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The problem of mastery decisions and optimizing
cutoff scores on criterion-referenced tests is con-
sidered. This problem can be formalized as an (em-
pirical) Bayes problem with decisions rules of a
monotone shape. Next, the derivation of optimal
cutoff scores for threshold, linear, and normal ogive
loss functions is addressed, alternately using such
psychometric models as the classical model, the
beta-binomial, and the bivariate normal model.
One important distinction made is between deci-
sions with an internal and an external criterion. A

natural solution to the problem of reliability and
validity analysis of mastery decisions is to analyze
with a standardization of the Bayes risk (coefficient
delta). It is indicated how this analysis proceeds
and how, in a number of cases, it leads to coeffi-
cients already known from classical test theory. Fi-
nally, some new lines of research are suggested
along with other aspects of criterion-referenced test-
ing that can be approached from a decision-the-
oretic point of view.

With criterion-referenced tests, the test items can be conceived as a sample from a domain of
tasks covering a well-defined objective or competency, and the concern is ordinarily with the exam-
inee’s domain score. A domain score is the proportion of successes to be expected when an examinee
is administered the entire domain; formally, it is known as the relative generic true score (Lord &

Novick, 1968, sect. 11.2).
In the above conceptualization, test and criterion consist of the same type of tasks, and it can

therefore be stated that the test is referenced to an internal criterion. Other conceptualizations using
an internal criterion can be found in Cox and Graham (1966) and Wright and Stone (1979, chap. 5).
The present paper will also consider the use of decision models in applications in which an indepen-
dently measured or external criterion is employed for referencing a test. This implies that test and cri-
terion behavior are of a different type but that an empirical relation has been established that is
strong enough to support an interpretation of the former in terms of the latter.

It is important to observe that in criterion-referenced measurement, some notion of true or latent
score is always involved, whether an internal or external criterion is used. It is the continuum underly-
ing the test that is intended to be criterion referenced; the observed score is only used for assessing the
examinee’s position on this continuum and, thereby, his/her criterion behavior. In this paper this true
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score variable will be denoted by T and the observed score by X; the formal meaning of T will be de-
termined by the psychometric models that will be adopted to explain the observed test scores, X.

One of the principal uses of criterion-referenced measurement is in the assignment of students to
mastery states. Typically, this involves the selection of a cutoff score on the criterion-referenced scale
T. Students with true scores exceeding this cutoff score are considered masters; they are deemed to
have reached the learning objectives and may proceed with the next unit or task. Students below this
cutoff score are the nonmasters; usually, they are provided with extra learning time or remedial
teaching.

In order to be able to classify students as masters and nonmasters, the presence of a carefully
chosen cutoff score is not sufficient. All that is known about students is their observed test score, X,
while the cutoff score is set on the true score scale, T. In many practical situations, it has been com-
mon to ignore this difference and to compare observed scores directly with the true cutoff score. This
amounts, however, to assuming that the test is free of measurement error, a situation that will hardly
be met in educational measurement. When domain sampling is used, this practice is still less realistic.
Then, not only measurement error but also sampling error is involved.

A better solution, therefore, is to introduce a separate cutoff score on the test and to use this for

assigning examinees to mastery states. Let c denote the cutoff score on the test score scale and d the
cutoff score on the true score scale, and suppose that a psychometric model is available relating X to
T (test score to true score). A student is a true master if his/her T score exceeds T = d and is a non-
master otherwise; but mastery is declared if X > c and nonmastery if X < c. The problem is to choose
a value of c that is optimal in some sense for a given value of d.

The purpose of this paper is to show that the above problem can be handled effectively within a
decision-theoretic framework and to review applications of this framework. Moreover, it will be
shown how decision-oriented concepts can be used to evaluate mastery decisions and to solve other
criterion-referenced testing problems. Finally, attention is called to the fact that when applied in ob-
jectives-based programs, criterion-referenced tests are the endpoint of several alternative instruction-
al routes (treatments) and constitute the &dquo;criteria&dquo; against which the treatment-assignment proced-
ure is to be evaluated. Decision models can be used to optimize these procedures as well.

Before elaborating on these points, however, it is emphasized that in what follows two different
cutoff scores are involved-the true and the observed cutoff scores. Decision theory can not be used to
set the former; it can be used to set the latter after a solution to the former has been obtained. To
those not accustomed to the concepts of measurement and sampling error, this distinction might
seem a bit confusing; and decision-theoretic outcomes such as &dquo;if you have adopted a true cutoff
score of 16 out of 20 items correct, then you must choose a cutoff score on your test equal to 19 items
correct&dquo; might seem paradoxical. Nevertheless, the use of decision theory is a rational way of coping
with unreliable measurements and can, as will be illustrated later, lead to an improvement in assign-
ing examinees to mastery states. Though this has not always been seen (e.g., Glass, 1978), the deci-
sion-theoretic approach to criterion-referenced testing is thus no standard-setting technique but a
technique to minimize the consequences of measurement and sampling error, which, preferably as a
part of the normal routine, ought to follow each time a standard-setting technique is used.

Cdterion-Referenced Testing as a Decision-Theoretic Problem

Decision theory combines information about true states and utilities of outcomes into opti-
mal decisions. Since decision theory is especially concerned with information in the form of data with
a random error component, it can also be stated that decision theory combines probability and utility
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into optimal decisions. In criterion-referenced testing, the former is provided by a psychometric
model; for the latter a variety of techniques are available, all of which somehow scale the value of the
decision outcomes to the decision-maker.

