DECISION METHODS IN THE THEORY OF ORDINALS1

BY J. RICHARD BÜCHI

Communicated by D. Scott, May 21, 1965

For an ordinal α , let $RS(\alpha)$, the restricted second order theory of $[\alpha, <]$, be the interpreted formalism containing the first order theory of $[\alpha, <]$ and quantification on monadic predicate variables, ranging over all subsets of α . For a cardinal γ , $RS(\alpha, \gamma)$ is like $RS(\alpha)$, except that the predicate variables are now restricted to range over subsets of α of cardinality less than γ . $\omega = \omega_0$ and ω_1 denote the first two infinite cardinals. In this note I will outline results concerning $RS(\alpha, \omega_0)$, which were obtained in the Spring of 1964 (detailed proofs will appear in [8]), and the corresponding stronger results about $RS(\alpha, \omega_1)$, which were obtained in the Fall of 1964.

The binary expansion of natural numbers can be extended to ordinals. If $x < 2^{\alpha}$, let ϕx be the finite subset $\{u_1, \dots, u_n\}$ of α , given by $x = 2^{u_1} + \dots + 2^{u_n}$, $u_n < \dots < u_1$. ϕ is a one-to-one map of 2α onto all finite subsets of α . Let Exy stand for $(\exists u)[x = 2^u \land u \in \phi y]$, and note that the algorithm i+j=s, for addition in binary notation can be expressed in $RS(\alpha, \omega_0)$. It now is easy to see that the first order theory $FT[2^{\alpha}, +, E]$ is equivalent to $RS(\alpha, \omega_0)$, in the strong sense that the two theories merely differ in the choice of primitive notions; the binary expansion ϕ yields the translation. Similarly, $RS(\alpha, \gamma)$ can be reinterpreted as a first order theory. We will state our results in one of the two forms, and leave it to the reader to translate.

THEOREM 1. For any α , there is a decision method for truth of sentences in $RS(\alpha, \omega_0)$. The same sentences are true in $RS(\alpha, \omega_0)$ and $RS(\beta, \omega_0)$, if and only if, $\alpha = \beta < \omega^{\omega}$ or else $\alpha, \beta \ge \omega^{\omega}$ and have the same ω -tail.

If $\alpha = z + \omega^{y} + \omega^{n}c_{n} + \cdots + \omega^{0}c_{0}$, $y \ge \omega$, then $z + \omega^{y}$ is called the ω -head of α , and $\omega^{n}c_{n} + \cdots + \omega^{0}c_{0}$ is called the ω -tail of α .

THEOREM 2. For any ordinals $\beta > \alpha > \omega^{\omega}$, $[2^{\beta}, +, E]$ is an elementary extension of $[2^{\alpha}, +, E]$, if and only if, α and β have the same ω -tail. The elementary embedding is then given by $h(2^{\alpha_0}x+y)=2^{\beta_0}x+y$, whereby $x < 2^{\tau}$, $y < 2^{\alpha_0}$, τ is the common ω -tail of α and β , α_0 and β_0 are respectively the ω -heads of α and β .

¹ This work was supported in part by grant GP-2754 from the National Science Foundation.

Let $\alpha = \alpha_0 + \tau \ge \omega^{\omega}$, where α_0 is the ω -head and τ is the ω -tail of α . From Theorem 2 one easily shows: the ordinals definable in $\mathrm{FT}[2^{\alpha}, +, E]$ (in $\mathrm{FT}[2^{\alpha}, +]$) are those of form $2^{\alpha_0}x + y$, whereby $x < 2^{\tau}$ and $y < 2^{(\omega^{\omega})}$. Actually, Theorems 1 and 2 are but samples of corollaries to Theorem 3, which completely describes the relations on ordinals definable in $\mathrm{FT}[2^{\alpha}, +, E]$.

The results on definability of individuals in $FT[\omega^{\alpha}, +]$ have been obtained earlier by A. Ehrenfeucht [6]. His methods are quite different; a lucid presentation of this work occurs in [3]. In [3] and [4] it is stated that Ehrenfeucht also knew a decision method for $FT[\omega^{\alpha}, +]$. However, it seems that nobody has checked out these ideas. The first published proof of the decidability of $FT[\omega, +, E]$, i.e., of $RS(\omega, \omega)$ occurs in [1], and a similar one in [7]. These are both based on my conjecture that $RS(\omega, \omega)$ is just strong enough to express the behavior of finite automata.

