square player can prevent the
game from reaching s2 by always choosing a1 in their state
s1. Hence, there is no winning policy for the circle player
when starting in s0. �

Efficient implementations exist, for instance, as part of the
model checking tool PRISM-GAMES [90]. Such a stochas-
tic game may also be made partially observable, yielding
a partially observable stochastic game (POSG). Due to the
generality of POSGs, they cover numerous application areas
such as robotics [87], cybersecurity [74], and air-traffic con-
trol [129]. However, computing a reward-optimal policy for
an agent in a POSG, for instance using dynamic program-
ming, is notoriously hard [70]. Approximate methods deal
with small settings, while realistic problems remain largely
intractable [57, 73, 89].

2.3 Classifying uncertainty

Uncertainty is often classified into two classes, namely
aleatoric and epistemic uncertainty [61, 75, 145]. Distin-
guishing aleatoric from epistemic uncertainty is identified as
a key challenge towards trustworthy AI [151].

Aleatoric uncertainty. Aleatoric uncertainty (also called sta-
tistical uncertainty) describes the natural variability and ran-
domness of processes. Consider, for example, the action of
accelerating an autonomous car by a fixed force. The car will
not reach the same velocity every time that we repeat this

action, due to random and complicated effects that cannot
be determined sufficiently accurately. Aleatoric uncertainty
is captured by probability distributions over the outcomes of
actions and can thus be naturally modeled by the transition
probabilities of MDPs. Similarly, aleatoric uncertainty about
measurement processes can be captured by the probabilistic
observation function of a POMDP. Aleatoric uncertainty is
irreducible in the sense that it is not realistically possible
(what is “realistic” may boil down to a philosophical debate)
to gather the additional knowledge needed to eliminate the
randomness.

Epistemic uncertainty. By contrast, epistemic uncertainty
(also called systematic uncertainty) is caused by a systemic
lack of knowledge, and can thus be reduced by gathering
more knowledge about the system [138]. Take, for example,
an autonomous car whose mass is only known to lie between
950 − 1050 kg, i.e., there is epistemic uncertainty about the
mass of the car. The mass clearly affects the acceleration of
the car in response to a certain input to the engine. How-
ever, without any further information about the likelihood
of certain values for the mass, there is no logical justifica-
tion for taking a stochastic perspective to reason about the
probability that the car behaves in a certain way. Note that if
such likelihoods are known, epistemic uncertainty may still
be captured by probabilistic models, as is commonly done
in Bayesian approaches [64]. Epistemic uncertainty can be
reduced by collecting more data. For example, we may im-
prove our knowledge about the mass of the car by collecting
more accurate measurements of its weight.

Mixed uncertainty types. Besides aleatoric and epistemic
uncertainty in pure form, mixtures between these two uncer-
tainty types also exist. In fact, these mixed uncertainties are
of huge importance for the uncertainty models that we will
introduce in Sect. 3. Consider, for example, a system whose
underlying model is an MDP, but the transition probabilities
are only known to lie in a particular set. Thus, there is epis-
temic uncertainty (which we may reduce by, e.g., sampling
the MDP) about the aleatoric uncertainty (the probabilistic
transitions of the MDP). In Sect. 3, we will discuss several
ways of dealing with such mixtures between aleatoric and
epistemic uncertainty.

3 Planning under uncertainty

The classical models for decision-making under uncertainty
are MDPs and POMDPs, and SGs in multi-agent settings.
These models deal with uncertainty in the aleatoric form by
using probability distributions on the outcomes of actions.
In this section, we extend the notion of uncertainty in these
models in various ways, particularly by adding uncertainty

Springer



Decision-making under uncertainty: beyond probabilities

Fig. 3 Extensions of an MDP with continuous uncertainty (uMDP) and discrete uncertainty (MEMDP)

of the epistemic form. We discuss how to deal with these
additional uncertainties in the policy synthesis problem and
how to learn (and possibly reduce) the degree of uncertainty
from data.

3.1 Sets of (PO)MDPs

An uncertain MDP (uMDP; also known as robust MDP)
is an MDP where the probability distributions over succes-
sor states at each state-action pair are replaced by a set of
possible distributions [108, 162]. An uncertain MDP can be
viewed as a set M of (uncountably many) standard MDPs
M . Consequently, we write M ∈ M for an MDP M that is
contained in the uMDPM.

If we assume there exists one true MDP within this set,
then uMDPs can be seen as a layer of epistemic uncer-
tainty on top of the transition probabilities of the true model,
which can be reduced by gathering information. Addition-
ally, uMDPs are a form of stochastic game where at each state
one player chooses the actions, and the adversary chooses the
probability distribution.

The most common way to define uMDPs is by replacing
the individual transition probabilities with probability inter-
vals. In that case, the uMDP is also called an interval MDP
(iMDP), and the uncertainty set at a state-action pair is de-
fined as a convex polytope constructed by intersecting the
Cartesian product of the intervals with the set of all possi-
ble distributions over the successor states. Such a uMDP is
illustrated in Fig. 3a. Alternative forms of uncertainty sets
have also been considered, most notably convex uncertain-
ties [118], such as ellipsoidal [27] and L1-distance based
sets, most commonly used in reinforcement learning [78].

A common goal in a uMDPM is to compute a policy that
maximizes the expected return under the worst-case instance
of the uncertainty, typically denoted as a max-min problem:

argmaxπ min
M ∈M

E
M
π [G] , (2)

or, in the case of a temporal logic formula ϕ:

argmaxπ min
M ∈M

P
M
π [ϕ]. (3)

Computing such policies can be done via (robust) dynamic
programming [108, 163] or convex optimization [118].

