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Abstract

Multi-agent planning and learning methods are be-
coming increasingly important in today’s intercon-
nected world. Methods for real-world domains,
such as robotics, must consider uncertainty and
limited communication in order to generate high-
quality, robust solutions. This paper discusses our
work on developing principled models to represent
these problems and planning and learning methods
that can scale to realistic multi-agent and multi-
robot tasks.

1 Introduction

As hardware costs decrease, many more systems are being
deployed with multiple agents (e.g., routers, sensors, people,
robots), which must interact to produce a high-quality solu-
tion. However, agent interaction is often complicated in the
real-world by communication limitations, latency or noise.
Due to these communication limitations, agents that can make
decisions on their own without perfect communication are
critical. For example, consider a search and rescue scenario
with a team of aerial and ground robots. The ground robots
have a very limited view of the world, but are able to transport
people. The aerial vehicles have a much wider view of the
world, but are unable to carry passengers. With limited com-
munication, the agents must reason about when and where
to explore as well as when and how to share information in
order to rescue people most efficiently. Communication limi-
tations are the most extreme in disaster, underwater, space or
military settings, but are common throughout robotics, net-
working and multi-agent systems.

Ideally, principled methods would be used for representing
multi-agent problems with uncertainty and communication
limitations. The decentralized partially observable Markov
decision process (Dec-POMDP) is a general model for rep-
resenting and solving these cooperative multi-agent systems
[Bernstein et al., 2002; Oliehoek and Amato, 2016]. In fact,
Dec-POMDPs are so general that they can model any multi-
agent coordination problem, including the problem above
as well as more general problems with combined outcome,
sensor and communication uncertainty. These types of un-
certainty are ubiquitous in real-world scenarios. Therefore,

the Dec-POMDP provides a principled framework to con-
sider these common forms of uncertain outcomes, sensors and
communication within a single framework.

So, a large class of real-world problems are Dec-POMDPs
and we must decide how to solve them. If we could solve
these Dec-POMDPs optimally, the best choice could be made
for each agent while considering uncertainty and the decen-
tralized nature of the problem. Because optimal Dec-POMDP
solution methods are limited to small problems due to their
complexity [Bernstein et al., 2002], we are left with two op-
tions: approximate the model (by making additional domain
assumptions that may or may not hold in practice) or approx-
imate the solutions. We have focused on both options, in-
corporating more abstract (and asynchronous) actions in the
form of macro-actions and approximate solutions in the form
of sample-based planning and learning. These sample-based
planning and learning methods do not require a full model of
the domain, but instead generate solutions from sampled exe-
cution data. As a result, these approaches make only general
and realistic assumptions, while solving large Dec-POMDPs.

This paper first discusses the Dec-POMDP model and how
macro-actions (asynchronous, temporally extended actions)
can be incorporated. It then describes our solution methods
for these models, starting with planning methods (which re-
quire a simulator or full model of the domain) and then dis-
cusses reinforcement learning approaches. The paper also
discusses our application of (and inspiration for) these plan-
ning and learning methods: multi-robot domains, which are a
natural fit for macro-action-based Dec-POMDPs.

2 Dec-POMDPs

Dec-POMDPs generalize POMDPs to the multi-agent, de-
centralized setting [Bernstein et al., 2002; Oliehoek and Am-
ato, 2016]. In a Dec-POMDP, multiple agents operate under
uncertainty based on partial views of the world, with execu-
tion unfolding over time. At each step, every agent chooses
an action (in parallel) based purely on locally observable in-
formation, resulting in each agent obtaining an observation
and the team obtaining a joint reward. The shared reward
function makes the problem cooperative, but their local views
mean that execution is decentralized.

