
DECISION PROBLEMS CONCERNING PARALLEL PROG~NG 

J.A. Bergstra 

Institute of Applied Mathematics and Computer Science 

U~iversity of Leiden 

2300 R.A. Leiden Postbus 9512 Leiden the Netherlands 

ABSTRACT. A notion of a correct (= deadlock free) scheduling of 

several recursive processes using common resources is 

introduced. The existence of correct schedulings is scho- 

wn to be undecidable from recursive indices of the rele- 

vant processes, Further-more we isolate several cases 

where the mere existence of a correct scheduling does 

not imply the existence of a computable (recursive) cor- 

rect scheduling. 

INTRODUCTION 

A detailed account of (recursive) processes can be found in 

fl . To be self-contained, however, we include the basic defi- 

nitions. 

We ass1~me that LQ, question language and LA, answer langu- 

age, are two decidable languages. L ~ denotes the collection 

of finite strings of v~ords in L. 

1.1 Definition. The collection of prcess graphs w.r.t. LQ 

and L A is defined as follows: 

PG(LQ, L A) = LQ--7 L A 

If no oonfusion arises we use PG as an abbreviation. Words 

(sentenses) in LQ are seen as questions on which proces- 

ses give answers in L A. If P is the name of a process 

then we denote its Initial graph with P~. Further we main- 

tain a function ext which associates at any instant to all 

relevant process name their current graph (= extension). 

Let lq ¢ LQ. Then P(lq) denotes the answer of P o~ 

question lq. Formally P(lq) = I a = ext(P)(lq). After 

the answer has been given ext has been changed as follows: 

ext(P)new=~O-L~ • ext(P)(i~) 

In this way P remembers that it has been asked lq. 



135 

1.2 Definition. P is a recursive process if P6 is a re- 

cursive function, after coding of LQ and L A in the na- 

tural numbers. 

1.3 Notation. IP~ is the process with P~ =_~p. 
Here ~ p is the p-th (partial) recursive fumction. For 

this notation and for all other notations and resulth from 

recursion theory we refer to [2 I, 

1.4 In 1.5 we will fix LQ and L A suitable for the des- 

cription of parallel programming of sequential processes 

using common resources. To explaim the definition it is 

useful first to define the cooperation of a scheduling 

system(s.s.) and processes p1 ..pn. A s.s. for m pro- 

1.5 

cesses is a proces S 

follows: 

° o 

The cooperation of S 

with languages as 

L~ 

and 

-> 

P works as follows: START 

triggers S. It answers with (is, l~) ~or some i I ~ n. 

1 is given as a questlon~to ~ P ll. The answer Then lq 

2 ll a is given as a question ~o S. The next answer < i2,1 q 

of S question l~ for p 2 which in turn gives its 

answer back to S, and so on. 

Now we define LQ and L A. We assume that there are com- 

mon resources A1...A k. L A contains sublanguage L plus 

the following reserved words: 

words meaning 

request(i) P asks acces to resource A i 

(~or i ~ k) 

BLANK P made mo progress in its last step 

release(1) P releases resource A i 

LQ consists of reserved words only 

granted(i) I the request for A i is granted 

(for i ~k) I (by S) 

'"go on l evaluate theprocess one step 
t further 



~ 2  

1 .6  

136 

i) 

ii) 

iii) 

iv) 

RemarK. Note that the s.s. speaks to the cooperating 

processes in LQ end that the processes answer in L A. 

We have not yet specified in what way the resources are 

used. With an exception in 2.7 and 3.6. we will assu- 

me that there is no communication between the processes and 

the resources. 8o the Pi do not change the Aj. Pi has 

used Aj during the scheduling if Aj has been granted to 

Pi for some period. 

Definition. S is a correct scheduling for p1,...,pk if 

the cooperation between S and ~ satisfies the following 

propertle s: 

every pi is infinitely often on turn, 

every pi gives infinitely often an ams~er not equal 

to BLANK, 

at any stage in the cooperation every resource is gram- 

ted to at most one of the pi (which has not yet relea- 

sed it). 

every resource is °eventually released by all processes 

to which it has been granted. 

We write ECS(~) for: "there exists a correct scheduling 

for ~", and ERCS(P ~) for: "there exists a recursive cor- 

rect scheduling for P". 

~OI~TuE~ AND P~ESU~8 

We w i l l  d e f i n e  some c l a s s e s  o f  p rocesses and s t a t e  p rob lems 

concerning ECS(~) and ERCS(P-~) for P in these classes. 

The proofs are postponed till ~ 3. 

2.1 Definition. RCP is the collection of processes P over 

LQ amd L A which are recursive and satisfy ERCS(P). 

Motivation. This is the most general class we are inte- 

rested in. Clearly if P alone has no correct scheduling 

it is useless to consider its cooperation with other pro- 

cesses. 