Related to this is the notion of optimism in the face of
uncertainty [106], which is typically used as an exploration
strategy in reinforcement learning. Instead of choosing the
worst-case model M , we now choose the best-case model
M by also maximizing over the set of models M, that is,
a max-max problem. If the goal of the decision-maker is
to minimize, we may alternatively speak of min-max and
min-min problems, respectively. Similar to standard MDPs,
computing such policies for simple reachability or expected
return specifications can be done in polynomial time [162],
provided the uncertainty set is convex (as mentioned above)
and that the probability distribution of each state-action pair
is independent of the others, also known as the rectangularity
assumption (which we discuss in more detail below).

Example 3.1
In our example uMDP in Fig. 3a, when the agent chooses a1
in s0, the worst-case probability to go to s1 is 0.6, as this is
the lowest probability in the interval [0.5,0.8] that can add
up to one with a probability (0.4) from the other transition
interval [0.2,0.4]. Similarly, the optimistic probability here
is 0.8. �

Uncertain POMDPs. Uncertain MDPs may also be ex-
tended with partial observability, in the same way extend-
ing MDPs to POMDPs works, effectively defining uncer-
tain POMDPs (uPOMDPs) [143]. The standard decision-
making problem in a uPOMDP is again the max-min (or
min-max) problem, except that we are again restricted to
(finite-memory) observation-based policies. Solution meth-
ods rely on a belief-based approach that minimizes over the
uncertainty during the belief update [109], or convex opti-
mization [52, 143]. To the best of our knowledge, no com-
plexity results for uPOMDPs exist, though clearly standard
POMDPs are included in uPOMDPs, hence problems cannot
be easier.

Discrete model uncertainty. Uncertain MDPs form a contin-
uous set of MDPs that vary only in their transition proba-
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bilities. Analogously, we may also consider a discrete set of
MDPs. A multiple-environment MDP (MEMDP) is a finite
set of MDPs that share the same state and action spaces, and
only differ in their transition functions [120]. In particular,
these transition functions are not required to have the same
support, meaning that each MDP in the MEMDP may have
a different underlying graph.

Example 3.2
An example of a MEMDP is shown in Fig. 3b. The two
environments not only differ in the transition probabilities
on their shared transitions, but also in whether s2 is directly
reachable from s1 or s2. Thus, both MDPs in the MEMDP
have a different underlying graph. Similar to the POMDP
in Fig. 2b, this example MEMDP also shows the need for
memory or randomization in the policy, as the agent does
not know in which of the two s1 states it is, and thus needs
to (uniformly) randomize between a1 and a2 to eventually
reach s2 regardless of which environment the agent operates
in. �

MEMDPs have been studied extensively and under many
different names, among which hidden-model MDPs [41] and
POMDP-lite [44]. Indeed, as that last alternative name sug-
gests, MEMDPs have a strong connection to POMDPs. In
fact, every MEMDP can be transformed into a POMDP by in-
troducing a latent variable for the environment index into the
state space [42], and many POMDP examples from the lit-
erature (such as the famous Tiger Problem [82]) are actually
MEMDPs [44]. Solution methods for MEMDPs typically
rely on casting the problem as a POMDP and then using
POMDP solutions methods. Yet, MEMDPs form an interest-
ing class of models on their own as computing policies that
satisfy almost-sure parity objectives, which is undecidable
for POMDPs [43], is decidable for MEMDPs [120].

Assumptions and limitations. One key underlying assumption
typically used in uncertain (PO)MDPs is that all models in
the set have the same topology. Concretely, this assumption
ensures that while there is uncertainty about with which ex-
act probability a transition will occur, it is known whether the
transition is possible (with probability > 0) or not (with prob-
ability 0). Solution methods for both uMDPs and uPOMDPs,
such as [52, 118, 143, 162, 163], rely on this assumption.
Another assumption commonly made is the rectangular as-
sumption, which states that the choice of distribution in the
uncertainty set at one state-action pair is independent of the
choice of distribution in any other state-action pair. This as-
sumption is also key to efficient solution methods. Indeed,
reachability or expected return objectives in uMDPs with
rectangular uncertainty can be solved in polynomial time,
whereas solving uMDPs with non-rectangular uncertainty is

NP-hard [162]. Finally, there are multiple (semantic) inter-
pretations of such uncertain models. The first one assumes
that there is one true model within the set that is selected non-
deterministically at the start, also referred to as a stationary
uncertainty model. The other interpretation is that at every
step (i.e., action choice) one of the models is chosen by an
adversary, known as a time-varying uncertainty model [108].

3.2 Learning models and uncertainty sets

A fundamental question that arises is where the models,
and, in particular, the uncertainty sets discussed above, come
from. Clearly, a standard MDP could be learned from data
by estimating the probabilities of the transition function via
maximum likelihood estimation, i.e., fractions of empirical
occurrences in some data set. Such estimates naturally intro-
duce statistical errors, especially when the data set is small. A
natural application of uncertainty sets and uMDPs presents
itself here: we over-approximate the MDP we try to learn by
a uMDP that (ideally) contains the actual MDP.

