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REVIEW ARTICLE Open Access

Decision making with visualizations: a
cognitive framework across disciplines
Lace M. Padilla1,2* , Sarah H. Creem-Regehr2, Mary Hegarty3 and Jeanine K. Stefanucci2

Abstract

Visualizations—visual representations of information, depicted in graphics—are studied by researchers in numerous

ways, ranging from the study of the basic principles of creating visualizations, to the cognitive processes underlying

their use, as well as how visualizations communicate complex information (such as in medical risk or spatial

patterns). However, findings from different domains are rarely shared across domains though there may be domain-

general principles underlying visualizations and their use. The limited cross-domain communication may be due to

a lack of a unifying cognitive framework. This review aims to address this gap by proposing an integrative model

that is grounded in models of visualization comprehension and a dual-process account of decision making. We

review empirical studies of decision making with static two-dimensional visualizations motivated by a wide range of

research goals and find significant direct and indirect support for a dual-process account of decision making with

visualizations. Consistent with a dual-process model, the first type of visualization decision mechanism produces

fast, easy, and computationally light decisions with visualizations. The second facilitates slower, more contemplative,

and effortful decisions with visualizations. We illustrate the utility of a dual-process account of decision making with

visualizations using four cross-domain findings that may constitute universal visualization principles. Further, we

offer guidance for future research, including novel areas of exploration and practical recommendations for

visualization designers based on cognitive theory and empirical findings.

Keywords: Decision making with visualizations review, Cognitive model, Visual-spatial biases, Graphs, Geospatial

visualizations, Healthcare visualizations, Weather forecast visualizations, Uncertainty visualizations, Graphical decision

making, Dual-process

Significance
People use visualizations to make large-scale decisions,

such as whether to evacuate a town before a hurricane

strike, and more personal decisions, such as which med-

ical treatment to undergo. Given their widespread use

and social impact, researchers in many domains, includ-

ing cognitive psychology, information visualization, and

medical decision making, study how we make decisions

with visualizations. Even though researchers continue to

develop a wealth of knowledge on decision making with

visualizations, there are obstacles for scientists interested

in integrating findings from other domains—including

the lack of a cognitive model that accurately describes

decision making with visualizations. Research that does

not capitalize on all relevant findings progresses slower,

lacks generalizability, and may miss novel solutions and

insights. Considering the importance and impact of deci-

sions made with visualizations, it is critical that re-

searchers have the resources to utilize cross-domain

findings on this topic. This review provides a cognitive

model of decision making with visualizations that can be

used to synthesize multiple approaches to visualization

research. Further, it offers practical recommendations

for visualization designers based on the reviewed studies

while deepening our understanding of the cognitive pro-

cesses involved when making decisions with

visualizations.

Introduction
Every day we make numerous decisions with the aid of

visualizations, including selecting a driving route, decid-

ing whether to undergo a medical treatment, and

* Correspondence: Lace.m.k.padilla@gmail.com
1Northwestern University, Evanston, USA
2Department of Psychology, University of Utah, 380 S. 1530 E., Room 502,

Salt Lake City, UT 84112, USA

Full list of author information is available at the end of the article

Cognitive Research: Principles
and Implications

© The Author(s). 2018, Corrected publication. August 2018. Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Padilla et al. Cognitive Research: Principles and Implications  (2018) 3:29 

https://doi.org/10.1186/s41235-018-0120-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-018-0120-9&domain=pdf
http://orcid.org/0000-0001-9251-5279
mailto:Lace.m.k.padilla@gmail.com
http://creativecommons.org/licenses/by/4.0/


comparing figures in a research paper. Visualizations are

external visual representations that are systematically re-

lated to the information that they represent (Bertin,

1983; Stenning & Oberlander, 1995). The information

represented might be about objects, events, or more ab-

stract information (Hegarty, 2011). The scope of the pre-

viously mentioned examples illustrates the diversity of

disciplines that have a vested interest in the influence of

visualizations on decision making. While the term deci-

sion has a range of meanings in everyday language, here

decision making is defined as a choice between two or

more competing courses of action (Balleine, 2007).

We argue that for visualizations to be most effective, re-

searchers need to integrate decision-making frameworks

into visualization cognition research. Reviews of decision

making with visual-spatial uncertainty also agree there has

been a general lack of emphasis on mental processes

within the visualization decision-making literature (Kin-

keldey, MacEachren, Riveiro, & Schiewe, 2017; Kinkeldey,

MacEachren, & Schiewe, 2014). The framework that has

dominated applied decision-making research for the last

30 years is a dual-process account of decision making.

Dual-process theories propose that we have two types of

decision processes: one for automatic, easy decisions

(Type 1); and another for more contemplative decisions

(Type 2) (Kahneman & Frederick, 2002; Stanovich, 1999).1

Even though many research areas involving higher-level

cognition have made significant efforts to incorporate

dual-process theories (Evans, 2008), visualization research

has yet to directly test the application of current

decision-making frameworks or develop an effective cog-

nitive model for decision making with visualizations. The

goal of this work is to integrate a dual-process account of

decision making with established cognitive frameworks of

visualization comprehension.

In this paper, we present an overview of current

decision-making theories and existing visualization cog-

nition frameworks, followed by a proposal for an inte-

grated model of decision making with visualizations, and

a selective review of visualization decision-making stud-

ies to determine if there is cross-domain support for a

dual-process account of decision making with visualiza-

tions. As a preview, we will illustrate Type 1 and 2 pro-

cessing in decision making with visualizations using four

cross-domain findings that we observed in the literature

review. Our focus here is on demonstrating how

dual-processing can be a useful framework for examin-

ing visualization decision-making research. We selected

the cross-domain findings as relevant demonstrations of

Type 1 and 2 processing that were shared across the

studies reviewed, but they do not represent all possible

examples of dual-processing in visualization

decision-making research. The review documents each

of the cross-domain findings, in turn, using examples

from studies in multiple domains. These cross-domain

findings differ in their reliance on Type 1 and Type 2

processing. We conclude with recommendations for fu-

ture work and implications for visualization designers.

Decision-making frameworks

Decision-making researchers have pursued two dominant

research paths to study how humans make decisions under

risk. The first assumes that humans make rational deci-

sions, which are based on weighted and ordered probability

functions and can be mathematically modeled (e.g. Kunz,

2004; Von Neumann, 1953). The second proposes that

people often make intuitive decisions using heuristics

(Gigerenzer, Todd, & ABC Research Group, 2000; Kahne-

man & Tversky, 1982). While there is fervent disagreement

on the efficacy of heuristics and whether human behavior is

rational (Vranas, 2000), there is more consensus that we

can make both intuitive and strategic decisions (Epstein,

Pacini, Denes-Raj, & Heier, 1996; Evans, 2008; Evans &

Stanovich, 2013; cf. Keren & Schul, 2009). The capacity to

make intuitive and strategic decisions is described by a

dual-process account of decision making, which suggests

that humans make fast, easy, and computationally light de-

cisions (known as Type 1 processing) by default, but can

also make slow, contemplative, and effortful decisions by

employing Type 2 processing (Kahneman, 2011). Various

versions of dual-processing theory exist, with the key dis-

tinctions being in the attributes associated with each type

of process (for a more detailed review of dual-process the-

ories, see Evans & Stanovich, 2013). For example, older

dual-systems accounts of decision making suggest that each

process is associated with specific cognitive or neurological

systems. In contrast, dual-process (sometimes termed

dual-type) theories propose that the processes are distinct

but do not necessarily occur in separate cognitive or neuro-

logical systems (hence the use of process over system)

(Evans & Stanovich, 2013).

Many applied domains have adapted a dual-processing

model to explain task- and domain-specific decisions,

with varying degrees of success (Evans, 2008). For ex-

ample, when a physician is deciding if a patient should

be assigned to a coronary care unit or a regular nursing

bed, the doctor can use a heuristic or utilize heart dis-

ease predictive instruments to make the decision

(Marewski & Gigerenzer, 2012). In the case of the heur-

istic, the doctor would employ a few simple rules

(diagrammed in Fig. 1) that would guide her decision,

such as considering the patient’s chief complaint being

chest pain. Another approach is to apply deliberate men-

tal effort to make a more time-consuming and effortful

decision, which could include using heart disease

predictive instruments (Marewski & Gigerenzer, 2012).