2.2 Theorem. It is not possible to decide effectively 

ECS(p1,.. °,Pn) from indices Pl'''"Pn of p1...pm RCP. 

This theorem shows that if we are going to run p1...pn 

in parallel we must have some strong information on befo- 

rehaud indicating that this is possible. We will then 

consider the following general problem for a class K of 

processes. 



137 

GP : Does ECS(~) imply ERCS(7) for ~ e K ? 

The motivation for GP is of course that we are not in- 

terested in the existence of a correct scheduling but in 

her possibility to generate such a scheduling effectively. 

2.3 Theorem. in RCP the answer on GP in no. 

We denote an initial se~emt of a cooperatlqn by s. We 

define the predicate EP(s) as follows: EP(s) ~ "there 

exists a correct schedulim for ~ which extends m". 

2.4 Defimitlom. EDP is the class of processes in RCP for 

which E ~ is a decidable predicate. 

2.5 Theorem. lU EDP the answer on GP is positive. 

The proof of 2.3 depends on the possibility of the s.s. 

to communicate information to the processes during the 

cooperation. 

This is possible by the fact that we consider processes 

which individualy admit infinitely many correct schedu - 

lings. 

This motivates the following definition: 

2.6 Definition. Rl~ is the class of recursive processes P 

satisfying the following condition: 

A scheduling for P (alone) is correct if and only if 

it grants every request immediately and every grant is 

always preceded by the correspondimg request. 

We will presemt two variations on RPU : 

2.7 Definition. 

RPU I Similar to ~ but there are infinitely many re- 

sources ~,A1, .... (A stralgthforward modificat- 

ion of LQ and L A is required). 

RPU M Similar to RPU but now the resources A1,...,A ~ 

can be changed by the processes. More precise they 

may comtain one register for a natural number which 

can be read and changed by the processes using the 

resource. In this case we meed a modification of 

LQ, L A to include a READ and WRITE statement. 

The idea is that S executes READ stud WRITE in- 

structions for the pi in the Aj. Importamt is 

that if a scheduling for P ~l~ M is to be correct 

its questioms to P are all completely determi- 

ned by the history of the cooperation. 



~ 3  

2 . 8  

2.9 

I38 

Theorem. The answer on GP is: 

i) unkno~ to us in Rl~J (open problem) 

ii) negative im Rl~J I 

ill) negative in RI~ M 

As to i) we note the following without proof. Suppose 

P ~RI~ amd ECS(P)~ ~ ERCS(P) holds then there must 

be ~ucountably many correct scheduling for P. 

Conclusions. There is no uniform method to decide whether 

or not a collection of computable processes admits a cor- 

rect scheduling. Moreover, the existence of a correct sch- 

eduling on itself is of limited importance as it does not 

imply, in ma~ cases, the existence of a computable cor- 

rect scheduling. 

Therefore apriorl restrictions on the processes must en- 

sure that they admit parallel programming. 

One final remark should be made concerning the importance 

of computable correct scheduling. Suppose we admit sche- 

duling mechanisms which are computable from a rs~Idom ge- 
A 

aerator P which may assume values 0 and I. Then the 

following situation exists: There are p1, p2 in RCP 

such that: 

i ) ECS (p1, p2) 

li) ~ ERCS(pI,p 2) 

ill) for eve~ 1 ~ $ > 0 there is a schedullmg mecha- 

nism S-- recursive ~/i P such that the probabi- 

lity that the cooperation of S ~ and p1 and p2 

is a correct scheduling exceeds 1 - I . 

The proof is along the lines of 3.3. The point to make, 

ho~ever, is that the above fact suggests a stro~ argument 

not to restrict to recursive schedulings (and processes). 

It should be noted that the complexity of a description 

of S~ i~creases with i/~. 

PROOFS 

As the ideas involved are rather simple we will give very 

sketchy proofs using algorithmic descriptions of processes 

in an antropomorphic style. 

3.1 Iem~ma. There are processes p1 and p2 in RCP ~ RIW/ 

such that ECS(p1,p 2) does not hold. 



139 

3.2 

Proof. We can take pl and ~ identical to P, 

where P works as follows: 

It asks acces to A O. As soon as acces to A 0 has 

been granted it requests for A 1. (ST). As soon as 

A I has been granted it releases ~ and ~mmediately 

afterwards requests for A 0 again. Then if A 0 is 

granted A 1 is released and immediately afterwards it 

is requested again. Now the process is in situation 

(ST) again. 

ERCS(P) holds as it is possible to allow P to use 

alternatively ~ and A 1. However, ECS(pI,p2) is 

false. Clearly in any correct scheduling of P1 and 

P2' P1 and P2 are (after they have been granted ac- 

ces to ~ for the first time) both using at least 

A 0 or A 1. If, however, p1 wants to proceed it 

needs beth A 0 and A 1 for some time. 