PAC learning. Probably approximately correct (PAC) learn-
ing of MDPs typically aims to learn a concrete MDP by
deriving point estimates from data, and then extending these
point estimates to intervals by including error margins that
follow from concentration inequalities such as Hoeffding’s
inequality [72]. The resulting model is a uMDP with a prob-
abilistic correctness guarantee on each individual transition.
By distributing the confidence over all transitions, the PAC
guarantee can be extended to the entire model, and, as a re-
sult, also to the optimal value of Eq. (2) and (3). This latter
approach is used in, e.g., PAC statistical model checking [14].
Hoeffding’s inequality provides an upper bound on the prob-
ability that a point estimate of a random variable deviates
from its expected value by more than a certain value, but
this upper bound is typically very conservative in practice.
Furthermore, Hoeffding’s inequality relies on independent
and identically distributed (i.i.d.) sampling from a fixed dis-
tribution. Thus, Hoeffding’s inequality cannot be applied to
cases where the underlying model that is being learned may
shift between distributions.

Model learning. Active automata learning, or model learn-
ing [157], typically makes no assumptions regarding the state
space or the topology of the model. Instead, model learning
infers the state space and the topology from observations by
iteratively expanding a set of states. Model learning tech-
niques for MDPs use point estimates of probabilities and
make the assumption that the underlying MDP is determin-
istic, to uniquely identify states [149, 150].

Learning under distributional drift. The learning techniques
discussed above rely on the fact that there is one fixed, true
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model that generates the data used in the learning process.
This assumption may not always be realistic. Probability
distributions may suddenly change, for example due to hard-
ware failures [169], or slowly drift due to deterioration of
components. So-called sliding window (also called receding
horizon) approaches try to deal with these cases [46, 62]. In
such approaches, older data is deemed less valuable and is ig-
nored if it falls outside a predefined time window. Recently,
linearly updating intervals were suggested as an effective
approach to deal with changing environments [144]. This
method provides a flexible Bayesian framework that itera-
tively updates a uMDP in accordance with new data. While
not providing formal guarantees in terms of correctness, the
approach performs well in empirical evaluations and can eas-
ily adapt to distributional shifts by updating the uncertainty
model accordingly.

4 Continuous control under uncertainty

Having explored a broad family of discrete Markov mod-
els, we now shift our attention to continuous state and ac-
tion models. While such continuous models can often be
expressed as infinite or continuous MDPs, it is generally
more convenient to formalize models as a dynamical model
(we focus on the discrete-time case) [12, 31]. While dy-
namical models form the continuous analog of MDPs and
POMDPs, dynamical models generally exhibit more struc-
ture and smoothness in their transition (and observation)
functions across the state and action spaces. Formally, a dy-
namical model is characterized by a (deterministic) state tran-
sition function (also called kernel) f : Rn ×U × Rp → R

n

that maps the current state xk ∈ Rn, a control input (i.e., an
action) uk ∈ U ⊆ Rm, and a vector of disturbances wk ∈ R

p

to a successor state xk+1 ∈ R
n. To account for partial ob-

servability and sensor imprecision, we may define a separate
observation model g : Rn × Rq→ R

r that is independent of
the state transition model, and which maps the state xk ∈ Rn

and another vector of disturbances vk ∈ Rq to an observa-
tion yk ∈ R

d . The dynamical model is time-invariant if the
functions f and g do not change with the time step k ∈ N,
yielding the pair of equations

xk+1 = f (xk,uk,wk), (4a)

yk = g(xk, vk). (4b)

We deliberately leave the mechanism by which the distur-
bances wk and vk are determined unspecified. As we shall
see, depending on this mechanism, the disturbance may re-
flect various types of uncertainty, including set-bounded un-
certain parameters and stochastic noise terms. If wk and vk
are precisely known for each time step k the dynamical model

is deterministic, and if xk = yk for each k , the model is fully
observable.

Linear dynamical models. One important class of dynamical
models concerns state transition and observation functions
f and g that are linear in their arguments. In such a linear
dynamical model, also called linear time-invariant (LTI) sys-
tem if the functions f and g are time-invariant, the successor
state xk+1 and the observation yk are computed as linear
combinations of their respective arguments:

xk+1 = Axk + Buk + wk, (5a)

yk = Cxk + vk, (5b)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rd×n are matrices of
appropriate size. Linear dynamical models find important
applications in many research areas, including control the-
ory [154], power system modeling [126], mechanical engi-
neering [10], and signal processing [93].

Example 4.1
The position pk and velocity vk of a drone moving along a
straight line can be modeled as a linear dynamical model with
a 2-dimensional state xk = [pk, vk]� and dynamics defined as

xk+1 =

[
1 τ

0 1

]

xk +

[
τ2

τ

]

uk + wk, (6)

where uk ∈ U = [u,u] is the force applied to the drone at
time step k ∈ N, τ > 0 is the discretization time, and wk is
the disturbance vector. Now assume that we have access to
noisy measurements of only the position, but not the velocity,
of the drone. We model this through the observation model
as

yk =
[
1 0

]
xk + vk, (7)

where vk is the measurement disturbance vector. �

4.1 Capturing uncertainty in dynamical models

Like Markov models, dynamical models can be used to
capture various sources of uncertainty, including stochastic
noise, set-bounded disturbances, and partial and/or limited
observability of the system’s state.