Formally, a Dec-POMDP is defined by tuple
〈I, S, {Ai}, T, R, {Ωi}, O, h〉, where I is a finite set of
agents; S is a finite set of states with designated initial

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5662



state distribution b0; Ai is a finite set of actions for each
agent i with A = ×iAi the set of joint actions; T is a state
transition probability function, T : S × A × S → [0, 1],
that specifies the probability of transitioning from state
s ∈ S to s′ ∈ S when the actions ~a ∈ A are taken by
the agents (i.e., T (s,~a, s′) = Pr(s′|~a, s)); R is a reward
function: R : S × A → R, the immediate reward for being
in state s ∈ S and taking the actions ~a ∈ A; Ωi is a finite
set of observations for each agent, i, with Ω = ×iΩi the
set of joint observations; O is an observation probability
function: O : Ω × A × S → [0, 1], the probability of seeing
observations ~o ∈ Ω given actions ~a ∈ A were taken which
results in state s′ ∈ S (i.e., O(~o,~a, s′) = Pr(~o|~a, s′)); and h
is the number of steps until termination, called the horizon.

A solution to a Dec-POMDP is a joint policy—a set of
policies, one for each agent. Because the state is not ob-
served, it is typically beneficial for each agent to remem-
ber a history of its observations. A local policy for an
agent is a mapping from local observation histories to actions,
Ho

i → Ai, where Ho
i is the set of local observation histories,

ho
i = {o1i , . . . , o

t
i}, by agent i up to the current time step, t.

Because the state depends on the behavior of all of the agents,
it is not usually possible to estimate it from the history of a
single agent (unlike in a POMDP [Kaelbling et al., 1998]).

Policies are then typically represented explicitly. The com-
mon representations are policy trees, where the nodes indicate
actions to execute and the edges indicate transitions condi-
tioned on an observation, and finite-state controllers, which
execute in a similar manner. Because one policy is generated
for each agent and these policies depend only on local obser-
vations, they operate in a decentralized manner.

The value of a joint policy, π, from state s is V π(s) =

E
[

∑h−1

t=0
γtR(~at, st)|s, π

]

, which represents the expected

value of the immediate reward for the set of agents summed
for each step, given the the policy’s actions. The discount
factor, γ, is typically set to 1 in the finite-horizon case and
γ ∈ [0, 1) in the infinite-horizon case (h = ∞). An optimal
policy beginning at state s is π∗(s) = argmaxπ V

π(s). Plan-
ning and learning methods for Dec-POMDPs seek to gen-
erate optimal policies or other high-quality policies (see re-
cent surveys for the many approaches [Amato et al., 2013;
Oliehoek, 2012; Oliehoek and Amato, 2016]).

3 Macro-Actions in Dec-POMDPs

While many of the Dec-POMDP solution methods can per-
form well, scalability has remained an issue. To combat
this scalability issue, while minimizing additional assump-
tions we extended the Dec-POMDP framework to allow asyn-
chronously chosen macro-actions (i.e., temporally extended
actions which may require different amounts of time to com-
plete) [Amato et al., 2014]. Macro-actions enable decision-
making to take place at a higher level—at the level of de-
ciding which macro-actions to execute—and are executed to
completion. This new formulation is a more realistic model
of real-world systems, which allows asynchronous decision-
making of higher-level actions (for e.g, waypoint navigation,
grasping an object, waiting for a signal). Macro-actions also

enable planning and learning for problems with significantly
longer horizons.

Our approach extends the options framework [Sutton et al.,
1999] to Dec-POMDPs by adding macro-actions, mi, that ex-
ecute a policy in a low-level Dec-POMDP until some termi-
nal condition is met. A Dec-POMDP with macro-actions is
a Dec-POMDP where each agent i also has access to a finite
set of macro actions, Mi, with M = ×iMi being the set of
joint macro-actions [Amato et al., 2014]. We can then de-
fine policies for each agent, µi, for choosing macro-actions
that depend on high-level (macro) observations. The multi-
agent aspect of Dec-POMDPs introduces complications since
all agents do not terminate their macro-actions at the same
time, making decision-making asynchronous and evaluation
more complicated. In cases when the macro-action poli-
cies and low-level Dec-POMDP are known, we can evalu-
ate policies by ‘unrolling’ macro-actions (given a joint pol-
icy, the primitive action at each step is determined by the
(high-level) policy, which chooses the macro-action, and the
macro-action policy, which chooses the (primitive) action).
When the macro-action models and low-level Dec-POMDP
are not available, we can use a high-level model (as briefly
described below), a simulator or the domain itself to execute
the policies and provide the values.