In a review of how applied domains in higher-level cog-

nition have implemented a dual-processing model for
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domain-specific decisions, Evans (2008) argues that prior

work has conflicting accounts of Type 1 and 2 process-

ing. Some studies suggest that the two types work in

parallel while others reveal conflicts between the Types

(Sloman, 2002). In the physician example proposed by

Marewski and Gigerenzer (2012), the two types are not

mutually exclusive, as doctors can utilize Type 2 to make

a more thoughtful decision that is also influenced by

some rules of thumb or Type 1. In sum, Evans (2008) ar-

gues that due to the inconsistency of classifying Type 1

and 2, the distinction between only two types is likely an

oversimplification. Evans (2008) suggests that the litera-

ture only consistently supports the identification of pro-

cesses that require a capacity-limited, working memory

resource versus those that do not. Evans and Stanovich

(2013) updated their definition based on new behavioral

and neuroscience evidence stating, “the defining charac-

teristic of Type 1 processes is their autonomy. They do

not require ‘controlled attention,’ which is another way

of saying that they make minimal demands on working

memory resources” (p. 236). There is also debate on

how to define the term working memory (Cowan, 2017).

In line with prior work on decision making with visuali-

zations (Patterson et al., 2014), we adopt the definition

that working memory consists of multiple components

that maintain a limited amount of information (their

capacity) for a finite period (Cowan, 2017). Contempor-

ary theories of working memory also stress the ability to

engage attention in a controlled manner to suppress

automatic responses and maintain the most

task-relevant information with limited capacity (Engle,

Kane, & Tuholski, 1999; Kane, Bleckley, Conway, &

Engle, 2001; Shipstead, Harrison, & Engle, 2015).

Identifying processes that require significant working

memory provides a definition of Type 2 processing with

observable neural correlates. Therefore, in line with Ev-

ans and Stanovich (2013), in the remainder of this

manuscript, we will use significant working memory

capacity demands and significant need for cognitive con-

trol, as defined above, as the criterion for Type 2 pro-

cessing. In the context of visualization decision making,

processes that require significant working memory are

those that depend on the deliberate application of work-

ing memory to function. Type 1 processing occurs out-

side of users’ conscious awareness and may utilize small

amounts of working memory but does not rely on con-

scious processing in working memory to drive the

process. It should be noted that Type 1 and 2 processing

are not mutually exclusive and many real-world deci-

sions likely incorporate all processes. This review will at-

tempt to identify tasks in visualization decision making

that require significant working memory and capacity

(Type 2 processing) and those that rely more heavily on

Type 1 processing, as a first step to combining decision

theory with visualization cognition.

Visualization cognition

Visualization cognition is a subset of visuospatial rea-

soning, which involves deriving meaning from external

representations of visual information that maintain con-

sistent spatial relations (Tversky, 2005). Broadly, two dis-

tinct approaches delineate visualization cognition

models (Shah, Freedman, & Vekiri, 2005). The first ap-

proach refers to perceptually focused frameworks which

attempt to specify the processes involved in perceiving

visual information in displays and make predictions

about the speed and efficiency of acquiring information

from a visualization (e.g. Hollands & Spence, 1992;

Lohse, 1993; Meyer, 2000; Simkin & Hastie, 1987). The

second approach considers the influence of prior know-

ledge as well as perception. For example, Cognitive Fit

Theory (Vessey, 1991), suggests that the user compares a

learned graphic convention (mental schema) to the vis-

ual depiction. Visualizations that do not match the

Fig. 1 Coronary care unit decision tree, which illustrates a sequence

of rules that a doctor could use to guide treatment decisions.

Redrawn from “Heuristic decision making in medicine” by J.

Marewski, and G. Gigerenzer 2012, Dialogues in clinical neuroscience,

14(1), 77. ST-segment change refers to if certain anomaly appears in

the patient’s electrocardiogram. NTG nitroglycerin, MI myocardial

infarction, T T-waves with peaking or inversion
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mental schema require cognitive transformations to

make the visualization and mental representation align.

For example, Fig. 2 illustrates a fictional relationship be-

tween the population growth of Species X and a preda-

tor species. At first glance, it may appear that when the

predator species was introduced that the population of

Species X dropped. However, after careful observation,

you may notice that the higher population values are lo-

cated lower on the Y-axis, which does not match our

mental schema for graphs. With some effort, you can

mentally reorder the values on the Y-axis to match your

mental schema and then you may notice that the intro-

duction of the predator species actually correlates with

growth in the population of Species X. When the viewer

is forced to mentally transform the visualization to

match their mental schema, processing steps are in-

creased, which may increase errors, time to complete a

task, and demand on working memory (Vessey, 1991).

Pinker (1990) proposed a cognitive model (see Fig. 3),

which provides an integrative structure that denotes the

distinction between top-down and bottom-up encoding

mechanisms in understanding data graphs. Researchers

have generalized this model to propose theories of com-

prehension, learning, and memory with visual information

(Hegarty, 2011; Kriz & Hegarty, 2007; Shah & Freedman,

2011). The Pinker (1990) model suggests that from the

visual array, defined as the unprocessed neuronal firing in

response to visualizations, bottom-up encoding mecha-

nisms are utilized to construct a visual description, which

is the mental encoding of the visual stimulus. Following

encoding, viewers mentally search long-term memory for

knowledge relevant for interpreting the visualization. This

knowledge is proposed to be in the form of a graph

schema.

Then viewers use a match process, where the graph

schema that is the most similar to the visual array is re-

trieved. When a matching graph schema is found, the

schema becomes instantiated. The visualization conven-

tions associated with the graph schema can then help

the viewer interpret the visualization (message assembly

process). For example, Fig. 3 illustrates comprehension

of a bar chart using the Pinker (1990) model. In this ex-

ample, the matched graph schema for a bar graph speci-

fies that the dependent variable is on the Y-axis and the

independent variable is on the X-axis; the instantiated

graph schema incorporates the visual description and

this additional information. The conceptual message is

the resulting mental representation of the visualization

that includes all supplemental information from

long-term memory and any mental transformations the

viewer may perform on the visualization. Viewers may

need to transform their mental representation of the

visualization based on their task or conceptual question.

In this example, the viewer’s task is to find the average

of A and B. To do this, the viewer must interpolate in-

formation in the bar chart and update the conceptual

message with this additional information. The concep-

tual question can guide the construction of the mental

representation through interrogation, which is the

process of seeking out information that is necessary to

answer the conceptual question. Top-down encoding

mechanisms can influence each of the processes.

The influences of top-down processes are also empha-

sized in a previous attempt by Patterson et al. (2014) to

extend visualization cognition theories to decision mak-

ing. The Patterson et al. (2014) model illustrates how

top-down cognitive processing influences encoding, pat-

tern recognition, and working memory, but not decision

making or the response. Patterson et al. (2014) use the

multicomponent definition of working memory, pro-

posed by Baddeley and Hitch (1974) and summarized by

Cowan (2017) as a “multicomponent system that holds

information temporarily and mediates its use in ongoing

mental activities” (p. 1160). In this conception of work-

ing memory, a central executive controls the functions

of working memory. The central executive can, among

other functions, control attention and hold information

in a visuo-spatial temporary store, which is where infor-

mation can be maintained temporally for decision mak-

ing without being stored in long-term memory

(Baddeley & Hitch, 1974).

While incorporating working memory into a

visualization decision-making model is valuable, the Pat-

terson et al. (2014) model leaves some open questions

Fig. 2 Fictional relationship between the population growth of

Species X and a predator species, where the Y-axis ordering does

not match standard graphic conventions. Notice that the y-axis is

reverse ordered. This figure was inspired by a controversial graphic

produced by Christine Chan of Reuters, which showed the

relationship between Florida’s “Stand Your Ground” law and firearm

murders with the Y-axis reversed ordered (Lallanilla, 2014)
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about relationships between components and processes.

For example, their model lacks a pathway for working

memory to influence decisions based on top-down pro-

cessing, which is inconsistent with well-established re-

search in decision science (e.g. Gigerenzer & Todd, 1999;

Kahneman & Tversky, 1982). Additionally, the normal

processing pathway, depicted in the Patterson model, is an

oversimplification of the interaction between top-down

and bottom-up processing that is documented in a large

body of literature (e.g. Engel, Fries, & Singer, 2001;

Mechelli, Price, Friston, & Ishai, 2004).

A proposed integrated model of decision making with

visualizations

Our proposed model (Fig. 4) introduces a dual-process

account of decision making (Evans & Stanovich, 2013;

Gigerenzer & Gaissmaier, 2011; Kahneman, 2011) into

the Pinker (1990) model of visualization comprehension.