Stochastic uncertainty in dynamical models. We can cap-
ture stochastic uncertainty in dynamical models by respec-
tively defining the disturbances wk and vk to be stochastic
processes. The term wk affects the state transitions and is
typically called process noise, whereas vk affects the ob-
servations and is called measurement noise. When analyzing
dynamical models with stochastic noise, the typical goal is to
reason over the probability that the system generates certain
state trajectories (analogous to reasoning over probability
distributions in MDPs).
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Example 4.2
For the drone model in Example 4.1, we can account for
stochastic factors in the environment (e.g., the influence of
the wind) by defining wk as a Gaussian (or any other) dis-
tribution, i.e., wk = N(μwk

,Σwk
), where μwk

and Σwk
are

the mean and covariance matrix. Similarly, we can account
for normally distributed measurement errors by defining
vk =N(μvk ,Σvk ). �

Set-bounded disturbances in dynamical models. Recall
from Sect. 2 that in some cases it is unrealistic to employ a
probabilistic (stochastic) model for the uncertainty. Instead,
to capture uncertainty in a dynamical model for which no
likelihoods of each possible outcome are known, we can
define wk ∈W or vk ∈ V to be unknown yet bounded dis-
turbances, whereW andV are uncertainty sets. To achieve
computational tractability, the uncertainty setsW andV are
typically convex (hyperrectangles, in the simplest case). In
the linear dynamical model in Eq. (5a)–(5b), we can addition-
ally make the matrices A, B, and C dependent on additional
set-bounded parameters, see, e.g., [22]. We typically take
a robust approach [26], meaning that we aim to generate a
solution that is valid for all values of the disturbances or the
uncertain parameters in their domain. When we take a robust
approach and assume that the value of the disturbance can
take on any value in its set, then the outcome of a control
input is nondeterministic.

Example 4.3
We modify the dynamics in Example 4.1 to explicitly account
for the weight m > 0 of the drone:

xk+1 =

[
1 τ

0 1

]

xk +

[
τ2

m
τ
m

]

uk + wk, (8)

i.e., the larger the weight, the higher the force needed to
change the state of the drone. Assume that the weight is only
known to lie in a certain interval, m ∈ [m,m]. Contrary to
Example 4.2, we do not have information about the likeli-
hood of each value for the mass in the interval [m,m], so
employing a probabilistic model is unrealistic. Instead, we
aim to generate a controller that performs robustly against
any values m ∈ [m,m]. �

Partial observability in dynamical models. A clear separation
of the transition and observation model enables us to capture
partial observability, as with POMDPs. The features of the
observation yk reflect quantities relating to the system that
is observed from the outside, while xk models the internal
state of the system. The state xk and observation yk may not
contain the same features, nor do they need to have the same
dimension.

Partial observability does not necessarily mean that the
dynamical model is not observable in control-theoretic

terms. Roughly speaking, a dynamical model is said to be
observable if its internal state xk can be reconstructed from a
series of outputs y1, y2, . . . only [15]. For example, the model
in Example 4.1 is still observable, since two consecutive
measurements yk , yk+1 will also reveal the velocity of the
drone. If a dynamical model is not observable, then there
exist state trajectories x1, . . . , xk that cannot be distinguished
from their produced outputs y1, . . . , yk−1 only.

4.2 Expressing aleatoric and epistemic
uncertainty

We now discuss how to use stochastic noise, set-bounded
disturbances, and partial/limited observability to express
aleatoric and epistemic uncertainty in dynamical models.

Aleatoric uncertainty. Recall from Sect. 2 that aleatoric un-
certainty is characterized by probability distributions over
the outcomes of actions. Thus, aleatoric uncertainty about
the state transitions and observations of a dynamical model
is naturally modeled by stochastic process and measurement
noise, analogous to the transition probabilities in an MDP.
Doing so, we can reason probabilistically over the paths gen-
erated by the dynamical model under different values of the
aleatoric uncertainty. In principle, however, it is also possible
to deal with aleatoric uncertainty from a robust perspective.
For example, if the support of the distribution underlying
the aleatoric uncertainty is bounded, we can also capture the
uncertainty as a set-bounded disturbance. As such, we can
enforce robustness against all possible outcomes. Robust ap-
proaches may be preferred with respect to safety constraints,
but can also be significantly more conservative than proba-
bilistic approaches.

Epistemic uncertainty. In principle, we can also reason prob-
abilistically over epistemic uncertainty, as long as a prior
distribution over the values for the uncertain parameter is
known, as is common in Bayesian approaches [64]. Recall,
however, that epistemic uncertainty is not always associated
with such a distribution over possible outcomes, such as for
the autonomous car from Sect. 2, whose mass is only known
to lie in a certain interval. In the absence of a prior distri-
bution for the likelihood of each value for the mass, it is
common to model epistemic uncertainty in the form of set-
bounded disturbances and take a robust approach [26]. Deal-
ing with epistemic uncertainty in dynamical models from a
robust perspective is analogous to the max-min (or min-max)
problem for u(PO)MDPs.

4.3 Decision-making for dynamical models

The objective in decision-making for dynamical models un-
der uncertainty is analogous to those for discrete MDPs and
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POMDPs. The general synthesis problem is to compute a
(feedback2) policy π such that the probability of satisfying a
temporal logic formula is maximized (or, as with some meth-
ods, is above some predefined threshold). Policies for dynam-
ical models are typically deterministic; that is, they map to
a single control input rather than a distribution over inputs.
In what follows, we present a non-exhaustive overview of
approaches that can be used to solve the synthesis problem
under various types of uncertainty.