We call this model a MacDec-POMDP [Amato et al.,
2014] when the low-level Dec-POMDP model and the poli-
cies of the macro-actions are known and a decentralized
partially observable semi-Markov decision process (Dec-
POSMDP) when a high-level model is defined which includes
time to completion [Omidshafiei et al., 2015; Amato et al.,
2015a] (but a simulator can be used in place of a model
in each case). While these high-level models still include
the states of the Dec-POMDP, they do not include the Dec-
POMDP actions and observations. As a result, these low-
level quantities can be continuous and the low-level dynam-
ics and observation models may be very complicated, but we
only consider the effects of the high-level macro-actions.

By extending Dec-POMDP algorithms to the macro-action
case, realistic multi-agent coordination problems can be
solved that are orders of magnitude larger than problems
solved by previous methods and continuous state spaces can
be considered, including for multiple mobile robots in ware-
house [Amato et al., 2015b], logistics [Amato et al., 2015a;
2017] and aerial delivery [Omidshafiei et al., 2015; 2017a;
2017b] scenarios. We discuss some of these methods and do-
mains below.

4 Planning in Dec-POMDPs

We first discuss planning methods for the macro-action case
and then discuss approaches for multi-robot planning.

4.1 Macro-Action-Based Methods

We first developed a tree-based policy representation using
macro-actions. The key difference between the traditional
Dec-POMDP case and the macro-action case is that nodes
in a policy tree now select macro-actions (rather than primi-
tive actions) and edges correspond to high-level observations.
Evaluation and testing for termination becomes more compli-
cated (e.g., Monte Carlo policy evaluations in the simulator or
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Bellman equations that consider time), but we developed al-
gorithms that search over these higher-level policies that per-
form well [Amato et al., 2014]. The tree-based macro-action
methods can produce similar values as previous Dec-POMDP
approaches on smaller problems, while also solving problems
that are orders of magnitude larger than those solved by pre-
vious methods [Amato et al., 2014].

Because tree-based representations become intractable as
the horizon grows, we also developed multiple methods
for optimizing finite-state controllers in macro-action Dec-
POMDPs using the MacDec-POMDP [Amato et al., 2015a]

and Dec-POSMDP [Omidshafiei et al., 2015] models. Some
of these approaches can provide solutions with only a high-
level model of the macro-actions (i.e., distributions over time
and outcomes) instead of a full model of the underlying
Dec-POMDP [Amato et al., 2015a; 2017; Omidshafiei et al.,
2015; 2017a]. Another approach automatically generates the
macro-actions from low-level (continuous) dynamics models
[Omidshafiei et al., 2015], while another method generates
(macro-)observations from low-level sensor (e.g., camera) in-
formation [Omidshafiei et al., 2017b]. These approaches are
the first Dec-POMDP-based methods to solve problems with
continuous states by searching directly in the policy space
and using Monte Carlo methods for estimating the values of
different policies.

4.2 Multi-Robot Planning

Current multi-robot research is typically focused on subprob-
lems or problems with little or no uncertainty (e.g., task al-
location [Korsah et al., 2013], formation control [Ren and
Sorensen, 2008], exploration [Burgard et al., 2005] or swarm
control [Rubenstein et al., 2014]). These common multi-
robot problems address important situations, but by using a
more general framework, we can solve more general prob-
lems with combined outcome, sensor and communication un-
certainty (e.g., multi-robot search and rescue, decentralized
exploration with an unknown map). The goal of our work
has been to use ideas from Dec-POMDPs to allow us to solve
these more complex multi-robot domains. In particular, the
idea for macro-actions was inspired from trying to model
and apply Dec-POMDPs to robotics domains. Using low-
level actions would not be scalable and it was very difficult
to ensure the robots were synchronized. Furthermore, high-
quality controllers already existed for things like navigation
and grasping, but outcomes of these controllers are uncertain
both in terms of the outcomes and the time of completion.