A primary addition of our model is the inclusion of

working memory, which is utilized to answer the con-

ceptual question and could have a subsequent impact on

each stage of the decision-making process, except

bottom-up attention. The final stage of our model in-

cludes a decision-making process that derives from the

conceptual message and informs behavior. In line with a

dual-process account (Evans & Stanovich, 2013;

Gigerenzer & Gaissmaier, 2011; Kahneman, 2011), the

decision step can either be completed with Type 1

processing, which only uses minimal working memory

(Evans & Stanovich, 2013) or recruit significant working

memory, constituting Type 2 processing. Also following

Evans and Stanovich (2013), we argue that people can

Fig. 3 Adapted figure from the Pinker (1990) model of visualization comprehension, which illustrates each process

Fig. 4 Model of visualization decision making, which emphasizes the influence of working memory. Long-term memory can influence all

components and processes in the model either via pre-attentive processes or by conscious application of knowledge
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make a decision with a visualization while using minimal

amounts of working memory. We classify this as Type 1

thinking. Lohse (1997) found that when participants

made judgments about budget allocation using profit

charts, individuals with less working memory capacity

performed equally well compared to those with more

working memory capacity, when they only made deci-

sions about three regions (easier task). However, when

participants made judgments about nine regions (harder

task), individuals with more working memory capacity

outperformed those with less working memory capacity.

The results of the study reveal that individual differences

in working memory capacity only influence performance

on complex decision-making tasks (Lohse, 1997).

Figure 5 (top) illustrates one way that a viewer could

make a Type 1 decision about whether the average value

of bars A and B is closer to 2 or 2.2. Figure 5 (top) illus-

trates how a viewer might make a fast and computation-

ally light decision in which she decides that the middle

point between the two bars is closer to the salient tick

mark of 2 on the Y-axis and answers 2 (which is incor-

rect). In contrast, Fig. 5 (bottom) shows a second pos-

sible method of solving the same problem by utilizing

significant working memory (Type 2 processing). In this

example, the viewer has recently learned a strategy to

address similar problems, uses working memory to guide

a top-down attentional search of the visual array, and

identifies the values of A and B. Next, she instantiates a

Fig. 5 Examples of a fast Type 1 (top) and slow Type 2 (bottom) decision outlined in our proposed model of decision making with visualizations.

In these examples, the viewer’s task is to decide if the average value of bars A and B are closer to 2 or 2.2. The thick dotted line denotes

significant working memory and the thin dotted line negligible working memory
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different graph schema than in the prior example by

utilizing working memory and completes an effortful

mental computation of 2.4 + 1.9/2. Ultimately, the appli-

cation of working memory leads to a different and more

effortful decision than in Fig. 5 (top). This example illus-

trates how significant amounts of working memory can

be used at early stages of the decision-making process

and produce downstream effects and more considered

responses. In the following sections, we provide a select-

ive review of work on decision making with visualiza-

tions that demonstrates direct and indirect evidence for

our proposed model.

Empirical studies of visualization decision making
Review method

To determine if there is cross-domain empirical support

for a dual-process account of decision making with visual-

izations, we selectively reviewed studies of complex deci-

sion making with computer-generated two-dimensional

(2D) static visualizations. To illustrate the application of a

dual-process account of decision making to visualization

research, this review highlights representative studies from

diverse application areas. Interdisciplinary groups con-

ducted many of these studies and, as such, it is not accur-

ate to classify the studies in a single discipline. However,

to help the reader evaluate the cross-domain nature of

these findings, Table 1 includes the application area for

the specific tasks used in each study.

In reviewing this work, we observed four key

cross-domain findings that support a dual-process ac-

count of decision making (see Table 2). The first two

support the inclusion of Type 1 processing, which is il-

lustrated by the direct path for bottom-up attention to

guide decision making with the minimal application of

working memory (see Fig. 5 top). The first finding is that

visualizations direct viewers’ bottom-up attention, which

can both help and hinder decision making (see

“Bottom-up attention”). The second finding is that

visual-spatial biases comprise a unique category of bias

that is a direct result of the visual encoding technique

(see “Visual-Spatial Biases”). The third finding supports

the inclusion of Type 2 processing in our proposed

model and suggests that visualizations vary in cognitive

fit between the visual description, graph schema, and

conceptual question. If the fit is poor (i.e. there is a mis-

match between the visualization and a decision-making

component), working memory is used to perform cor-

rective mental transformations (see “Cognitive fit”). The

final cross-domain finding proposes that knowledge-dri-

ven processes may interact with the effects of the visual

encoding technique (see “Knowledge-driven processing”)

and could be a function of either Type 1 or 2 processes.

Each of these findings will be detailed at length in the

relevant sections. The four cross-domain findings do not

represent an exhaustive list of all cross-domain findings

that pertain to visualization cognition. However, these

were selected as illustrative examples of Type 1 and 2

processing that include significant contributions from

multiple domains. Further, some of the studies could fit

into multiple sections and were included in a particular

section as illustrative examples.

Type 1

Bottom-up attention

The first cross-domain finding that characterizes Type 1

processing in visualization decision making is that visu-

alizations direct participants’ bottom-up attention to spe-

cific visual features, which can be either beneficial or

detrimental to decision making. Bottom-up attention

consists of involuntary shifts in focus to salient features

Table 1 Application area for the tasks used in the reviewed studies

Task application area Studies

Meteorology, weather, and natural disaster
forecasting, weather communication

Cheong et al. (2016); Fabrikant et al. (2010); Gattis and Holyoak (1996); Hegarty et al. (2010); Joslyn and
LeClerc (2013); Padilla et al. (2015); Ruginski et al. (2016)

Health research, medical images,
health risk communication

Ancker et al. (2006); Fagerlin et al. (2005); Garcia-Retamero and Galesic (2009);
Keehner et al. (2011); Keller et al. (2009); McCabe and Castel (2008); Okan et al. (2015);
Okan, Garcia-Retamero, Cokely, and Maldonado (2012); Schirillo and Stone (2005);
Stone et al. (2003); Stone et al. (1997); Waters et al. (2006); Waters et al. (2007)

Land-use planning, spatial planning,
urban planning

Dennis and Carte (1998); Lee and Bednarz (2009); Smelcer and Carmel (1997);
Wilkening and Fabrikant (2011)

Cost comparison, finance Lohse (1993); Vessey and Galletta (1991)

Geospatial location Hegarty et al. (2016); McKenzie et al. (2016)

Error-bar interpretation, graph comparison,
statistics communication, science reasoning

Belia et al. (2005); Feeney et al. (2000); Newman and Scholl (2012); Sanchez and Wiley (2006);
Wainer et al. (1999)

Map reading, map perception Brügger et al. (2017); St. John et al. (2001)

Social network, computer connections Tversky et al. (2012); Zhu and Watts (2010)

Map-based threat identification,
emergency management

Bailey et al. (2007); Shen et al. (2012)
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of a visualization and does not utilize working memory

(Connor, Egeth, & Yantis, 2004), therefore it is a Type 1

process. The research reviewed in this section illustrates

that bottom-up attention has a profound influence on

decision making with visualizations. A summary of vis-

ual features that studies have used to attract bottom-up

attention can be found in Table 3.

Numerous studies show that salient information in a

visualization draws viewers’ attention (Fabrikant,

Hespanha, & Hegarty, 2010; Hegarty, Canham, &

Fabrikant, 2010; Hegarty, Friedman, Boone, & Barrett,

2016; Padilla, Ruginski, & Creem-Regehr, 2017; Schirillo

& Stone, 2005; Stone et al., 2003; Stone, Yates, & Parker,

1997). The most common methods for demonstrating

that visualizations focus viewers’ attention is by showing

that viewers miss non-salient but task-relevant informa-

tion (Schirillo & Stone, 2005; Stone et al., 1997; Stone et

al., 2003), viewers are biased by salient information

(Hegarty et al., 2016; Padilla, Ruginski et al., 2017) or

viewers spend more time looking at salient information

in a visualization (Fabrikant et al., 2010; Hegarty et al.,

2010). For example, Stone et al. (1997) demonstrated

that when viewers are asked how much they would pay

for an improved product using the visualizations in

Fig. 6, they focus on the number of icons while missing

the base rate of 5,000,000. If a viewer simply totals the

icons, the standard product appears to be twice as dan-

gerous as the improved product, but because the base

rate is large, the actual difference between the two prod-

ucts is insignificantly small (0.0000003; Stone et al.,

1997). In one experiment, participants were willing to

pay $125 more for improved tires when viewing the vi-

sualizations in Fig. 6 compared to a purely textual repre-

sentation of the information. The authors also

demonstrated the same effect for improved toothpaste,

with participants paying $0.95 more when viewing a vis-

ual depiction compared to text. The authors’ term this

heuristic of focusing on salient information and ignoring

other data the foreground effect (Stone et al., 1997) (see

also Schirillo & Stone, 2005; Stone et al., 2003).