Only stochastic uncertainty. In this case, the disturbances wk

and vk are both stochastic processes. A common assumption
to ensure computational tractability of the synthesis problem
is that this stochastic process follows a Gaussian distribu-
tion [111]. One such classical setting is linear-quadratic-
Gaussian (LQG) control [8], which considers a linear dy-
namical model with Gaussian noise and with a quadratic cost
function in which case a closed-form solution exists for the
optimal feedback controller. However, richer specifications
(such as temporal logic formulae) do not admit algorithmic
or closed-form solutions in general [28].

One popular approach to synthesizing controllers that
provably satisfy temporal logic formulae is to create a dis-
crete abstraction of the dynamical model in the form of an
MDP [5, 91, 94, 141]. Under an appropriate simulation re-
lation [65], guarantees about the satisfaction of a temporal
logic formula on the abstract model carry over to the con-
tinuous system. Various approaches formalize discrete ab-
stractions as uMDPs or interval MDPs. For example, the
tool StocHy [40] synthesizes policies for stochastic hybrid
systems by creating discrete abstractions that capture ab-
straction errors in the probability intervals of an iMDP. Sim-
ilarly, [18, 19] use abstractions to synthesize certifiably safe
controllers for dynamical models with stochastic uncertainty
of unknown probability distribution about the state transi-
tion model. By sampling the stochastic noise of unknown
distribution, [18, 19] compute PAC bounds on the transition
probabilities of MDP abstractions of dynamical models, thus
formalizing these abstract models as iMDPs.

Only set-bounded uncertainty. The synthesis problem for dy-
namical models with set-bounded disturbances has mostly
been studied at the intersection of control theory and for-
mal methods [25]. In particular, various approaches create
discrete abstractions of such dynamical models in the form
of deterministic finite transition systems on which temporal
logic formulae are easily verified [99, 147]. Generally, safety
objectives can be verified by over-approximating the set of
reachable states under any possible value of the disturbance

2 The word feedback denotes that the policy takes the (current) state
into account when computing a control input.

about which there exists uncertainty, while reachability ob-
jectives can be verified by under-approximations [121]. Be-
sides abstraction, various approaches use optimization, such
as [59], which synthesizes controllers for reach-avoid speci-
fications on linear models with bounded disturbances.

Stochastic and set-bounded uncertainty. Decision-making
and the synthesis problem for dynamical models with both
stochastic and set-bounded uncertainty are largely under-
studied. The problem is that purely probabilistic approaches
are only able to deal with stochastic uncertainty about the
state transition and observation model, while determinis-
tic reachability-based approaches only address set-bounded
uncertainty about these models. For stability specifications,
the problem has recently been considered from a control-
theoretic approach by [103]. However, to provide guarantees
about temporal logic specifications, abstractions into richer
models, such as uncertain MDPs, are needed. This approach
is taken by [95], who learn MDP abstractions with uncertain
transition probabilities of dynamical models with discrete
control input sets from data. Moreover, the recent paper [22]
synthesizes provably correct controllers for dynamical mod-
els with stochastic (aleatoric) and set-bounded (epistemic)
uncertainty, by generating interval MDP abstractions that
simultaneously capture both types of uncertainty about the
model dynamics.

The partially observable case. Decision-making for partially
observable dynamical models typically relies on a recursive
state estimator. Such a state estimator maintains a belief over
the continuous state space based on previous observations
and the available model of the dynamical model. The classi-
cal state estimator for linear dynamical models is the Kalman
filter, which assumes Gaussian process and measurement
noise, and also represents the belief as a Gaussian distribu-
tion over states [83, 117]. For linear dynamical models with
additive Gaussian noise, the Kalman filter is an optimal state
estimator in the minimum mean-square-error sense, i.e., its
estimate is the least uncertain of any filter, given the same
history of information. Kalman filters have been used by [21]
to synthesize controllers that satisfy reach-avoid specifica-
tions for partially observable linear dynamical models by
generating iMDP abstractions.

Another widely used state estimator is the particle filter,
which is especially used for dynamical models with non-
linear dynamics and non-Gaussian noise [153]. While the
Kalman filter maintains the belief as a Gaussian distribution,
the particle filter maintains the belief as a set of so-called
particles [97, 130]. Intuitively, these particles are hypothesis
states that are recursively propagated through the dynami-
cal model by means of simulation methods. By weighing
the particles after each simulation step based on their like-
lihood of being an accurate state estimate, the particle filter
recursively improves the quality of the belief.
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5 Reinforcement learning under uncertainty

In the previous sections, we have seen how to reason about
uncertainty in sequential decision-making when the MDP
that models the system is known, and when this model
exhibits additional uncertainty. When the dynamics of the
MDP are unknown, we may resort to reinforcement learn-
ing (RL) algorithms, which can compute policies through
experiences [146]. In this case, we typically see the prob-
lem as a sequence of interactions between an agent and an
environment, as Fig. 4 demonstrates. In each episode, the
agent performs a sequence of actions, and each action yields
a corresponding reward.

An RL agent must explore the environment to find a policy
that yields the maximum expected return.3 As the agent col-
lects experiences, it can update its policy. A classical example
is the Q-learning algorithm [161], which learns action-values
Q(s,a) that indicate the value of executing action a in state s.
An RL agent typically requires some form of exploration, and
the Q-learning algorithm follows an ε-greedy policy. Upon
visiting a state st at time step t, the agent takes with proba-
bility 1 − ε an action at that is chosen greedily according to
the current value estimates, and with probability ε samples
a random action:

at =

{
arg maxa∈AQ(st,a) if ∼ [0,1] > ε
∼U(A) otherwise,

where U denotes a uniform distribution. After executing ac-
tion at in state st the agent receives a reward rt and observes
the next state st+1, so it updates the state action value:

Q(st,at )←(1−α)Q(st,at ) + α
[

rt + γmax
a′ ∈A

Q(st+1,a′)
]

,

where α is a learning rate.
Considerable advances have been made in RL by applying

function approximation to estimate the action value or to
represent the agent’s policy [102, 131].