The key to the understanding of $RS(\alpha, \omega_0)$ is a natural extension of deterministic finite-state recursions to the transfinite. Let I (input states) and S (internal states) be finite sets. An automaton $\mathfrak A$ on I, S consists of an element $A \in S$ (initial state) a map $H: S \times I \to S$, a map $U: 2^S \to S$, and a subset $0 \subseteq S$ (the output). Let $\sup_{t < x} (rt)$ stand for the set of all values which the function r takes on cofinal to x, i.e. $Y \in \sup_{t < x} (rt) \cdot \equiv (\mathbf{\nabla} z)_0^x (\exists t)_z^x [rt = Y]$. [A, H, U] determines recursively an operator $s[o, \alpha] = \zeta i[o, \alpha)$ from I^{α} to $S^{\alpha+1}$, namely,

$$so = A,$$

 $s(x + 1) = H[sx, ix],$
 $sx = U\left[\sup_{t < x} (st)\right], \quad x \text{ a limit.}$

An input sequence $i[o, \alpha)$ is said to be accepted by \mathfrak{A} , in case $s\alpha \in 0$. Extending the proofs given in [1], one now shows,

THEOREM 3. Let $R(i_1, \dots, i_n)$ be a relation on finite predicates on α . R is definable in $RS(\alpha, \omega_0)$ if and only if there is an automaton $\mathfrak A$ such that R consists of those finite (i_1, \dots, i_n) on α , for which the input signal $i[0, \alpha)$ is accepted by $\mathfrak A$.

In fact there are effective methods, (1) for the construction of $\mathfrak A$ from a defining formula Σ of R (synthesis), and (2) for the construction of Σ from $\mathfrak A$ (analysis). Theorems 1 and 2 now follow by investigating the behavior of input-free automata.

Let us now consider RS(α , ω_1). The decidability of RS(ω_0 , ω_1), i.e., RS(ω_0) was proved in [2]. It is not difficult to extend the method used

in [2], replacing ordinary automata recursions by transfinite automata. The result is,

THEOREM 1'. For any countable ordinal α , $RS(\alpha)$ is decidable. For $\alpha < \beta < \omega_1$, $RS(\alpha)$ and $RS(\beta)$ are equivalent if and only if either $\alpha = \beta < \omega^{\omega}$ or α , $\beta \ge \omega^{\omega}$ and have the same ω -tail. Furthermore, $RS(\alpha, \omega_1)$ is decidable for any α .

As in [2] we actually obtain a complete survey over definability in $RS(\alpha, \omega_1)$. In particular, the analog to Theorem 2 holds.

Define the α -behavior of an automaton $\mathfrak A$ to be the set $\mathrm{Bh}(\mathfrak A,\alpha)$ consisting of all input-signals $i[,o\,\alpha)$ which are accepted by $\mathfrak A$. Thus, the ω -behaviors are the ordinary regular sets of finite automata theory.

THEOREM 4. To any automaton $\mathfrak A$ with input (i, j) one can construct an automaton $\mathfrak E$ with input i, such that for any $\alpha \leq \omega_1$ and any inputsignal i of length $<\alpha$, $i \in Bh(\mathfrak E, \alpha) \cdot \equiv \cdot (\exists j)(i, j) \in Beh(\mathfrak A, \alpha)$.

For $\alpha = \omega$ this is the well-known projection-lemma for behaviors of finite automata. The case $\alpha = \omega + 1$ constitutes a significant improvement of the crucial Lemma 9 of [2], and has recently been obtained by R. McNaughton. His construction is very ingenious, and his ©'s are by far the most intricate finite automata this writer has seen in action. The extension to $\alpha \leq \omega_1$ is an exercise in handling ordinals. Using this improved form of Lemma 9, the definability result of [2] extends as follows,

THEOREM 3'. To every RS-formula $\Sigma(i_1, \dots, i_n)$ one can construct an automaton \mathfrak{A} , and to every automaton \mathfrak{A} with 2^n -ary input (i_1, \dots, i_n) one can construct an RS-formula $\Sigma(i_1, \dots, i_n)$, such that for any $\alpha < \omega_1$ the behavior $Bh(\mathfrak{A}, \alpha)$ is the relation defined by Σ in $RS(\alpha, \omega_1)$.

The following problem remains unsolved: Is $RS(\omega_1)$ decidable?

BIBLIOGRAPHY

- 1. J. R. Büchi, Weak second order arithmetic and finite automata, Z. Math. Logik Grundlagen Math. 6 (1960), 66-92.
- 2. ——, On a decision method in restricted second order arithmetic, Proc. Int. Cong. Logic, Method. and Philos. Sci., 1960, Stanford Univ. Press, Stanford, Calif., 1962.
- 3. S. Feferman, Some recent work of Ehrenfeucht and Fraïssé, Summer Institute for Symbolic Logic, Cornell Univ., 1957, Commun. Research Div., Institute for Defense Analyses, 1960, pp. 201–209.
- 4. S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57-103.
 - 5. R. McNaughton, Reviews of Weak second order arithmetic and finite automata

and On a decision method in restricted second order arithmetic by J. R. Büchi, J. Symb. Logic 28 (1963), 100-102.

- 6. A. Ehrenfeucht, Application of games to some problems of mathematical logic, Bull. Acad. Polon. Sci. 5 (1957), 35-37.
- 7. C. C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961), 21-51.
- 8. J. R. Büchi, Transfinite automata recursions and weak second order theory of ordinals, Proc. Int. Cong. Logic, Method. and Philos. Sci., Jerusalem, 1964 (to appear).

OHIO STATE UNIVERSITY