A more direct test of visualizations guiding bottom-up

attention is to examine if salient information biases

viewers’ judgments. One method involves identifying sa-

lient features using a behaviorally validated saliency

model, which predicts the locations that will attract

viewers’ bottom-up attention (Harel, 2015; Itti, Koch, &

Niebur, 1998; Rosenholtz & Jin, 2005). In one study, re-

searchers compared participants’ judgments with differ-

ent hurricane forecast visualizations and then, using the

Itti et al. (1998) saliency algorithm, found that the differ-

ences in what was salient in the two visualizations corre-

lated with participants’ performance (Padilla, Ruginski et

al., 2017). Specifically, they suggested that the salient

borders of the Cone of Uncertainty (see Fig. 7, left),

which is used by the National Hurricane Center to dis-

play hurricane track forecasts, leads some people to in-

correctly believe that the hurricane is growing in

physical size, which is a misunderstanding of the prob-

ability distribution of hurricane paths that the cone is

intended to represent (Padilla, Ruginski et al., 2017; see

also Ruginski et al., 2016). Further, they found that when

Table 2 Overview of the four cross-domain findings along with the type of processing that they reflect

Evidence for Type

Cross-domain finding 1 2 Either

1 Visualizations direct viewers’ bottom-up attention, which can both help and hinder decision making. ×

2 The visual encoding technique gives rise to visual-spatial biases. ×

3 Visualizations that have greater cognitive fit produce faster and more effective decisions. ×

4 Knowledge-driven processes can interact with the effects of the encoding technique. ×

The italicised words correspond to section titles

Table 3 Visual features used in the reviewed studies to attract

bottom-up attention

Features Studies

Color Fabrikant et al. (2010); Hegarty et al. (2010)

Edges and
lines

Fabrikant et al. (2010); Hegarty et al. (2010); Padilla,
Ruginski, and Creem-Regehr (2017)

Foreground
information

Schirillo and Stone (2005); Stone et al. (2003);
Stone et al. (1997)

Fig. 6 Icon arrays used to illustrate the risk of standard or improved

tires. Participants were tasked with deciding how much they would

pay for the improved tires. Note the base rate of 5 M drivers was

represented in text. Redrawn from “Effects of numerical and graphical

displays on professed risk-taking behavior” by E. R. Stone, J. F. Yates, &

A. M. Parker. 1997, Journal of Experimental Psychology: Applied, 3(4), 243
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the same data were represented as individual hurricane

paths, such that there was no salient boundary (see Fig.

7, right), viewers intuited the probability of hurricane

paths more effectively than the Cone of Uncertainty.

However, an individual hurricane path biased viewers’

judgments if it intersected a point of interest. For ex-

ample, in Fig. 7 (right), participants accurately judged

that locations closer to the densely populated lines

(highest likelihood of storm path) would receive more

damage. This correct judgment changed when a location

farther from the center of the storm was intersected by a

path, but the closer location was not (see locations a and

b in Fig. 7 right). With both visualizations, the re-

searchers found that viewers were negatively biased by

the salient features for some tasks (Padilla, Ruginski et

al., 2017; Ruginski et al., 2016).

That is not to say that saliency only negatively impacts

decisions. When incorporated into visualization design,

saliency can guide bottom-up attention to task-relevant

information, thereby improving performance (e.g.

Fabrikant et al., 2010; Fagerlin, Wang, & Ubel, 2005;

Hegarty et al., 2010; Schirillo & Stone, 2005; Stone et al.,

2003; Waters, Weinstein, Colditz, & Emmons, 2007).

One compelling example using both eye-tracking mea-

sures and a saliency algorithm demonstrated that salient

features of weather maps directed viewers’ attention to

different variables that were visualized on the maps

(Hegarty et al., 2010) (see also Fabrikant et al., 2010).

Interestingly, when the researchers manipulated the

relative salience of temperature versus pressure (see

Fig. 8), the salient features captured viewers’ overt atten-

tion (as measured by eye fixations) but did not influence

performance, until participants were trained on how to

effectively interpret the features. Once viewers were

trained, their judgments were facilitated when the rele-

vant features were more salient (Hegarty et al., 2010).

This is an instructive example of how saliency may dir-

ect viewers’ bottom-up attention but may not influence

their performance until viewers have the relevant

top-down knowledge to capitalize on the affordances of

the visualization.

In sum, the reviewed studies suggest that bottom-up at-

tention has a profound influence on decision making with

visualizations. This is noteworthy because bottom-up at-

tention is a Type 1 process. At a minimum, the work sug-

gests that Type 1 processing influences the first stages of

decision making with visualizations. Further, the studies

cited in this section provide support for the inclusion of

bottom-up attention in our proposed model.

Visual-spatial biases

A second cross-domain finding that relates to Type 1

processing is that visualizations can give rise to visual--

spatial biases that can be either beneficial or detrimental

to decision making. We are proposing the new concept

of visual-spatial biases and defining this term as a bias

that elicits heuristics, which are a direct result of the vis-

ual encoding technique. Visual-spatial biases likely

Fig. 7 An example of the Cone of Uncertainty (left) and the same data represented as hurricane paths (right). Participants were tasked with

evaluating the level of damage that would incur to offshore oil rigs at specific locations, based on the hurricane forecast visualization. Redrawn

from “Effects of ensemble and summary displays on interpretations of geospatial uncertainty data” by L. M. Padilla, I. Ruginski, and

S. H. Creem-Regehr. 2017, Cognitive Research: Principles and Implications, 2(1), 40
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originate as a Type 1 process as we suspect they are con-

nected to bottom-up attention, and if detrimental to de-

cision making, have to be actively suppressed by

top-down knowledge and cognitive control mechanisms

(see Table 4 for summary of biases documented in this

section). Visual-spatial biases can also improve

decision-making performance. As Card, Mackinlay, and

Shneiderman (1999) point out, we can use vision to

think, meaning that visualizations can capitalize on

visual perception to interpret a visualization without ef-

fort when the visual biases elucidated by the

visualization are consistent with the correct

interpretation.

Tversky (2011) presents a taxonomy of visual-spatial

communications that are intrinsically related to thought,

which are likely the bases for visual-spatial biases (see

also Fabrikant & Skupin, 2005). One of the most

commonly documented visual-spatial biases that we

Fig. 8 Eye-tracking data from Hegarty et al. (2010). Participants viewed an arrow located in Utah (obscured by eye-tracking data in the figure) and

made judgments about whether the arrow correctly identified the wind direction. The black isobars were the task-relevant information. Notice that after

instructions, viewers with the pressure-salient visualizations focused on the isobars surrounding Utah, rather than on the legend or in other regions. The

panels correspond to the conditions in the original study

Table 4 Biases documented in the reviewed studies

Bias Studies

Anchoring Belia et al. (2005)

Anecdotal evidence Fagerlin et al. (2005)

Containment McKenzie et al. (2016); Joslyn and LeClerc (2013); Grounds et al. (2017); Newman and Scholl (2012);
Ruginski et al. (2016)

Deterministic construal Grounds et al. (2017); Joslyn and LeClerc (2013)

High-quality image Keehner et al. (2011); McCabe and Castel (2008); St. John et al. (2001); Ancker et al. (2006); Brügger et al. (2017);
Hegarty et al. (2012); Wainer et al. (1999); Wilkening and Fabrikant (2011)

Risk aversion Schirillo and Stone (2005)

Side effect aversion Waters et al. (2006); Waters et al. (2007)
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observed across domains is a containment

conceptualization of boundary representations in visuali-

zations. Tversky (2011) makes the analogy, “Framing a

picture is a way of saying that what is inside the picture

has a different status from what is outside the picture”

(p. 522). Similarly, Fabrikant and Skupin (2005) describe

how, “They [boundaries] help partition an information

space into zones of relative semantic homogeneity” (p.