We demonstrated our macro-action-based approaches on
multiple multi-robot domains with limited sensing and com-
munication. These domains included a warehousing prob-
lem, where robots have uncertainty about the location of
boxes and limited communication, but must coordinate to col-
lect the large boxes and individually push the small boxes
to the shipping location [Amato et al., 2015b]; a logistics
(beer delivery) domain, where two robots must efficiently
find out about and service beer orders in cooperation with
a ‘picker/bartender’ robot, which can retrieve items [Amato
et al., 2015a; 2017]; and a package delivery domain, where
a group of aerial robots must retrieve and deliver packages
from base locations to delivery locations while dealing with

limited battery life [Omidshafiei et al., 2015; 2016; 2017b;
2017a].1 Our methods outperformed simpler methods and
‘expert’ hand-coded solutions (e.g., delivering an additional
three beers every 10 minutes). This is the first time that Dec-
POMDP-based methods have been used to solve large multi-
robot domains; other Dec-POMDP methods cannot solve
problems of this size.

5 Learning in Dec-POMDPs

While using a high-level macro-action model makes it sim-
pler to represent the problem domain (as fewer and higher-
level parameters are used), the models or simulators may still
be incorrect or unavailable. As a result, we have also focused
on learning in Dec-POMDPs.

5.1 Macro-Action-Based Methods

We began by developing offline learning methods that could
learn parameters for finite-state controllers from a set of tra-
jectories of the agents acting in the environment (i.e., learning
from demonstration) [Liu et al., 2015]. That is, we assume a
set of K trajectories resulting from N agents who choose ac-
tions for Tk steps: {(~ak

0
rk
0
~ok
1
~ak
1
rk
1
· · ·~okTk

~akTk
rkTk

)}k=1,··· ,K ,

where ~akt is the vector of actions the agents chose on the t-th
step of the k-th episode, after which they received the joint
reward rkt and the vector of observations ~okt . The learning
method combines Bayesian nonparametrics to learn the best
controller size with an EM method for learning the parame-
ters of the controllers (the action selection and node transition
probabilities). Because Dec-POMDPs are cooperative prob-
lems and we assume the trajectories are known, we can learn
the controllers in a centralized manner, but ensure that they
can be executed in a decentralized way.

We also extended this method to learn in the macro-action
case [Liu et al., 2016]. This approach learns using high-
level macro-action trajectories (macro-actions and macro-
observations). Macro-action data is easier to obtain since it
is less detailed and using macro-action data is more scalable
as the low-level actions and observations may be numerous or
continuous and the macro-action policies may be very com-
plicated. On the contrary, the sets of macro-actions and high-
level observations will often be discrete and the resulting pol-
icy will be much less complex.

For the macro-action case, let the trajectories be
{(~mk

0
rk
0
~ωk
1
~mk

1
rk
1
· · · ~ωk

Tk
~mk

Tk
rkTk

)}k=1,··· ,K , where each m

is a macro-action and ω ∈ Ωm ∪ ω∅ is drawn from a set
of augmented observations (at the macro-action level) which
includes an observation that the macro-action has not termi-
nated at the given time step, ω∅. We developed methods that
learn macro-action controllers for each agent (i.e., finite-state
controllers that depend only on the macro-action-level infor-
mation) from this macro-action data.

We developed EM algorithms for both the primitive and
macro-action cases that are linear in the number of agents and
at most square in the problem size, making them scalable to

1Domain videos can be seen at https://youtu.be/fGUHTHH-JNA,
https://youtu.be/yloUp55DQ0c, https://youtu.be/34xHxXrnPHw,
and https://youtu.be/XXYSAmdHn38.
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large domains. Our experiments showed that the methods can
also produce very high-quality solutions, even outperforming
and improving upon hand-coded ‘expert’ solutions.

5.2 Multi-Robot Learning

We also extended the offline macro-action-based learning
method above [Liu et al., 2016] to the multi-robot case [Liu et
al., 2017]. Specifically, previous EM-based methods (includ-
ing ours) suffer from local optimality and sensitivity to initial
conditions. Therefore, we developed an iterative sampling-
based EM method that is able to efficiently escape from lo-
cal optima to generate higher-quality solutions. The result-
ing method still learns policies represented as finite-state con-
trollers given only high-level macro-action-based trajectories,
but can significantly outperform previous approaches.