Some Deciston-Theoretic Notions

There are several excellent introductions to decision theory. A game-theoretic and applied con-
text is offered in Luce and Raiffa (1957) and Raiffa and Schlaifer (1961, part 1). Statistical treatments
are given in, for example, Degroot (1970), Ferguson (1967), and Lindgren (1976, chap. 8). Yamane
(1973, chaps. 10 and 17) has presented a very short and simple exposition. This paper introduces only
a few concepts and principles needed for formulating criterion-referenced testing as a decision-the-
oretic problem, thereby sacrificing some mathematical precision in order to enhance understanding.

A central concept in decision theory is the state space. It is the set of all possible states of nature
with respect to which actions are to be taken. It will be represented by Q ; and its individual states by
the numerical parameter 0 or, when S2 is discrete, by e,. The set of actions available to the decision-
maker is called the action space. This will be denoted by A ; and the individual actions, by a or aj.
Suppose that the decision-maker is able to evaluate on a numerical scale the consequences of taking
action a while the true state of nature is 0. This numerical evaluation is what is technically known as
loss. The function mapping points in S2 x A to the loss scale L is the loss function 1(0, a). When A is
discrete, a convenient notation is 1/0).~

If the state of nature were known, the most obvious thing would be to choose actions with min-
imal loss. In that case, decision theory would be trivial and would hardly contribute anything. The
point is, however, that in most instances the true state of nature is unknown and there is only the dis-
posal of fallible information or data. For the purpose of this paper, it will be assumed that informa-
tion is available in the form of an observed value z of a random variable Z representing the outcome of
some experiment or measurement. Z will be considered to be related to the state of nature by a proba-
bility model with parameter 0, n(z;0). The stochastic character of Z causes the making of decision er-
rors and, generally, the choosing of actions that yield outcomes with larger loss than when the true
state of nature had been known. Decision theory is concerned with techniques for selecting decision
rules that are, nevertheless, as optimal as possible and with the study of their properties.

A nonrandomized decision rule is a prescription specifying for each possible value z of Z what ac-
tion has to be taken. In mathematical terms, it is a mapping from Z to the action space A : A = d(Z). It
should be noted that this definition of A as a function of the random variable Z implies not only that
the actions are taken at random but also that loss is random: l(9,d(Z)). To solve the problem of select-
ing optimal decision rules out of the large (possibly even infinite) collection of mappings to be defined
from Z to A, the risk function or expected loss is defined as

where the expectation is taken using ~r~(z;9), i.e., for a given value of 9 across Z. The importance of
Equation 1 lies in the fact that it shows the loss that can be expected when decision rule d is used and
nature is in state 0.

’In this paper only the loss terminology will be used, and henceforth terms such as utility, opportunity loss, and regret will be ig-
nored. These terms are used sometimes with and sometimes without a fundamental difference in meaning. (For a coherent set
of definitions, see Lindgren, 1976, chap. 8.)
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There are two usual criteria for optimizing decision rules: the minimax criterion and the Bayes
risk. In the absence of knowledge concerning which state of nature is true, the minimax principle as-
sumes that it is best to prepare for the worst and to establish the maximum risk for each possible deci-
sion rule:

Once these are obtained, the best decision rule is the rule minimizing Equation 2. This is the rule d’

obeying

Unlike minimax rules, the Bayes principle supposes that some prior knowledge about the state of
nature is available and that a probability distribution (the &dquo;prior&dquo;) can be chosen representing this
knowledge. Now 0 is a (continuous) random variable, and its distribution will be denoted by the prob-
ability density function ~.d.f.) co(9). The Bayes risk is defined as the expected value of R(E),6) using
w(e)

A Bayes rule with respect to co(8) is a rule minimizing this Bayes risk:

A minimax rule can be conceived as a rule that minimizes Equation 4 as well, but under the restric-
tion that co(9) is a least favorable element of the class of priors (e.g., Ferguson, 1967, sect. 1.6). Bayes
rules are, in general, less pessimistic; they can be based on any prior representing the available knowl-
edge about nature. In this paper, only nonrandomized Bayes rules will be considered further. The

possibility of randomized rules will be ignored, since these are expected to lead to acceptability prob-
lems when applied in educational settings, and it can be established that for each randomized rule
there exists a nonrandomized Bayes rule that is at least as good (Ferguson, 1967, p. 43).

Monotone Rules

Defining a Bayes rule does not imply that its form is known and the actual minimization involved
in Equation 5 may be laborious, especially when the class of all possible rules is large. It would there-
fore be helpful if this class of rules can be reduced beforehand to some, hopefully small, subclass of
rules among which the rule being sought is to be found. It is here that the notion of an essentially
complete class of decision rules comes in handy. An essentially complete class, for a given decision

problem, is defined as a class containing rules that are as good as (and for some states of nature pos-
sibly even better than) the rules outside this class (see Ferguson, 1967, p. 55).

Even if it were allowed that attention be restricted to some essentially complete subclass of rules,
it would also be helpful if all rules in this subclass had a known form so that analytic means could be
used to select an optimal rule. This may save the work of first computing Equation 4 for all rules and
then choosing a rule with the minimum value. An important class of rules suited for analytical manip-
ulation is that of monotone rules. For a two-action problem, and in view of the application to cri-
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terion-referenced testing, attention will be restricted to this type of problem: A (nonrandomized) deci-
sion rule has a monotone form if there is a value z* of Z so that action ao is taken (6(z) = ao) whenever
Z < z*, and a, otherwise (6(z) ==;a,). (A discussion of monotone multiple-decision problems is to be
found in Ferguson, 1967, sect. 6.1, and Lindgren, 1976, sect. 8.3.5.).