673). However, in visualization design, it is common to

take continuous data and visually represent them with

boundaries (i.e. summary statistics, error bars, isocon-

tours, or regions of interest; Padilla et al., 2015; Padilla,

Quinan, Meyer, & Creem-Regehr, 2017). Binning con-

tinuous data is a reasonable approach, particularly when

intended to make the data simpler for viewers to under-

stand (Padilla, Quinan, et al., 2017). However, it may

have the unintended consequence of creating artificial

boundaries that can bias users—leading them to respond

as if data within a containment is more similar than data

across boundaries. For example, McKenzie, Hegarty,

Barrett, and Goodchild (2016) showed that participants

were more likely to use a containment heuristic to make

decisions about Google Map’s blue dot visualization

when the positional uncertainty data were visualized as a

bounded circle (Fig. 9 right) compared to a Gaussian

fade (Fig. 9 left) (see also Newman & Scholl, 2012;

Ruginski et al., 2016). Recent work by Grounds, Joslyn,

and Otsuka (2017) found that viewers demonstrate a

“deterministic construal error” or the belief that visuali-

zations of temperature uncertainty represent a determin-

istic forecast. However, the deterministic construal error

was not observed with textual representations of the

same data (see also Joslyn & LeClerc, 2013).

Additionally, some visual-spatial biases follow the same

principles as more well-known decision-making biases re-

vealed by researchers in behavioral economics and decision

science. In fact, some decision-making biases, such as

anchoring, the tendency to use the first data point to make

relative judgments, seem to have visual correlates (Belia,

Fidler, Williams, & Cumming, 2005). For example, Belia et

al. (2005) asked experts with experience in statistics to align

two means (representing “Group 1” and “Group 2”) with

error bars so that they represented data ranges that were

just significantly different (see Fig. 10 for example of stim-

uli). They found that when the starting position of Group 2

was around 800 ms, participants placed Group 2 higher

than when the starting position for Group 2 was at around

300 ms. This work demonstrates that participants used the

starting mean of Group 2 as an anchor or starting point of

reference, even though the starting position was arbitrary.

Other work finds that visualizations can be used to reduce

some decision-making biases including anecdotal evidence

bias (Fagerlin et al., 2005), side effect aversion (Waters et

al., 2007; Waters, Weinstein, Colditz, & Emmons, 2006),

and risk aversion (Schirillo & Stone, 2005).

Additionally, the mere presence of a visualization may

inherently bias viewers. For example, viewers find scientific

articles with high-quality neuroimaging figures to have

greater scientific reasoning than the same article with a

bar chart or without a figure (McCabe & Castel, 2008).

People tend to unconsciously believe that high-quality sci-

entific images reflect high-quality science—as illustrated

by work from Keehner, Mayberry, and Fischer (2011)

showing that viewers rate articles with three-dimensional

brain images as more scientific than those with 2D images,

schematic drawings, or diagrams (See Fig. 11). Unintui-

tively, however, high-quality complex images can be detri-

mental to performance compared to simpler visualizations

(Hegarty, Smallman, & Stull, 2012; St. John, Cowen, Small-

man, & Oonk, 2001; Wilkening & Fabrikant, 2011).

Hegarty et al. (2012) demonstrated that novice users prefer

realistically depicted maps (see Fig. 12), even though these

maps increased the time taken to complete the task and

focused participants’ attention on irrelevant information

(Ancker, Senathirajah, Kukafka, & Starren, 2006; Brügger,

Fabrikant, & Çöltekin, 2017; St. John et al., 2001; Wainer,

Hambleton, & Meara, 1999; Wilkening & Fabrikant,

2011). Interestingly, professional meteorologists also

Fig. 9 Example stimuli from McKenzie et al. (2016) showing circular semi-transparent overlays used by Google Maps to indicate the uncertainty of

the users’ location. Participants compared two versions of these visualizations and determined which represented the most accurate positional

location. Redrawn from “Assessing the effectiveness of different visualizations for judgments of positional uncertainty” by G. McKenzie, M. Hegarty,

T. Barrett, and M. Goodchild. 2016, International Journal of Geographical Information Science, 30(2), 221–239
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demonstrated the same biases as novice viewers (Hegarty

et al., 2012) (see also Nadav-Greenberg, Joslyn, & Taing,

2008).

We argue that visual-spatial biases reflect a Type 1

process, occurring automatically with minimal working

memory. Work by Sanchez and Wiley (2006) provides

direct evidence for this assertion using eye-tracking data

to demonstrate that individuals with less working mem-

ory capacity attend to irrelevant images in a scientific article

more than those with greater working memory capacity.

The authors argue that we are naturally drawn to images

(particularly high-quality depictions) and that significant

working memory capacity is required to shift focus away

from images that are task-irrelevant. The ease by which vi-

sualizations captivate our focus and direct our bottom-up

attention to specific features likely increases the impact of

these biases, which may be why some visual-spatial biases

are notoriously difficult to override using working memory

capacity (see Belia et al., 2005; Boone, Gunalp, & Hegarty,

in press; Joslyn & LeClerc, 2013; Newman & Scholl, 2012).

We speculate that some visual-spatial biases are intertwined

with bottom-up attention—occurring early in the

decision-making process and influencing the down-stream

processes (see our model in Fig. 4 for reference), making

them particularly unremitting.

Type 2

Cognitive fit

We also observe a cross-domain finding involving Type

2 processing, which suggests that if there is a mismatch

between the visualization and a decision-making compo-

nent, working memory is used to perform corrective

mental transformations. Cognitive fit is a term used to

describe the correspondence between the visualization

and conceptual question or task (see our model for ref-

erence; for an overview of cognitive fit, see Vessey,

Zhang, & Galletta, 2006). Those interested in examining

cognitive fit generally attempt to identify and reduce

mismatches between the visualization and one of the

decision-making components (see Table 5 for a break-

down of the decision-making components that the

reviewed studies evaluated). When there is a mismatch

produced by the default Type 1 processing, it is argued

that significant working memory (Type 2 processing) is

required to resolve the discrepancy via mental transfor-

mations (Vessey et al., 2006). As working memory is

capacity limited, the magnitude of mental transform-

ation or amount of working memory required is one

predictor of reaction times and errors.

Direct evidence for this claim comes from work dem-

onstrating that cognitive fit differentially influenced the

performance of individuals with more and less working

memory capacity (Zhu & Watts, 2010). The task was to

identify which two nodes in a social media network dia-

gram should be removed to disconnect the maximal

number of nodes. As predicted by cognitive fit theory,

when the visualization did not facilitate the task (Fig. 13

left), participants with less working memory capacity

were slower than those with more working memory cap-

acity. However, when the visualization aligned with the

task (Fig. 13 right), there was no difference in perform-

ance. This work suggests that when there is misalign-

ment between the visualization and a decision-making

process, people with more working memory capacity

have the resources to resolve the conflict, while those

with less resources show performance degradations.2

Other work only found a modest relationship between

working memory capacity and correct interpretations of

high and low temperature forecast visualizations

(Grounds et al., 2017), which suggests that, for some vi-

sualizations, viewers utilize little working memory.

As illustrated in our model, working memory can be

recruited to aid all stages of the decision-making process

except bottom-up attention. Work that examines cogni-

tive fit theory provides indirect evidence that working

memory is required to resolve conflicts in the schema

Fig. 10 Example display and instructions from Belia et al. (2005).

Redrawn from “Researchers misunderstand confidence intervals and

standard error bars” by S. Belia, F. Fidler, J. Williams, and G.

Cumming. 2005, Psychological Methods, 10(4), 390. Copyright 2005 by

“American Psychological Association”
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Fig. 11 Image showing participants’ ratings of three-dimensionality and scientific credibility for a given neuroimaging visualization, originally

published in grayscale (Keehner et al., 2011)

Fig. 12 Example stimuli from Hegarty et al. (2012) showing maps with varying levels of realism. Both novice viewers and meteorologists were

tasked with selecting a visualization to use and performing a geospatial task. The panels correspond to the conditions in the original study
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matching and a decision-making component. For ex-

ample, one way that a mismatch between a viewer’s

mental schema and visualization can arise is when the

viewer uses a schema that is not optimal for the task.

Tversky, Corter, Yu, Mason, and Nickerson (2012)

primed participants to use different schemas by describ-

ing the connections in Fig. 14 in terms of either transfer

speed or security levels. Participants then decided on the

most efficient or secure route for information to travel

between computer nodes with either a visualization that

encoded data using the thickness of connections, con-

tainment, or physical distance (see Fig. 14). Tversky et al.