We demonstrated our methods on two variants of multi-
robot search and rescue domains (with and without obsta-
cles) using both ground-based and aerial vehicles. The re-
sults showed that high-quality policies could be learned us-
ing only a small number of trajectories. The resulting poli-
cies coordinate the team of distributed robots in a partially
observable stochastic environment. This approach fits well
with multi-robot problems, as it may be expensive to gener-
ate many trajectories (demonstrations) with multiple complex
robots in realistic domains.2

5.3 Deep Multi-Agent Reinforcement Learning

Deep reinforcement learning (RL) has been extremely suc-
cessful in single agent (and some multi-agent) domains (e.g.,
[Mnih et al., 2015; Silver et al., 2016]), but methods typi-
cally assume the state is fully observable (even when it it is
not, as in Atari) and only one agent is controlled. Recently,
we [Omidshafiei et al., 2017c] (and others such as [Foerster
et al., 2016; 2017; Mordatch and Abbeel, 2017]) have begun
extending these ideas to the Dec-POMDP case. In general,
these approaches use deep RL methods with recurrent archi-
tectures for learning some relevant history information.

In our case, we developed online decentralized learning
methods for Dec-POMDPs [Omidshafiei et al., 2017c]. On-
line learning requires decentralized learning, since the agents
may all be learning at the same time. Decentralized learning
is difficult because the problem becomes nonstationary (i.e.,
it changes over time due to the changing behavior of the other
agents). We recently showed that deep RL methods could be
extended to perform decentralized learning in Dec-POMDPs
by introducing a decentralized extension of experience replay
[Mnih et al., 2015] for sample-efficient and stable multi-agent
learning and incorporated hysteresis [Matignon et al., 2007]

for dealing with nonstationarity. The paper also extended the
deep RL methods to the multi-task case, where solutions must
generalize to a range of different tasks. Our methods were the
first multi-task learning methods for Dec-POMDPs and we
showed that we could learn high-quality solutions in a num-
ber of large domains.

2The domain video can be seen at
https://youtu.be/B3b60VqWMIE.

6 Discussion and Conclusion

The methods that have been discussed have shown a lot of
promise, but there are other methods that are also promising
(e.g., [Dibangoye et al., 2016; Claes et al., 2017; Nguyen et
al., 2017]) and many open questions yet to solve. It is worth
noting that the methods in this paper focused on the ‘full’
Dec-POMDP problem, where there was uncertainty about
outcomes, sensing and communication and agents are depen-
dent on all others, but some problems do not have all of these
characteristics. In these cases, ideas from Dec-POMDP mod-
els and methods could still be used, but structure may be able
to be exploited to allow higher-quality, more efficient solution
methods. Some such structure has been explored [Oliehoek
and Amato, 2016], but efficiently exploiting structure in other
cases could lead to scalable methods that also consider un-
certainty (e.g., probabilistic solutions to common multi-robot
problems).

Traditionally, scalability of Dec-POMDPs solution meth-
ods has been an issue, but more recent methods (such as
those discussed in this paper) can scale to large domains.
One approach that is used to overcome this lack of scal-
ability is deep reinforcement learning. Developing deep
RL approaches for Dec-POMDP-based models is becom-
ing a very active field (e.g., [Foerster et al., 2016; 2017;
Mordatch and Abbeel, 2017; Omidshafiei et al., 2017c;
Rashid et al., 2018]) and the resulting methods can handle
large state and observation spaces (and potentially large ac-
tion spaces). These methods (including ours) require a lot of
data and typically use a simulator, so they may fit better in
situations akin to the offline sample-based planning scenarios
described earlier.

Therefore, there has been a great deal of success in scal-
ing planning and offline learning methods to large domains,
but efficient online learning remains a challenge. As men-
tioned above, online learning in a Dec-POMDP must be de-
centralized (since fast and free communication is not avail-
able to centralize decision-making), leading to nonstationar-
ity, which must (continue to) be tackled. Besides more effec-
tively conquering nonstationarity in learning, other open re-
search topics include developing planning and learning meth-
ods with additional efficiency and scalability (in terms of the
number of agents as well as action and observation spaces)
and how to properly represent and encode history informa-
tion for planning and learning. Overall, there has been great
progress in solving large, realistic Dec-POMDPs. It will be
exciting to see what further developments and applications
will arise in the future.
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