There is a theorem in decision theory stating that the class of monotone decision rules is essen-
tially complete if two conditions are met. The first is that the distribution of Z, given 0=0, n(z)6), has
a monotone likelihood ratio; the second, that the loss function is monotone (Ferguson, 1967, sect. 6.1;
Karlin & Rubin, 1956). Fortunately, there is no need to bother about the condition of monotone
likelihood ratio: This condition is fulfilled for the wide class of distributions known as the exponential
family, and the distributions generally used in criterion-referenced testing belong to this family. In a
two-action problem, the loss function is monotone if there exists one point 0 = 80 for which 10(8) and
li(0) possess an intersection.

Monotone decision problems entail a special form of the Bayes risk. From Equations 1 and 4, re-
calling that 6(z) = ao for Z < z * and 6(z) = a 1 for Z > z *, and taking Z to be discrete, it follows that

This form shows that the Bayes risk may be interpreted as the expected loss of the decision procedure
with respect to the bivariate distribution of (Z,0). The Bayes risk can also be written as

where co(z) and n(8Iz) are now the probability (density) function (P.(d.)f.) of Z and 0 given Z = z, re-
spectively, and it is assumed that the interchange of integration and summation is allowed. The im-
portance of Equation 7 lies in the fact that the bracketed factor in both terms is the conditional ex-
pected loss, given Z = z. It is also called the posterior expected loss, because it can be viewed as the ex-
pected loss once an observation Z = z has been made.

Note how Equation 7 suggests a way of minimizing the Bayes risk: As c~(z) is a nonnegative con-
stant for each value z of Z, the Bayes risk is minimal if for each Z = z, an action with smallest pos-
terior expected loss is chosen. (The monotonicity assumed in Equation 7 implies that this is action ao
up to some value z*, and al thereafter.) This minimization, using the posterior expected loss for each
Z = z, is called the extensive form of analysis, whereas techniques directly dealing with the Bayes risk
are known as the normal form of analysis.

Some authors (e.g., Davis, Hickman, & Novick, 1973) have claimed that the extensive form of

analysis offers computational advantages and should be preferred over the normal form. Undoubted-
ly this is true when only one decision is to be made and the &dquo;data&dquo; are already available in the form of
one observed value z of Z. It should be understood that this is the situation always referred to by
authors with a subjectivistic interpretation of prior distributions; and the above authors are consid-
ered to adhere to this interpretation. When a series of decisions are to be made and several, if not all
possible, values of Z are collected, the situation changes somewhat. Then it may be prudent to estab-
lish optimal decision rules, and, in doing so, not to compute posterior expected losses for each Z = z
but to use analytic means. The distinction between a single decision and a series of decisions is thus
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closely related to the interpretation of the prior distribution, an issue which will be further considered
below.

Criterion-Referenced Testing Formalized

Criterion-referenced testing can now be formulated as a decision-theoretic problem. In criterion-
referenced testing, the state space consists of two possible states, Q = {M,M}, obtained by dichot-
omizing the criterion-referenced (true-score) scale underlying the test by a cutoff score d. Theoret-
ically, it is attractive to define a true score scale, T, which is independent of test length and ranges
from 0 to 1. In order to arrive at simple results, it will, however, be assumed that T runs from 0 to n
(number of items in the test) and that the nonmastery and mastery states are defined as M = [O,d) and
M = [d,n]. The action space also consists of two possible states, A = (ao,a i ), where ao is the action of
granting status M to a student, and al status M. For each student a test score is available. Although,
in principle, a great variety of statistics defined on the vector of item responses can be chosen as a test
score, only the number-correct score, X, will be considered in this paper. Thus, in criterion-referenced
testing problems, the observed score X is an interpretation of Z from the previous sections; and the
true score T, of O. It will further be assumed that a psychometric model provides the probability func-
tion relating the observed values of X to a given value T = T. A new notation,,~x~T), will be used for
this probability density to indicate that it is an interpretation of the probability model relating data to
true state in the general decision model from the previous sections. The same will be done for the
p.(d.)f.’s to be defined below. Finally, linking up with common practice in criterion-referenced test-
ing, the decision rule is taken to be monotone,

The optimal decision rule d*-or, equivalently, the optimal cutoff score c*-to be identified is the
value of c minimizing the expected loss with respect to (X, T),

where ~(r), A(jc), and p(T[x) are the p. (d. g. of T, X, and T given X =x, respectively, and 1, (T), j = 0, 1,
is the loss function (compare Equations 6 and 7).

The interpretation of the prior distribution g(T) in this paper will not be the personal or subjective
probability interpretation that g(T) represents the decision-maker’s belief in the true score value T of
one given person, as is the usual interpretation in Bayesian decision theory. The empirical Bayes ap-
proach introduced by Robbins (1956, 1964) will instead be adopted. In this approach it is assumed
that the same decision occurs repeatedly without a change in n(z 10) and co(e). Each time a value of Z is
observed, thus generating a sequence (Z,, Z7., .... , ZN) that can be used for estimating c.o(8). For the
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criterion-referenced testing problem this means that g(T) is interpreted as the true score distribution
for some population of students. The sequence (X,, ~2,..., X,) is the vector of test scores of a sample
of N students from this population observed prior to the moment that the optimal cutoff score on the
test is established; it is used for estimating the parameters of the true score distribution, g(T), which
has a form specified by the psychometric model. Once the optimal cutoff score, c*, has been es-
timated, it can be employed for making mastery decisions, not only for the first N students but also
for every following student from this population. It seems natural to use subsequent observations of X
for improving the estimates of g(T) and c* as well. (For fully Bayesian approaches relevant to cri-
terion-referenced testing, refer to Hambleton, Hutten, & Swaminathan, 1976; Hambleton & Novick,
1973; Lewis, Wang, & Novick, 1975; Novick, Lewis, & Jackson, 1973; Swaminathan, Hambleton, &

Algina, 1975.)