(2012) found that when the links were described based

on their information transfer speed, thickness and dis-

tance visualizations were the most effective—suggesting

that the speed mental schema was most closely matched

to the thickness and distance visualizations, whereas the

speed schema required mental transformations to align

with the containment visualization. Similarly, the thick-

ness and containment visualizations outperformed the

distance visualization when the nodes were described as

belonging to specific systems with different security

levels. This work and others (Feeney, Hola, Liversedge,

Findlay, & Metcalf, 2000; Gattis & Holyoak, 1996;

Joslyn & LeClerc, 2013; Smelcer & Carmel, 1997) pro-

vides indirect evidence that gratuitous realignment be-

tween mental schema and the visualization can be

error-prone and visualization designers should work to

reduce the number of transformations required in the

decision-making process.

Researchers from multiple domains have also

documented cases of misalignment between the task, or

conceptual question, and the visualization. For example,

Vessey and Galletta (1991) found that participants

completed a financial-based task faster when the

visualization they chose (graph or table, see Fig. 15)

matched the task (spatial or textual). For the spatial task,

participants decided which month had the greatest dif-

ference between deposits and withdrawals. The textual

or symbolic tasks involved reporting specific deposit and

withdrawal amounts for various months. The authors ar-

gued that when there is a mismatch between the task

and visualization, the additional transformation accounts

for the increased time taken to complete the task

Table 5 Decision-making components that the reviewed studies evaluated the cognitive fit of

Cognitive fit examined Studies

Visualization - > task Dennis and Carte (1998); Grounds et al. (2017); Huang et al. (2006); Nadav-Greenberg et al. (2008);
Smelcer and Carmel (1997); Vessey and Galletta (1991); Zhu and Watts (2010)

Visualization - > primed schema Tversky et al. (2012)

Visualization - > learned schema Feeney et al. (2000); Gattis and Holyoak (1996); Joslyn and LeClerc (2013)

Fig. 13 Examples of social media network diagrams from Zhu and Watts (2010). The authors argue that the figure on the right is more aligned

with the task of identifying the most interconnected nodes than the figure on the left
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(Vessey & Galletta, 1991) (see also Dennis & Carte,

1998; Huang et al., 2006), which likely takes place in the

inference process of our proposed model.

The aforementioned studies provide direct (Zhu &

Watts, 2010) and indirect (Dennis & Carte, 1998; Feeney

et al., 2000; Gattis & Holyoak, 1996; Huang et al., 2006;

Joslyn & LeClerc, 2013; Smelcer & Carmel, 1997;

Tversky et al., 2012; Vessey & Galletta, 1991) evidence

that Type 2 processing recruits working memory to re-

solve misalignment between decision-making processes

and the visualization that arise from default Type 1 pro-

cessing. These examples of Type 2 processing using

working memory to perform effortful mental computa-

tions are consistent with the assertions of Evans and Sta-

novich (2013) that Type 2 processes enact goal directed

complex processing. However, it is not clear from the

reviewed work how exactly the visualization and

decision-making components are matched. Newman and

Scholl (2012) propose that we match the schema and

visualization based on the similarities between the salient

visual features, although this proposal has not been tested.

Further, work that assesses cognitive fit in terms of the

visualization and task only examines the alignment of

broad categories (i.e., spatial or semantic). Beyond these

broad classifications, it is not clear how to predict if a task

and visualization are aligned. In sum, there is not a suffi-

cient cross-disciplinary theory for how mental schemas

and tasks are matched to visualizations. However, it is

apparent from the reviewed work that Type 2 processes

(requiring working memory) can be recruited during the

schema matching and inference processes.

Either type 1 and/or 2

Knowledge-driven processing

In a review of map-reading cognition, Lobben (2004)

states, “…research should focus not only on the needs of

the map reader but also on their map-reading skills and

abilities” (p. 271). In line with this statement, the final

cross-domain finding is that the effects of knowledge

can interact with the affordances or biases inherent in

the visualization method. Knowledge may be held tem-

porally in working memory (Type 2), held in long-term

knowledge but effortfully used (Type 2), or held in

long-term knowledge but automatically applied (Type 1).

Fig. 14 Example of stimuli from Tversky et al. (2012) showing three

types of encoding techniques for connections between nodes

(thickness, containment, and distance). Participants were asked to

select routes between nodes with different descriptions of the

visualizations. Redrawn from “Representing category and continuum:

Visualizing thought” by B. Tversky, J. Corter, L. Yu, D. Mason, and J.

Nickerson. In Diagrams 2012 (p. 27), P. Cox, P. Rodgers, and B.

Plimmer (Eds.), 2012, Berlin Heidelberg: Springer-Verlag

a b

Fig. 15 Examples of stimuli from Vessey and Galletta (1991) depicting deposits and withdraw amounts over the course of a year with a graph (a)

and table (b). Participants completed either a spatial or textual task with the chart or table. Redrawn from “Cognitive fit: An empirical study of

information acquisition” by I. Vessey, and D. Galletta. 1991, Information systems research, 2(1), 72–73. Copyright 1991 by “INFORMS”
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As a result, knowledge-driven processing can involve ei-

ther Type 1 or Type 2 processes.

Both short- and long-term knowledge can influence

visualization affordances and biases. However, it is diffi-

cult to distinguish whether Type 2 processing is using

significant working memory capacity to temporarily hold

knowledge or if participants have stored the relevant

knowledge in long-term memory and processing is more

automatic. Complicating the issue, knowledge stored in

long-term memory can influence decision making with

visualizations using both Type 1 and 2 processing. For

example, if you try to remember Pythagorean’s Theorem,

which you may have learned in high school or middle

school, you may recall that a2 + b2 = c2, where c repre-

sents the length of the hypotenuse and a and b represent

the lengths of the other two sides of a triangle. Unless

you use geometry regularly, you likely had to strenuously

search in long-term memory for the equation, which is a

Type 2 process and requires significant working memory

capacity. In contrast, if you are asked to recall your

childhood phone number, the number might automatic-

ally come to mind with minimal working memory re-

quired (Type 1 processing).

In this section, we highlight cases where knowledge ei-

ther influenced decision making with visualizations or

was present but did not influence decisions (see Table 6

for the type of knowledge examined in each study).

These studies are organized based on how much time

the viewers had to incorporate the knowledge (i.e.

short-term instructions and long-term individual differ-

ences in abilities and expertise), which may be indicative

of where the knowledge is stored. However, many factors

other than time influence the process of transferring

knowledge by working memory capacity to long-term

knowledge. Therefore, each of the studies cited in this

section could be either Type 1, Type 2, or both types of

processing.

One example of participants using short-term know-

ledge to override a familiarity bias comes from work by

Bailey, Carswell, Grant, and Basham (2007) (see also

Shen, Carswell, Santhanam, & Bailey, 2012). In a com-

plex geospatial task for which participants made judg-

ments about terrorism threats, participants were more

likely to select familiar map-like visualizations rather

than ones that would be optimal for the task (see Fig. 16)

(Bailey et al., 2007). Using the same task and visualiza-

tions, Shen et al. (2012) showed that users were more

likely to choose an efficacious visualization when given

training concerning the importance of cognitive fit and

effective visualization techniques. In this case, viewers

were able to use knowledge-driven processing to im-

prove their performance. However, Joslyn and LeClerc

(2013) found that when participants viewed temperature

uncertainty, visualized as error bars around a mean

temperature prediction, they incorrectly believed that

the error bars represented high and low temperatures.

Surprisingly, participants maintained this belief despite a

key, which detailed the correct way to interpret each

temperature forecast (see also Boone et al., in press).

The authors speculated that the error bars might have

matched viewers’ mental schema for high- and

low-temperature forecasts (stored in long-term memory)

and they incorrectly utilized the high-/low-temperature

schema rather than incorporating new information from

the key. Additionally, the authors propose that because

the error bars were visually represented as discrete

values, that viewers may have had difficulty reimagining

the error bars as points on a distribution, which they

term a deterministic construal error (Joslyn & LeClerc,

2013). Deterministic construal visual-spatial biases may

also be one of the sources of misunderstanding of the

Cone of Uncertainty (Padilla, Ruginski et al., 2017;

Ruginski et al., 2016). A notable difference between

these studies and the work of Shen et al. (2012) is that

Shen et al. (2012) used instructions to correct a familiar-

ity bias, which is a cognitive bias originally documented

in the decision-making literature that is not based on

the visual elements in the display. In contrast, the biases

in Joslyn and LeClerc (2013) were visual-spatial biases.

This provides further evidence that visual-spatial biases

may be a unique category of biases that warrant dedi-

cated exploration, as they are harder to influence with

knowledge-driven processing.