Following this simple but powerful framework, RL has
shown promising results [132]. Nevertheless, it is still chal-
lenging to employ such methods in real-world applica-
tions [56]. Since RL typically makes no assumption about
the environment, the agent often relies on random explo-
ration to learn a policy in a trial-and-error fashion. However,
naive exploration, such as the ε-greedy exploration used in
Q-learning, may require excessively many interactions with
the environment, and such randomized exploration can be
detrimental for real-world applications, since it may lead to
undesirable outcomes.

3 Recall from Sect. 2 that the expected return commonly refers to the
expected accumulated reward.

Fig. 4 An agent interacting with its environment

A model-based approach can help us improve the safety
and sample efficiency of RL algorithms [104]. One of the key
challenges, in this case, is to distinguish aleatoric from epis-
temic uncertainty. In other words, we want to learn a model
from experiences (i.e., reducing epistemic uncertainty) that
faithfully captures its stochastic nature (the aleatoric uncer-
tainty). Reasoning about these uncertainties may allow an
agent to perform reliably and improve its exploration [50].
For example, an optimistic agent explores regions of the en-
vironment with high epistemic uncertainty to improve its
sample efficiency [78], while a pessimistic agent may avoid
regions with high aleatoric uncertainty to reduce the variance
of the returns [54].

In this section, we review how different areas of RL deal
with aleatoric and epistemic uncertainty. First, we discuss
robust approaches, which aim to ensure that a reasonable
performance is always met. Then, we discuss the Bayesian
setting, which captures uncertainty via explicit distributions
over the underlying (true) model. Finally, we discuss the
offline setting, where the uncertainty is irreducible beyond a
certain point due to the limited data available.

5.1 Robust RL

A major advantage of reasoning about different types of un-
certainty is that we are able to make decisions that are more
robust against potential variations and changes in the envi-
ronment [105]. This is one of the main lines of research in
safe RL, where one tries to ensure the agent always main-
tains a reasonable performance [63]. Such approaches are
particularly suitable for situations where data collection is
expensive and risky.

To achieve such a goal under aleatoric uncertainty, we
can change the objective of the RL agent. Considering that
executing a policy π in an MDP induces a distribution over
the return G, we may choose to optimize other criteria instead
of the mean of the return (Eq. (1)). For instance, we may
penalize the variance of the return [54]. We can also aim to
maximize the worst-case return [51] or the tail of the return
distribution [47], which can be formalized by the conditional
value at risk (CVaR) [123]. The α-CVaR can be seen as the
mean return of the α trajectories with a lower return.

Robustness can also make an RL agent more reliable in
the constrained setting, where the environment is modeled
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by a constrained MDP [4]. In this setting, the agent observes,
besides the reward, an extra signal, called the cost, that must
be kept under a predefined threshold.4 This cost signal is
often used to explicitly model safety requirements, which
allows an engineer to easily specify the behavior expected
from the agent [84, 127]. In the typical constrained RL set-
ting, the goal of the agent is to maximize the expected return
while keeping the expectation of the cost-return (the accu-
mulated cost in an episode) under the given threshold [1].
To bound the cost-return of the worse trajectories, we may
constrain the CVaR to remain under the threshold instead of
the expectation [166, 167]. From an epistemic uncertainty
perspective, we can consider the worst-case expected return
of a uMDP. In this case, the RL agent keeps track of a uMDP,
and it can compute a policy using a pessimistic (max-min)
approach (Eq. (2)).

We remark that the use of a worst-case or adversarial
approach may lead to overly conservative policies. In this
case, approaches such as the optimization of the CVaR may
provide mechanisms for a finer balance between the risks and
performance. For instance, we may choose α = 1 to recover
a risk-neutral approach, while by setting α closer to 0, we
get a worst-case perspective.

In deep RL, there are different approaches to make a policy
more robust, such as increasing the policy’s entropy [58], or
using adversarial training, which can generate policies more
robust against observation perturbations [112] or actuator
perturbations [148].

In cases where certain (catastrophic) events must be
avoided, a robust approach may be insufficient to describe the
user’s preferences. Recently, a number of approaches from
the formal methods community consider a so-called shield
that blocks certain actions that carry the risk of violating a
given safety property [3, 79]. These approaches have also
been extended to deep RL and partially observable environ-
ments, showcasing the robustness of the obtained policies as
well as an improvement of the convergence rate [36].

5.2 Bayesian RL

In many applications, we already have some data or some
prior knowledge from an expert, which may be used to infer
a distribution over the underlying MDP. This distribution can
be represented by a distribution over the parameters of the
MDP. Such a distribution can be seen as a prior, which yields
a Bayesian-Adaptive MDP (BAMDP) [64, 158], where the
state space is augmented with a belief over the underlying
MDP. Thus, as the agent interacts with the environment, the
belief over the underlying model is updated.

BAMDPs may be used to devise efficient exploration
strategies. In theory, a BAMDP can be described as a

4 Notice that the cost has a semantic difference from a negative reward,
so it cannot be easily combined with the reward into a scalarized reward.