Pmbability Models Used in Criterion-Referenced Testing

In this section, some probability models used in criterion-referenced testing will be reviewed.
These models are the classical test model, the beta-binomial model, and the bivariate normal model.
For the first and the last model, the case of an internal and of a directly measured external criterion
will be considered. The beta-binomial model seems most useful with an internal criterion, e.g., when

sampling from an item domain may be assumed. For notational convenience, &dquo;T&dquo; will be used as a

generic symbol for the true score underlying the test; the formal meaning of T is, however, different
for each model.

Classical Test Model

In the classical test model the true score for a fixed person is defined as the expectation of his/her
observed score across replications, and the error of measurement is the deviation of his/her observed
score from this expectation. Usually, the model is formulated not for a fixed person but for a popula-
tion of persons. In that case the true score, T, and the error of measurement are considered random

variables, being random across, respectively, persons and replications. (For an introduction to the
classical test model, see Lord & Novick, 1968.)

A result from the classical model needed in what follows is the linear regression of T on X. From
classical test theory it can be shown that when the regression function of T on x may be assumed to be
linear, it is equal to

JJx and gxx, being the expected value and reliability coefficient of X (Lord & Novick, 1968, p. 65).
Equation 10 is known as Kelley’s regression line.

Having an external and directly measured criterion, say =, concern will not be with the regression
of T but of - on X. Then, under the assumption of a linear regression function,

where g and a represent expected values and standard deviations and gxz is the correlation coefficient
between X and :::.

It should be noted that apart from finite variances, the classical model does not involve distribu-
tional assumptions.
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Beta-Binomial Model .

When the process of a fixed student answering test items can be viewed as a sequence of Bernoulli
trials-that is, trials (1) that have two possible outcomes, success and failure; (2) that have a proba-
bility of success constant for all trials; and (3) that are stochastically independent-the beta-binomial
model seems to be a natural choice. The number of successes in a Bernoulli process follows the bi-

nomial distribution; hence, the conditional probability function of X given T is

Because of its flexible form and the ease with which it can be combined with Equation 12, the in-
complete beta function ratio is often chosen as the p. d.f. of T,

where B(v,w-n+1) = fJ ,...-l(1-TrndT is the complete beta function (e.g., Johnson & Kotz, 1970,
chap. 24), v > 0, and w > n-1.

It remains to indicate why the parameter T in Equation 12 can be interpreted as a true score
value. A possible explanation is that domain sampling is assumed and that T is interpreted as the (ex-
pected) proportion a person should answer correctly when the entire domain is administered. Another
explanation is that no item sampling is assumed but, as is usual in latent trait theory, that the item
responses are considered the outcome of a stochastic process and that the probability of success is
equal to T for all items.

From Equation 12 and Equation 13, it follows that

which is known as the negative hypergeometric distribution but also as the beta-binomial or the Polya
distribution. Keats and Lord (1962) have shown that simple moment estimators for v and w can be de-
rived that are based onV,, and the KR-21 reliability coefficient, and they have suggested that the fit of
the test data to the beta-binomial model be checked by estimating Equation 14 and comparing it with
the empirical observed score distribution. Proceeding in this way, they found satisfactory results for a
wide range of differently skewed test score distributions. Model tests like the Keats-Lord test are only
valid when the empirical distribution has been obtained independently of the data set used to esti-
mate Equation 14.

For future reference, note that the cumulative distribution function of T given X = x is known as
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Since, for integer values of v and w,

where~(.jc0 is the binomial probability function (Johnson & Kotz, 1969, sect. 3.8), Equation 15 can be
obtained via a cumulative binomial table. Normal approximations are also available (Johnson &

Kotz, 1970, sect. 24.6).
The conditions imposed on item difficulty by the beta-binomial test model are different for a

deterministic and a stochastic conception of item responses. For both conceptions equal item diffi-
culty is required, but this can be avoided in the case of the deterministic conception by giving separate
samples to each person (van der Linden, 1979).

Bivariate Normal Model

Analogous to practice in (predictive) validity studies, the bivariate normal model sometimes
seems a suitable approximation when relating test scores to an external criterion. Occasionally, this
model is also used as the limiting form of the beta-binomial model after a variance-stabilizing trans-
formation to the binomial parameter has been applied.

The model simply says that the distribution of (X, =-) follows the bivariate normal. Assuming that
the X and = scores are in their standardized form, this yields for the cumulative distribution function
(c. d. f. ) of =, given X = x,

where q n ex= and I is a realization of =. In the case of an internal criterion, the c.d.f. of T, given X =
x, has the same form, but now Q = fl3 and I must be replaced by T. Note that the choice of the
bivariate normal model involves an idealization, since it takes the number-correct score, X, as contin-
uous.

Applications of Decision Theory to Criterion-Referenced Testing

The use of decision theory for optimizing sequences of mastery decisions will be considered in this
section. In doing so, threshold, linear, and nomal loss functions will be considered. Although
threshold loss functions have received the most attention, there may be many instances in which con-
tinuous loss functions, such as the linear and the normal ogive function, are to be preferred.