Regarding longer-term knowledge, there is substantial

evidence that individual differences in knowledge impact

decision making with visualizations. For example, nu-

merous studies document the benefit of visualizations

for individuals with less health literacy, graph literacy,

Table 6 Type of knowledge examined in each study

Knowledge Studies

Short-term training, instructions Boone et al. (in press); Shen et al. (2012)

Individual differences Galesic and Garcia-Retamero (2011); Galesic et al. (2009) Keller et al. (2009) Okan et al. (2015); Okan, Garcia-Retamero,
Galesic, and Cokely (2012); Okan, Garcia-Retamero, Cokely, and Maldonado (2012); Okan, Garcia-Retamero, Galesic,
and Cokely (2012); Reyna et al. (2009); Rodríguez et al. (2013)

Semester-long course Lee and Bednarz (2009)

Experts Belia et al. (2005); Riveiro (2016); St. John et al. (2001)
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and numeracy (Galesic & Garcia-Retamero, 2011;

Galesic, Garcia-Retamero, & Gigerenzer, 2009; Keller,

Siegrist, & Visschers, 2009; Okan, Galesic, &

Garcia-Retamero, 2015; Okan, Garcia-Retamero, Cokely,

& Maldonado, 2012; Okan, Garcia-Retamero, Galesic, &

Cokely, 2012; Reyna, Nelson, Han, & Dieckmann, 2009;

Rodríguez et al., 2013). Visual depictions of health data

are particularly useful because health data often take the

form of probabilities, which are unintuitive. Visualiza-

tions inherently illustrate probabilities (i.e. 10%) as nat-

ural frequencies (i.e. 10 out of 100), which are more

intuitive (Hoffrage & Gigerenzer, 1998). Further, by

depicting natural frequencies visually (see example in

Fig. 17), viewers can make perceptual comparisons ra-

ther than mathematical calculations. This dual benefit is

likely the reason visualizations produce facilitation for

individuals with less health literacy, graph literacy, and

numeracy.

These studies are good examples of how designers can

create visualizations that capitalize on Type 1 processing

to help viewers accurately make decisions with complex

data even when they lack relevant knowledge. Based on

the reviewed work, we speculate that well-designed

visualizations that utilize Type 1 processing to intuitively

illustrate task-relevant relationships in the data may be

particularly beneficial for individuals with less numeracy

and graph literacy, even for simple tasks. However,

poorly designed visualizations that require superfluous

mental transformations may be detrimental to the same

individuals. Further, individual differences in expertise,

such as graph literacy, which have received more atten-

tion in healthcare communication (Galesic &

Garcia-Retamero, 2011; Nayak et al., 2016; Okan et al.,

2015; Okan, Garcia-Retamero, Cokely, & Maldonado,

2012; Okan, Garcia-Retamero, Galesic, & Cokely, 2012;

Rodríguez et al., 2013), may play a large role in how

viewers complete even simple tasks in other domains

such as map-reading (Kinkeldey et al., 2017).

Less consistent are findings on how more experienced

users incorporate knowledge acquired over longer pe-

riods of time to make decisions with visualizations.

Some research finds that students’ decision-making and

spatial abilities improved during a semester-long course

on Geographic Information Science (GIS) (Lee &

Bednarz, 2009). Other work finds that experts perform

the same as novices (Riveiro, 2016), experts can exhibit

Fig. 16 Example of different types of view orientations used by examined by Bailey et al. (2007). Participants selected one of these visualizations

and then used their selection to make judgments including identifying safe passageways, determining appropriate locations for firefighters, and

identifying suspicious locations based on the height of buildings. The panels correspond to the conditions in the original study
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visual-spatial biases (St. John et al., 2001) and experts

perform more poorly than expected in their domain of

visual expertise (Belia et al., 2005). This inconsistency

may be due in part to the difficulty in identifying when

and if more experienced viewers are automatically apply-

ing their knowledge or employing working memory. For

example, it is unclear if the students in the GIS course

documented by Lee and Bednarz (2009) developed auto-

matic responses (Type 1) or if they learned the informa-

tion and used working memory capacity to apply their

training (Type 2).

Cheong et al. (2016) offer one way to gauge how per-

formance may change when one is forced to use Type 1

processing, but then allowed to use Type 2 processing.

In a wildfire task using multiple depictions of uncer-

tainty (see Fig. 18), Cheong et al. (2016) found that the

type of uncertainty visualization mattered when partici-

pants had to make fast Type 1 decisions (5 s) about

evacuating from a wildfire. But when given sufficient

time to make Type 2 decisions (30 s), participants were

not influenced by the visualization technique (see also

Wilkening & Fabrikant, 2011).

Interesting future work could limit experts’ time to

complete a task (forcing Type 1 processing) and then

determine if their judgments change when given more

time to complete the task (allowing for Type 2 process-

ing). To test this possibility further, a dual-task paradigm

could be used such that experts’ working memory capacity

is depleted by a difficult secondary task that also required

working memory capacity. Some examples of secondary

tasks in a dual-task paradigm include span tasks that re-

quire participants to remember or follow patterns of infor-

mation, while completing the primary task, then report

the remembered or relevant information from the pattern

(for a full description of theoretical bases for a dual-task

paradigm see Pashler, 1994). To our knowledge, only one

study has used a dual-task paradigm to evaluate cognitive

load of a visualization decision-making task (Bandlow et

al., 2011). However, a growing body of research on other

domains, such as wayfinding and spatial cognition, dem-

onstrates the utility of using dual-task paradigms to

understand the types of working memory that users em-

ploy for a task (Caffò, Picucci, Di Masi, & Bosco, 2011;

Meilinger, Knauff, & Bülthoff, 2008; Ratliff & Newcombe,

2005; Trueswell & Papafragou, 2010).

Span tasks are examples of spatial or verbal secondary

tasks, which include remembering the orientations of an

arrow (taxes visual-spatial memory, (Shah & Miyake, 1996)

Fig. 17 Example of stimuli used by Galesic et al. (2009) in a study demonstrating that natural frequency visualizations can help individuals

overcome less numeracy. Participants completed three medical scenario tasks using similar visualizations as depicted here, in which they were

asked about the effects of aspirin on risk of stroke or heart attack and about a hypothetical new drug. Redrawn from “Using icon arrays to

communicate medical risks: overcoming less numeracy” by M. Galesic, R. Garcia-Retamero, and G. Gigerenzer. 2009, Health Psychology, 28(2), 210
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or counting backward by 3 s (taxes verbal processing and

short-term memory) (Castro, Strayer, Matzke, & Heathcote,

2018). One should expect more interference if the primary

and secondary tasks recruit the same processes (i.e.

visual-spatial primary task paired with a visual-spatial mem-

ory span task). An example of such an experimental design

is illustrated in Fig. 19. In the dual-task trial illustrated in

Fig. 19, if participants responses are as fast and accurate as

the baseline trial then participants are likely not using sig-

nificant amounts of working memory capacity for that task.

If the task does require significant working memory cap-

acity, then the inclusion of the secondary task should in-

crease the time taken to complete the primary task and

potentially produce errors in both the secondary and pri-

mary tasks. In visualization decision-making research, this

is an open area of exploration for researchers and designers

that are interested in understanding how working memory

capacity and a dual-process account of decision making ap-

plies to their visualizations and application domains.

In sum, this section documents cases where

knowledge-driven processing does and does not influ-

ence decision making with visualizations. Notably, we

describe numerous studies where well-designed visuali-

zations (capitalizing on Type 1 processing) focus viewers’

attention on task-relevant relationships in the data,

which improves decision accuracy for individuals with

less developed health literacy, graph literacy, and numer-

acy. However, the current work does not test how

knowledge-driven processing maps on to the

dual-process model of decision making. Knowledge may

be held temporally by working memory capacity (Type

2), held in long-term knowledge but strenuously utilized

(Type 2), or held in long-term knowledge but automatic-

ally applied (Type 1). More work is needed to under-

stand if a dual-process account of decision making

accurately describes the influence of knowledge-driven

processing on decision making with visualizations. Fi-

nally, we detailed an example of a dual-task paradigm as

a b

c d

e f

Fig. 18 Example of multiple uncertainty visualization techniques for wildfire risk by Cheong et al. (2016). Participants were presented with a house

location (indicated by an X), and asked if they would stay or leave based on one of the wildfire hazard communication techniques shown here. The

panels correspond to the conditions in the original study
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one way to evaluate if viewers are employing Type 1

processing.