POMDP [55] where the unknown parameters of the under-
lying MDP are seen as hidden continuous variables. This al-
lows us to find an optimal trade-off between exploration and
exploitation. However, solving these POMDPs is infeasible
due to their excessive size, since we must keep a belief over
the distribution of each unknown parameter of the underlying
MDP. To make the problem more tractable, we may consider
other types of prior knowledge. For example, we may assume
the system is modeled by a factored MDP, where the state of
the MDP is described by a set of features, and the dynamics
of the features can be compactly represented by a dynamic
Bayesian network (DBN) [29]. In this case, we can assume
a prior over the structure of the DBN [125].

In the case of partial observability, a Bayesian approach
has also been considered, modeling the problem as a Bayes-
Adaptive POMDP [124]. Similarly to the MDP setting, we
can also exploit the structure of the underlying system to find
more scalable algorithms [85].

Naturally, there are intersections between Bayesian and
robust RL. For instance, a Bayesian approach can be used to
construct uncertainty sets tighter than the usual norms, result-
ing in less conservative policies [128]. As another example,
we can change the objective of the BAMDP to maximize the
CVaR of the return instead of the expectation [122].

Bayesian methods have also been used in deep RL. For
example, to track the uncertainty around the action values and
improve the exploration of deep RL methods [16] or to reduce
the variance of the returns [53]. Furthermore, in constrained
RL a Bayesian world model has been used to allow an agent
to explore the environment optimistically with respect to the
reward function and pessimistically with respect to the safety
constraints [13].

5.3 Offline RL

In offline RL, the agent only has access to historical data
previously collected [96]. We call the decision mechanism
used to collect such data the behavior policy. Offline RL
poses a particular challenge since the agent does not receive
any feedback from the environment, making it susceptible to
overestimation errors [88]. Moreover, restricted data renders
the handling of uncertainty a major challenge for offline RL,
as it impairs the ability of the agent of reducing its epistemic
uncertainty [155]. In online RL, the agent has the ability
to reduce the epistemic uncertainty by interacting with the
environment. In offline RL, this ability largely depends on the
quantity and coverage of the data available [155]. Two main
approaches exist to mitigate such issues [80]. First, we may
constrain the new policy to stay close to the behavior policy,
and second, we may penalize uncertain parts of the state
space. Such approaches may lead to sufficient robustness
against epistemic uncertainty.
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To evaluate the reliability of offline RL algorithms, we can
compare the performance of the policy computed with the
performance of the behavior policy. A reliable algorithm5

has a high probability of returning a policy that outperforms
the behavior policy [152]. To achieve that goal, we may aug-
ment the reward function of the estimated model to penalize
states that are less present in the data [113]. Alternatively, we
can bootstrap the behavior policy in states with fewer visits
[92, 107]. In this setting, we can also exploit the structure of
towards higher sample efficiency [134, 135]. Finally, we can
use an estimate of the behavior policy to reliably compute
new policies when the behavior policy is unknown [133].
All of the above methods assume a fully observable envi-
ronment (i.e., MDP). Recent work extended [92] to partially
observable environments (POMDPs) under certain assump-
tions [136].

Finally, we can also consider risk-averse methods in offline
settings. For instance, we may compute policies maximizing
the CVaR instead of the expected return [156], or the use of
robust MDPs [110].

6 Challenges and perspectives

In this section, we discuss important challenges to the re-
search directions discussed above. In particular, we identify
and summarize six key challenges and provide an outlook on
potential future research directions.

Challenge 1: Mixing uncertainty types
Classical models for decision-making often focus on one par-
ticular type of uncertainty while making strong assumptions
about others. Developing decision-making approaches with
models that faithfully and efficiently reason over different
(and possibly dependent) types of uncertainty is crucial for
developing reliable AI systems.

For example, recall from Sect. 3.1 the assumption for
uMDPs that the underlying graph is known, i.e., the uncer-
tainty is continuous over the transition probabilities only.
MEMDPs lift this assumption by allowing for different un-
derlying graphs, but these models are still understudied to
date. More generally, we wish to study richer types of un-
certainty sets that are capable of combining continuous and
discrete uncertainty types.

Another assumption discussed in Sect. 3.1 is the rectan-
gular assumption for uMDPs, which states that uncertainties
between state-action pairs are independent [162]. This as-
sumption allows for tractable solution methods, but is unre-
alistic in many practical scenarios, making solutions more
conservative. Thus, we believe that lifting such assumptions

5 In the literature, such approaches are referred to as safe policy
improvement.

while preserving tractability is key to improving the quality
of solution methods.

In continuous-state and -action models, most research has
considered models with either aleatoric or epistemic uncer-
tainty, but not with both types at the same time. One recent
exception is the work in [22], but the resulting abstraction
method is computationally expensive. Thus, we see poten-
tial for developing more efficient methods that are able to
faithfully reason over mixed uncertainty types.