Threshold Loss

When a threshold loss function is chosen, it is assumed that the &dquo;seriousness&dquo; of all possible con-
sequences of the decisions can be summarized by four constants, one for each of the four possible out-
comes :
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Threshold loss functions are often represented in fourfold tables; however, the author prefers a
graphical form as in Figure 1, with one display forX < c and X >, c, showing a discontinuity at T = d.

First, an optimal cutoff score will be derived for unspecified distributions, only assuming a mono-
tone likelihood ratio for the distribution of X given T with respect to X, and then solutions for dif-
ferent probability models will be discussed.

Figure 1
An Example of a Threshold Loss Function

For a threshold loss function, the Bayes risk given in Equation 9 will take the form
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For convenience, and without loss of generality, rescale Equation 18 and choose 1~ = 111 = 0, as-
suming positive values for lio and lo, to satisfy the condition of monotonicity.

Now

where P(dlx) = f p(TIx)dT. Thus, B(c) consists of the sum of two expected losses, one for the false
positive and the other for the false negative decisions. Adding terms to the first sum, and subtracting
these from the second one,

The solution now depends only on the second term, for the first term is independent of c. Since lio +
%1 > 0, h(x) > 0, and assuming that P(dlx) is decreasing in x, B(c) is minimal for the smallest value of c
for which (lio + Iol)P(dlx) -110 is negative or, equivalently, for which

holds. (For the sake of completeness, note that this solution may not be unique when h(x) = 0 for some
adjacent values of x, but this possibility will be further ignored.)

Since P(dlx) is not observable, a psychometric model enabling its estimation is needed. If the
beta-binomial model applies, Equation 15 can be used for this purpose. After its parameters have
been estimated, a cumulative binomial table can be used to solve Equation 22 via Equation 16.

In case the bivariate normal distribution can be assumed, X is continuous and Equation 22 must
be replaced by an equality. The optimal cutoff score on X, c*, is obtained via Equation 17 as
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z being the value found when entering a cumulative normal table with the right-hand side of Equa-
tion 22 and, dependent on whether an internal or external criterion is used, Q = flg or Q = eX=.

It is also possible to use Lord’s Method 20, which is almost an entirely empirical method, to assess
the distribution of (X,T) (Lord, 1969). Once this has been done, P(dlx) can be checked for
monotonicity and used to solve Equation 22. When the criterion is external, a sample distribution of
(X,=) can be used for this purpose. Although both methods seem to be attractive because they involve
few assumptions, they are not recommended unless the sample sizes are large enough to guarantee
stable solutions. Moreover, the condition of monotonicity will not be satisfied in many cases, so that
extra assumptions, for example, to smooth P(dlx), may be needed after all. Without additional distri-
butional assumptions, no solutions to Equation 22 can be obtained for the classical test model.

Several authors have contributed to the theory of criterion-referenced testing with threshold loss
functions. Hambleton and Novick (1973) have shown, with nonempirical Bayesian terminology, that
decisions are optimal that grant mastery status to examinees with a likelihood ratio P(dlx)/[l -
P(d x)] smaller than the loss ratio 110/101’ It is easy to see that for criterion-referenced testing problems
in which the decision rule may be considered to be monotone, this leads to the optimal cutoff score
derived above. Hambleton and Novick’s (1973) procedure reminds us that no absolute losses need be
specified but that their ratio is sufficient. This can also be seen from Equation 22, by dividing the
right-hand side by 101 or Go.

To the author’s knowledge, Alf and Dorfman (1967) were the first to use the bivariate normal
model with threshold loss and to arrive at solution Equation 23. Their context, however, was aptitude
testing with a future criterion measure.

Huynh (1976) has given results for the beta-binomial model corresponding with what has been de-
rived above, but his approach was quite different. Although he introduced an external criterion, he
defined his loss function on the true score continuum underlying the test. Only after assuming the re-
lation between true score and the external criterion as a 0-1 function (students have a probability of
0 for achieving some specified level of performance on the external criterion up to some true score
values, and equal to 1 thereafter), was he able to arrive at Equation 22.

Mellenbergh, Koppelaar, and van der Linden (1977) conducted a case study in which a threshold
loss function and the beta-binomial model were used to optimize the decision rule for a number of cri-
terion-referenced tests. Table 1 gives the estimated optimal cutoff scores 6* as well as the cutoff
scores c actually used in the classroom for five tests from their study. Two more tests were analyzed,
but these did not show a satisfactory fit to the model. The computer program used in this study (Kop-
pelaar, van der Linden, & Mellenbergh, 1977) also produces estimates of the proportions of (misklas-
sifications to be expected when a cutoff score has been chosen, obtained by integrating and summat-
ing the product of Equation 12 and an estimate of Equation 13 over the proper ranges of T and X.
Table 1 gives these estimated proportions for the cutoff scores actually used in the classroom.

Finally, Lindgren (1976, sect. 8.4.4) has shown, in the context of hypothesis testing, that Equation
22 is the solution to the more general problem of testing any two composite hypotheses.

Linear Loss

As can be seen in Figure 1, the threshold loss function shows a &dquo;threshold.&dquo; It can be argued that
in many situations this discontinuity at T = d is an unrealistic representation of the loss actually in-
curred. Moreover, the threshold loss function assumes that for examinees to the left or to the right of
d, the loss is constant, no matter how large their distance from d is, and this also seems unrealistic in

many cases. In view of this, van der Linden and Mellenbergh (1977) proposed a linear loss function:
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Figure 2 displays an example of Equation 24. For the nonmastery decision the loss is increasing in T,
while it is decreasing for the mastery decision; this seems typical of many testing situations. For
further interpretation of Equation 24 and its parameters, refer to van der Linden and Mellenbergh
(1977).