Review summary
Throughout this review, we have provided significant

direct and indirect evidence that a dual-process account

of decision making effectively describes prior findings

from numerous domains interested in visualization deci-

sion making. The reviewed work provides support for

specific processes in our proposed model including the

influences of working memory, bottom-up attention,

schema matching, inference processes, and decision

making. Further, we identified key commonalities in the

reviewed work relating to Type 1 and Type 2 processing,

which we added to our proposed visualization

decision-making model. The first is that utilizing Type 1

processing, visualizations serve to direct participants’

bottom-up attention to specific information, which can

be either beneficial or detrimental for decision making

(Fabrikant et al., 2010; Fagerlin et al., 2005; Hegarty et

al., 2010; Hegarty et al., 2016; Padilla, Ruginski et al.,

2017; Ruginski et al., 2016; Schirillo & Stone, 2005;

Stone et al., 1997; Stone et al., 2003; Waters et al., 2007).

Consistent with assertions from cognitive science and

scientific visualization (Munzner, 2014), we propose that

visualization designers should identify the critical infor-

mation needed for a task and use a visual encoding tech-

nique that directs participants’ attention to this

information. We encourage visualization designers who

are interested in determining which elements in their vi-

sualizations will likely attract viewers’ bottom-up atten-

tion, to see the Itti et al. (1998) saliency model, which

Fig. 19 A diagram of a dual-tasking experiment is shown using the same task as in Fig. 5. Responses resulting from Type 1 and 2 processing are

illustrated. The dual-task trial illustrates how to place additional load on working memory capacity by having the participant perform a

demanding secondary task. The impact of the secondary task is illustrated for both time and accuracy. Long-term memory can influence all

components and processes in the model either via pre-attentive processes or by conscious application of knowledge
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has been validated with eye-tracking measures (for im-

plementation of this model along with Matlab code see

Padilla, Ruginski et al., 2017). If deliberate effort is not

made to capitalize on Type 1 processing by focusing the

viewer’s attention on task-relevant information, then the

viewer will likely focus on distractors via Type 1 process-

ing, resulting in poor decision outcomes.

A second cross-domain finding is the introduction of

a new concept, visual-spatial biases, which can also be

both beneficial and detrimental to decision making. We

define this term as a bias that elicits heuristics, which is

a direct result of the visual encoding technique. We

provide numerous examples of visual-spatial biases

across domains (for implementation of this model

along with Matlab code, see Padilla, Ruginski et al.,

2017). The novel utility of identifying visual-spatial

biases is that they potentially arise early in the

decision-making process during bottom-up attention,

thus influencing the entire downstream process,

whereas standard heuristics do not exclusively occur at

the first stage of decision making. This possibly ac-

counts for the fact that visual-spatial biases have proven

difficult to overcome (Belia et al., 2005; Grounds et al.,

2017; Joslyn & LeClerc, 2013; Liu et al., 2016; McKenzie

et al., 2016; Newman & Scholl, 2012; Padilla, Ruginski

et al., 2017; Ruginski et al., 2016). Work by Tversky

(2011) presents a taxonomy of visual-spatial communi-

cations that are intrinsically related to thought, which

are likely the bases for visual-spatial biases.

We have also revealed cross-domain findings involv-

ing Type 2 processing, which suggest that if there is a

mismatch between the visualization and a

decision-making component, working memory is used

to perform corrective mental transformations. In sce-

narios where the visualization is aligned with the men-

tal schema and task, performance is fast and accurate

(Joslyn & LeClerc, 2013). The types of mismatches ob-

served in the reviewed literature are likely both

domain-specific and domain-general. For example, sit-

uations where viewers employ the correct graph

schema for the visualization, but the graph schema

does not align with the task, are likely domain-specific

(Dennis & Carte, 1998; Frownfelter-Lohrke, 1998;

Gattis & Holyoak, 1996; Huang et al., 2006; Joslyn &

LeClerc, 2013; Smelcer & Carmel, 1997; Tversky et al.,

2012). However, other work demonstrates cases where

viewers employ a graph schema that does not match

the visualization, which is likely domain-general (e.g.

Feeney et al., 2000; Gattis & Holyoak, 1996; Tversky et

al., 2012). In these cases, viewers could accidentally

use the wrong graph schema because it appears to

match the visualization or they might not have learned

a relevant schema. The likelihood of viewers making

attribution errors because they do not know the

corresponding schema increases when the visualization

is less common, such as with uncertainty visualiza-

tions. When there is a mismatch, additional working

memory is required resulting in increased time taken

to complete the task and in some cases errors (e.g.

Joslyn & LeClerc, 2013; McKenzie et al., 2016; Padilla,

Ruginski et al., 2017). Based on these findings, we rec-

ommend that visualization designers should aim to

create visualizations that most closely align with a

viewer’s mental schema and task. However, additional

empirical research is required to understand the nature

of the alignment processes, including the exact method

we use to mentally select a schema and the classifica-

tions of tasks that match visualizations.

The final cross-domain finding is that knowledge-driven

processes can interact or override effects of visualization

methods. We find that short-term (Dennis & Carte, 1998;

Feeney et al., 2000; Gattis & Holyoak, 1996; Joslyn &

LeClerc, 2013; Smelcer & Carmel, 1997; Tversky et al.,

2012) and long-term knowledge acquisition (Shen et al.,

2012) can influence decision making with visualizations.

However, there are also examples of knowledge having little

influence on decisions, even when prior knowledge could

be used to improve performance (Galesic et al., 2009; Gale-

sic & Garcia-Retamero, 2011; Keller et al., 2009; Lee &

Bednarz, 2009; Okan et al., 2015; Okan, Garcia-Retamero,

Cokely, & Maldonado, 2012; Okan, Garcia-Retamero, Gale-

sic, & Cokely, 2012; Reyna et al., 2009; Rodríguez et al.,

2013). We point out that prior knowledge seems to have

more of an effect on non-visual-spatial biases, such as a fa-

miliarity bias (Belia et al., 2005; Joslyn & LeClerc, 2013; Riv-

eiro, 2016; St. John et al., 2001), which suggests that

visual-spatial biases may be closely related to bottom-up at-

tention. Further, it is unclear from the reviewed work when

knowledge switches from relying on working memory cap-

acity for application to automatic application. We argue

that Type 1 and 2 processing have unique advantages

and disadvantages for visualization decision making.

Therefore, it is valuable to understand which process

users are applying for specific tasks in order to make

visualizations that elicit optimal performance. In the

case of experts and long-term knowledge, we propose

that one interesting way to test if users are utilizing

significant working memory capacity is to employ a

dual-task paradigm (illustrated in Fig. 19). A dual-task

paradigm can be used to evaluate the amount of

working memory required and compare the relative

working memory required between competing

visualization techniques.

We have also proposed a variety of practical recom-

mendations for visualization designers based on the em-

pirical findings and our cognitive framework. Below is a

summary list of our recommendations along with rele-

vant section numbers for reference:

Padilla et al. Cognitive Research: Principles and Implications  (2018) 3:29 Page 21 of 25



� Identify the critical information needed for a task

and use a visual encoding technique that directs

participants’ attention to this information (“Bottom-

up attention” section);

� To determine which elements in a visualization will

likely attract viewers’ bottom-up attention try

employing a saliency algorithm (see Padilla, Quinan,

et al., 2017) (see “Bottom-up attention”);

� Aim to create visualizations that most closely align

with a viewer’s mental schema and task demands

(see “Visual-Spatial Biases”);

� Work to reduce the number of transformations

required in the decision-making process (see "Cogni-

tive fit");

� To understand if a viewer is using Type 1 or 2

processing employ a dual-task paradigm (see

Fig. 19);

� Consider evaluating the impact of individual

differences such as graphic literacy and numeracy

on visualization decision making.

Conclusions
We use visual information to inform many important

decisions. To develop visualizations that account for

real-life decision making, we must understand how and

why we come to conclusions with visual information.

We propose a dual-process cognitive framework expand-

ing on visualization comprehension theory that is sup-

ported by empirical studies to describe the process of

decision making with visualizations. We offer practical

recommendations for visualization designers that take

into account human decision-making processes. Finally,

we propose a new avenue of research focused on the in-

fluence of visual-spatial biases on decision making.

Endnotes
1Dual-process theory will be described in greater detail

in next section.
2It should be noted that in some cases the activation

of Type 2 processing should improve decision accuracy.

More research is needed that examines cases where

Type 2 could improve decision performance with

visualizations.
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