Challenge 2: Sensitivity analysis in uncertainty models
A natural question in all uncertainty models is from where
these uncertainty sets originate. While we have discussed
a number of approaches for learning uncertainty sets, see
for instance Sect. 3.2 and the approaches in [14, 144], there
is still an abundance of open research questions in this do-
main. For example, assume that we are learning an MDP by
interacting with an environment in an RL setting, and we for-
malize the learned model as a uMDP. By interacting further
with the environment, we may naturally reduce the size of
the uncertainty sets, thus reducing the epistemic uncertainty.
To facilitate this learning process, an important question is
what policy we should use to explore the environment. An
optimal exploration policy should, for instance, maximizes
the improvement in the worst-case expected return in Eq. (2).
To find that policy, we essentially wish to perform a sensi-
tivity analysis on the constraints that define the uncertainty
sets of the uMDP. Intuitively, this allows us to answer ques-
tions such as: “When sampling transition X once more, what
change can we expect in the uncertainty set associated with
that transition in the uMDP?” Similarly, starting from a con-
crete MDP, we can ask ourselves: “How robust can we make
this model (by arbitrarily adding uncertainty in transition
probabilities) while still satisfying some property of inter-
est?” Developing principled and rigorous methods that can
be used to answer such questions is a promising direction for
future research.

Challenge 3: Incorporating prior knowledge
Another aspect is how to incorporate prior knowledge in un-
certainty models. For instance, we might be able to query ex-
perts [9] or ask for demonstrations [116]. Such prior knowl-
edge naturally gives rise to a distribution over models (similar
to the Bayesian-Adaptive approaches discussed in Sect. 5.2)
rather than a family of models (as is done with an uMDP).
Similarly, other papers have considered prior distributions
over MDPs [17] and CTMCs [20]. A common problem is
then to obtain a solution “that is robust against (for example)
99% probability mass of the distribution.” Such an approach
generally yields less conservative solutions than purely ro-
bust approaches, but determining what 1% of the distribution
should be disregarded can be extremely difficult [34]. Thus,
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a key challenge is how to exploit prior distributions over
models to obtain solutions that are less conservative but still
carry rigorous robustness guarantees.

Challenge 4: High-dimensional state and action spaces
Dealing with high-dimensional states and actions has been
identified as a critical challenge in RL [56]. Generally, the
state space explosion is a well-known problem in formal
verification [48], also referred to as the curse of dimension-
ality [24]. Naturally, this challenge is relevant to all listed
approaches for uncertainty models in this paper. In particu-
lar, many approaches for verifying dynamical models against
complex temporal logic specifications employ finite abstrac-
tions. Naive abstractions are inherently subject to exponential
complexity in the dimension of the continuous state and the
resolution of the partitioning. To mitigate complexity issues,
adaptive discretization procedures [141] and iterative ab-
straction refinement schemes [18, 19] have been developed.
Despite these advances, applying abstraction techniques to
high-dimensional models (e.g., above 6-dimensional state
spaces) and specifications that require fine-grained partitions
remains challenging. One potential direction is to leverage
efficient tools from motion and path planning to compute
candidate policies for the desired specification on the dy-
namical model. By generating a finite abstraction of only the
portion of the continuous state space that is relevant under
the candidate policy, one can then verify in advance whether
the specification is indeed satisfied.

Challenge 5: Adapting to changing distributions
As we mentioned before, in many scenarios, the dynamics
of the environment are not stationary and may change in dif-
ferent ways. For instance, the components of a robot degrade
over its lifetime. Thus, a policy that was optimal initially
might become sub-optimal as the motors of the robot lose
efficiency. Similar phenomena may happen after long periods
of use, as the motors of the robot start overheating. In prac-
tice, the dynamics of this system are drifting. There are also
cases where the dynamics of the system change suddenly. For
example, an autonomous vehicle might need to adapt quickly
to new conditions when it starts raining. Furthermore, in a
multi-agent setting, the environment becomes non-stationary
due to the (potentially adversary) behavior of other agents.
In this case, as the remaining agents change their behaviors,
the dynamics of the environment change accordingly from
the perspective of the ego agent.

Using a model-based perspective with uncertainty models
can be helpful in detecting such changes in the environment,
and might allow the agent to quickly adapt to the new dy-
namics without having to compute a new policy from scratch
[2]. For instance, if we have learned an uMDP that does not
agree with the dynamics of the latest trajectories, we might

consider enlarging the uncertainty set. A particular challenge
in this situation is to distinguish the aleatoric and epistemic
uncertainty. A key question is then: “How many times must
the agent observe an unlikely trajectory to conclude that the
dynamics of the environment have changed?”

Similarly, approaches for decision-making under uncer-
tainty that rely on sampling techniques, e.g., [14, 19], gen-
erally require the underlying stochastic process to be i.i.d.
Dropping these (and related) assumptions is an important
challenge for further research.

Challenge 6: Partial observability
Finally, addressing all of the above challenges under partial
observability is another challenge on its own. As we have
seen, POMDPs and POSGs, as well as dynamical models
with partial observability, have been widely studied so far.
While there has been significant progress in the last years on
solving such models, there are still major scalability issues.
For example, problem settings with additional uncertainty,
particularly epistemic uncertainty, are significantly under-
studied. A few exceptions exist, see Sect. 3.1 and, e.g., the
approaches in [52, 143]. Yet, both the theoretical and practi-
cal implications, in particular for POSGs, of adding another
type of uncertainty are, to the best of our knowledge, not
known so far. Developing rigorous and tractable methods for
decision-making in such partially observable models with
additional uncertainty remains an open challenge.

7 Conclusion

This paper has provided an overview of various formal mod-
els that exhibit different types of uncertainty. We have high-
lighted the most common solution approaches, identified
some of their shortcomings, and concluded by presenting
a number of key challenges regarding decision-making un-
der uncertainty. We sincerely hope this paper can inspire
future research in this important direction.
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