Substituting Equation 24 in Equation 9, and using E(Tlx) = J§ yp(TkXiT and J§p(T]xXiT =1, it fol-
lows that

The first sum being a constant, Equation 25 is minimal if the second sum is maximal. Since (bo + b1)
> 0, h(x) > 0, and assuming that E(T~x) is increasing in x, B(c) is minimal if c is put equal to the small-
est value of x for which
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Table 1

Results for Five Tests from the Beta-Binomial

Model with Threshold Loss ~OO~II~* Ioi’=llo =1 1

is positive. (The possibility of nonunique solutions is again ignored.)
Analogous to the previous case, a model is needed to specify the regression function E(T[X). A

straightforward procedure is to adopt the classical test model with linear regression, that is, to substi-
tute Kelley’s regression line Equation 10 into Equation 26. This yields a value for c* equal to the
smallest integer larger than

(van der Linden & Mellenbergh, 1977). Kelley’s regression line is also implied by the bivariate normal
and the beta-binomial model (in the latter case with KR-21 replacing gxx, ; Lord & Novick, 1968, sect.
23.8), so Equation 27 is the solution for these models as well.

In the event of an external criterion, the regression line shown in Equation 11 is the proper choice,
and Equation 27 is to be replaced by

Just as with the threshold loss model, E(Tlx) and E(Ek) may be estimated using Lord’s Method 20
or an empirical distribution of (X,~; but, again, these procedures should only be used with large sam-
ples, or, better still, to check if assumptions such as Equations 10 and 11 prove to be reasonable.
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Figure 2
An Example of a Linear Loss Function

Putting both loss lines in Equation 24 equal to each other, it appears that the T coordinate of the
intersection is equal to d - (ao - a1)/(bo + b1). Therefore, the solutions given by Equation 27 can be
viewed as the first integer value to the right of the point yielding d - (ao - a1)/(bo + b1) as &dquo;prediction&dquo;
under the linear regression model. This fact, which holds for any regression model being increasing in
x, is due to the elegant way the linear expectation operator and loss function combine in Equation 25.

When ao = a1 = a, both loss lines intersect at T = d and an interesting case arises. Then, all loss
function parameters vanish from Equations 27 and 28, and, e.g., Equation 27 takes the form

The practical meaning of this will be considered later in this paper. For an empirical illustration of
the use of the linear loss, refer to van der Linden and Mellenbergh (1977).

Normal Ogive Loss

Another way to meet the objections to threshold loss has been proposed by Novick and Lindley
(1978). They have recommended the choice of (de)cumulative normal distribution functions, which
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not only have realistic properties but also can be combined with a normal model for the test data.
For criterion-referenced testing, the natural choice seems to be

with 4) denoting the standardized normal distribution function; and pj and oj J = 0, 1), their location
and scale parameters. Figure 3 depicts an example showing how the loss increases and decreases in T
when deciding for nonmastery and mastery, respectively.

Figure 3
An Example of a Normal Ogive Loss Function

Following Novick and Lindley, suppose that T given x is normally distributed with linear regres-
sion function a + ~3x, variance a2, and homoscedasticity. From Equations 9 and 30, B(c) is equal to
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But, since in general

(which follows when realizing that the left-hand side is the probability of the difference between two
independent normally distributed random variables with different location and scale), it applies that

Thus,

Now c* is the smallest value of x for which

or
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is larger than zero. This is the first integer larger than

with g* = 2jwjgj/£jwj and wj= (01 + 0/’r1/2 (Novick & Lindley, 1978).
For an internal criterion, the linear regression function is Kelley’s line, so that a and P follow from

Equation 10, whereas for an external criterion they follow from Equation 11.
In Equation 30, ~, governs the location of the normal ogive on the true score scale; and 0,, its

sensitivity to changes in true score value in the neighborhood of the location. Maximum sensitivity is
attained for or.oo. If also Ilj = d, then Equation 30 approaches the threshold loss function with loo =

1,1 = 0 and lot = lie = 1. No approach to threshold loss with different values for 101 and lio is possible,
unless different transformations on both parts of Equation 30 are applied.

Result Equation 32 can be related to the results derived under linear loss. Substituting Kelley’s
regression line in Equation 32, that is, putting a = (1 - Qxx’)1lx and (3 = Q&dquo;~~, it appears that Equation
32 is equal to

Thus, Il* and the intersection of both linear loss lines d - (ao - al)l(bo + bl) play an identical part in

Equations 27 and 32 and 33. It is also interesting to note that when ~0=~1, the weights w, cancel out
and Il* = 1-10 = Ill’ When JJo = III = d, which seems to be a natural choice in criterion-referenced testing,
solution Equations 32 and 33 reduce to the ordinary regression solution in Equation 29.

The Regresslon from the Mean Effect

In the previous section, the optimal cutoff scores were obtained by using the regression of T on x
the other way around. In Equation 29, for example, take the true cutoff score d, go against the regres-
sion of T on x, and next choose the first integer value to the right. In Equations 27 and 32, T values
different from d are chosen.

Ignoring the discrete character of c* at this point, it follows from Equation 29 that (d - MT) = (c*
- Ilx)exx&dquo; Since according to classical test theory Ilx = /JT, and in practice e,~,~~< 1, it follows that c* is
always further away from gx = pT than d. For a fixed value of d this implies that the average perform-
ance of a population of students, gx = ~r, and c* are related negatively: The higher the average per-
formance, the lower the optimal cutoff score. Hard-working populations are rewarded by low cutoff
scores, while less hard-working populations will just be penalized and will be confronted with high
cutoff scores. This is the opposite of what happens when norm-referenced standards are used. They
vary up and down with the performances of the examinees. The behavior of c*, which at first glance
may seem counterintuitive, thus has to do with the fact that the presence of Q., in the denominator of

Equation 29 &dquo;attenuates&dquo; the difference d - PT and causes what may be called a regression from the
mean effect.

A comparable effect has been noted for the case of threshold loss by Mellenbergh, Koppelaar,
and van der Linden (1977). The Bayes risk in Equation 22 is a linear combination of two joint proba-
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bilities-Prob {T > d, X < c} and Prob {T < d, X >, c}-with lio and 101 as weights. If the performances
of students go up, for example, then the former approaches Prob fX < c} and the latter zero. Thus,
the Bayes risk will tend to be minimal for a low value of c.

Internal and External Optimality of Mastery Decisions

In the preceding sections the problem was how to find cutoff scores on the test that are optimal
for a given true cutoff score, loss function, and psychometric model. A different aspect of the cri-
terion-referenced testing problem has been addressed by Mellenbergh and van der Linden (1979) and
van der Linden and Mellenbergh (1978). Their problem was not to optimize mastery decisions but to
assess how optimal they were once some cutoff score had been chosen.

As a basis for deriving an index for the optimality of the decision procedure, they chose the Bayes
risk. This is negatively related to the quality of the decision procedure-the lower the Bayes risk, the
better the procedure-and may take values outside the standard interval [0,1], which is the usual in-
terval for coefficients for tests. Therefore, a rescaling was suggested:

In this coefficient d, B is the Bayes risk as defined in Equation 4, and Bn and B, are two reference
points. B, is the Bayes risk when complete information about the true scores is available; and B&dquo;,
when no information is available. The former (hypothetical) situation was formalized as a functional
relation between X and T mapping the test values 0, 1, ... , n into the true score space. This function
was left unspecified; it was only considered to be increasing in x. The situation of no information was
represented by the assumption that X and T were distributed independently with p. (d.)f. k(x,T) given
by

For threshold loss function Equation 18, with loo = 111 = 0 and 101 = lio =1, the Bayes risk given in
Equation 19 reduces to

where pa, and plo are the probabilities of a false positive and negative decision, respectively. From
Equation 35, it can be seen that

with, . Following van der Linden and Mellenbergh (1978),
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Substituting Equations 36, 37, and 38 into Equation 34, it appears that d is equal to the well-known
coefficient H of Loevinger:

In the case of an internal criterion and test scores fitting the beta-binomial model, the propor-
tions p, in Equation 39 can be estimated using the computer program by Koppelaar, van der Linden,
and Mellenbergh (1977). If the scores do not fit, a less restrictive model such as Lord’s (1969) Method
20 can be tried. When an external criterion is present, the proportions in Equation 39 can be es-
timated from an empirical distribution of (X,c). Mokken (1971, sect. 4.3) gives approximate sampling
distributions of Loevinger’s H for the null as well as the nonnull case. These can be used for testing
hypotheses regarding Equation 39 or establishing confidence intervals.

Equation 25 gives the Bayes risk for the linear loss function considered earlier in this paper. As-
sume that a model with linear regression holds; E(Tlx) in Equation 25 can therefore be considered to
be Kelley’s regression line (see Equation 10). Since stochastic independence implies linear stochastic
independence, Kelley’s line is, under condition Equation 35, equal to

From van der Linden and Mellenbergh (1978) it can be seen that under functional dependency be-
tween X and T, Equation 10 reduces to

Substituting Equations 40 and 41 into Equation 25 gives Bn and Be, respectively, and substituting
these, in turn, into Equation 34 shows that

Similarly, it can be verified that for an external criterion

(Mellenbergh & van der Linden, 1979). Thus, when test models with linear regression functions and
loss functions in the form given by Equation 24 are an appropriate choice, the well-known reliability
and validity coefficient from classical test theory can be viewed as a standardization of the Bayes risk
incurred in the decision procedure and can serve as suitable coefficients for the optimality of the deci-
sion rule.

The standardization in Equation 38 guarantees that d will be in the interval [0,1] whenever B is
between B,, and B&dquo;. The above results show that this condition holds for threshold and linear loss

functions. Wilcox (1978) has given a standardization using the greatest lower and least upper bound
of the Bayes risk for which this condition generally holds. De Gruijter (1978) has used a standardiza-
tion which, for a linear loss function, resulted in a coefficient to be interpreted as the point-biserial
analogue of Livingston’s (1972) criterion-referenced reliability coefficient.
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New Lines of Research

There are two new lines of psychometric research arising from the application of decision theory
to criterion-referenced test data. The first is the extension of the decision-theoretic point of view to
other aspects of criterion-referenced testing than optimizing mastery decisions. The second is re-
search into appropriate loss functions.

The preceding section, which dealt with the assessment of decision optimality, is an example of
the former line of research. What is new about coefficient d is that it gives the Bayes risk a central
place in the analysis of test-based decisions, &dquo;elbowing out&dquo; the reliability and consistency coeffi-
cients that have taken this place so far. Reliability coefficients are of restricted meaning, only appli-
cable when measurements are considered and squared error loss is the appropriate choice. When de-
cisions are considered, however, and other loss functions seem more realistic, the analyses ought to be
based on the Bayes risk. This point of view is being developed for several other technical problems as-
sociated with criterion-referenced tests, such as test score equating, item analysis, and test length
determination.

Another example can be found in the issue of optimizing treatment assignment in view of future
mastery decisions. Many programs applying criterion-referenced tests are organized according to
principles of individualized instruction. These programs typically consist of a series of small units or
modules in which the students are allowed to take different routes but all are expected to pass the
same end-of-unit test. If the assignment of students to different instructional routes or treatments is
based on aptitude testing, decision theory can be used to optimize treatment assignment as well and
to incorporate it within the framework of criterion-referenced testing technology (van der Linden,
1981).

The second line is research into appropriate loss functions for criterion-referenced testing. Sev-
eral techniques for scaling losses are available. Most texts on decision theory contain a chapter on
utility theory in which lottery methods are proposed for this purpose (see Luce & Raiffa, 1957, chap.
2); but, in principle, any psychological scaling method can be used. The point is, however, that these
techniques do not automatically lead to elegant loss functions and optimal cutoff scores. It may be
wise, therefore, to use these techniques not without a prior chosen mathematical form of the loss
function. This model should be realistic and fit not only the utilities of the decision-maker but also
the psychometric model needed to explain the test scores. in this respect, Novick and Lindley’s (1978)
plea for c.d.f.’s as loss functions that are the &dquo;natural conjugate&dquo; of the psychometric model is a most
important development.

Loss functions must also be as robust as possible with respect to the mastery decisions. Prefer-
ably, large differences in specifying the loss function should lead to small differences in the cutoff
score (or in the Bayes risk associated with the procedure). As indicated earlier, the linear loss function
(Equation 24) shows an interesting result when both parameters ao and ai can be considered equal to
each other. Then, Equation 28 is the optimal cutoff score. The practical meaning is that under the re-
striction ao = ah the linear loss function is maximally robust with respect to c*: For all possible values
of bo, bl, and a, c* assumes the same value. A comparable situation arises for normal ogive loss with
the restriction JAo = ~1 = d.

It should be noted that robustness of a loss function with respect to the optimal cutoff score is not
an &dquo;absolute&dquo; property, i.e., a property of the loss function alone, but something that arises by the
way loss function and test model combine into the Bayes risk. The same loss function may lead to ro-
bust results when combined with one model but may lose its properties when this model is replaced by
a model with different structure or parameter values. This is illustrated in Table 2 where the same
threshold loss function, with loss ratio Il = loi/l,o and loo = 111 = 0, was used in combination with the
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Table 2

Optimal Cutoff Scores for Varying Threshold Loss
with the Beta-Binomial Model and Emrick’s Model

beta-binomial model and with Emrick’s mastery testing model (Emrick, 1971). The first row shows a
result from the case study by Mellenbergh, Koppelaar, and van der Linden (1977) mentioned earlier
in this paper. The test was composed of 19 three-choice items that yielded parameter estimates for the
beta-binomial model equal to v = 14,47 and w = 21.31. For the loss ratio values in Table 2, the op-
timal cutoff score varies between 14 and 17. The second row is from a monte carlo experiment with
Emrick’s (1971) latent class model in which it was noted that from a certain test length, the optimal
cutoff score is rather insensitive to differences in loss ratio values (van der Linden, 1980). A 20-item test
with parameters a =.25, ~ = .75, and Jot = .70, yields, for the same loss ratio values, an optimal cutoff
score that is always equal to 10 with the exception of A = 3, where it is equal to 11.

Thus, loss functions must not only fit the decision-maker’s utilities but must also be easy to com-
bine with the psychometric model and must give rise to results that are maximally robust. More re-
search is needed to find functions and models meeting these requirements as simultaneously and as
satisfactorily as possible.

Conclusion

In this paper approaches to criterion-referenced testing based on a Neyman-Pearson approach
(e.g., Fhan6r, 1974; Kriewall, 1972; Millman, 1973; Wilcox, 1976) have been disregarded. In these
approaches an indifference zone instead of a true cutoff score is specified, and the cutoff score is
found testing the hypothesis that the student is at the lower bound against the hypothesis that he/she
is at the upper bound of this zone. Although these approaches do not involve loss functions and prior
probabilities, it can be shown that from a Bayesian point of view, they are suboptimal unless the deci-
sion-maker is willing to accept certain losses and prior probabilities (Lindgren, 1976, sect. 8.4.4).

Apart from the example in Table 2, latent class models for criterion-referenced testing (e.g.,
Besel, 1973; Emrick, 1971; Macready & Dayton, 1977) have also been disregarded. These models fol-
low a decision-theoretic approach but assume a latent class instead of a continuum conception of
mastery. An advantage of latent class models over the models in this paper may seem that there is no
need for setting a true cutoff score. By fitting a latent class model, nature indicates who is a master
and who is not, and all that is necessary to find an optimal cutoff score on the test is an appropriate
loss function.

It should be noted that, strictly speaking, there is no need for setting a true cutoff score in the
models in this paper. The threshold loss function Equation 18 may be set at other points than T = d
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or even at different points for X < c and X > c, and an optimal cutoff score can still be derived. The
linear loss function can be reparameterized into a function without d as a parameter. The normal
ogive function does not even contain d as a parameter though choosing go = ~i = d has been proposed.
The only reason not to do this is that it seems unreasonable when decision models are applied to im-
prove mastery decisions. Nevertheless, criterion-referenced testing without a true cutoff score is also
possible for the models in this paper, and in this respect there is no difference between state and con-
tinuum models for criterion-referenced testing.
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