Proof of theorem 2.2 

Let P be a recursive function such that for all 

n B n = ~P(n)] is a process in RCP with the folio- 

wing description: 

B n maintains a counter C which counts the number of 

turns it has had. As long as the predicate 

m ~ C T(n,n,m) is false it answers questions "go 

on" with the answer 1 (for some 1 e L). As soon as 

m ~ C T(n,n,C) has become true B n transforms 

itself into P as introduced in the previous lemma. 

Now we see: 

i) If~ m T(n,n,m) then ECS(Bn,B n) IT is 

Kleene s, T - predicate) 

ii) If ~m T(n,n,m) then eventually both copies of 

B n behave like P and hence ECS(Bn,B n) is fal- 

se (see lemma 3.1). 

We may conclude that it is not possible do decide 

 osc[P(n)], [Pcn)l ) as it would lead to a decision 

method for the halting problem (i.e. ~m T(n,n,m)). 

3.3 Proof of theorem 2.3 

As in the proof of 2.2 we define a process R ~ RCP 

which reacts on a certain event by transforming it- 



140 

self into P. Then ECS(R,P) is true but ERCS(R,P) is 

false as during all recursive scheduling, R is trans- 

formed into P. To obtain this situation we define R 

in such a way that, at infinitely many places, it allows 

the s.s. exactly two ways to proceed. I= this way in- 

formation in the form of an infinite 0 - ~ sequence can 

be transferred from the s.s. to R. Let f be this 

function and let at any stage t f(O),...,f(rt) be the 

intial segment of f that has been transferred to R 

up to stage t. Before proceeding R tests a predicate 

SEC on <f(0),...,f(r t) > . We will define SEC below. 

If SEC holds then from that stage R behaves like P 

otherwise it gives answers which are used for the mecha- 

nism to read f. 

For SEC we take a recursive predicate which has the 

following properties: 

i) VZ~c In  SEa(<f(0),...f(n-1) > ) 

ii) SEC(o-) -~ SEC(~ ~) 

lii) 3f ~n~SEC(< f(O),...,f(n-d) >) 

We assume that the mechanism feeding in f can be run 

in parallel with P. Then S is a correct scheduling 

if it transfers a function f such that 

n ~ SEC(< f(0),...,f(n-1)> ). Such an f exists but 

cannot be recursive. If 8 is recursive then so is the 

corresponding f. From some stage R will behave like 

P and a deadlock will occur. 

The existence of predicates like SEC is well- 

known in recursion theory. 

3.4 Proof of theorem 2,5 

Let p1 pn be in EDP. We want to define a recurslve 

correct scheduling S for ~ given the fact that 

ECS(P) is true. Suppose, for simplicity, that n = 2. 

The cooperation of S and p1,p2 has to satisfy the 

conditions i)...iv) from 1.6. This is done as follows: 

S can be in two overall states, I and II. In both 

states it performs a finite number of steps. Let s be 

the initial segment of the cooperation at a ~age that 

S enters state I. In state I S will extend s to 



141 

s ~ s I where s I is minimal (in length) such that 

i) EP(s*s l) holds 

li) p1 has given at least one non BLANK answer 

during the steps coded in s 1 

ili) after s ~ s I p1 has ~eleased all resources 

that it had been granted after s at least once. 

The description of state II is similar wit~ p2 inste- 

ad of p1. Note that s I must exist if E l~'(s) is true 

and that the search for a min i_~al such s I is effective 

due to the decidability of E ~. 

3.5 Proof of theorem 2.8 ll) 

Again we construct a counterexample using two processes. 

Let pi be the process which behaves like P but uses 

A21 instead of ~ and A21+1 instead of A 1. Let 

Let Qi be as follows: it counts the number of steps in 

a counter C. At any stage it evaluates T(i,i,C). If 

the value is false and has been false before then an 

answer 1 e L is given. If, however, T(i,i,C) holds 

this invokes Qi to request for A21 and A2i+l. Then 

after both have been granted simultaneously for one step 

both are released and Qi answers 1 for ever. Now 

consider a scheduling S for pz,Q~. There are two ca- 

ses if ~O ~T (i,i,C) then S must just run Qi and 

pi in turns. However, if ~C T(i,i,C) then S must 

first get Qi through the stage where it needs both 

A21 and A2i+l . 0nly there after pi may get permis- 

sion to start using A2i. So we conclude that no uniform 

method exists to find S given i, although S exists. 

Using the fact that there are infinitely many resources 

it is now possible to glue together the pi and the ~i 

to processes P and Q in such a way that a scheduling 

S for P, Q exists but requires solution of the hal- 

ting problem (and hence cannot be recursive). 

3.6 Proof of theorem 2.8 iii) 

Again we have a counter using two processes RO,R 1. We 

use a resource A which is in fact a register for natu- 

ral numbers. In A a numeral is stored which codes a 



142 

finite O-1 sequence. The activities of the R i are 

divided into blocks which must be executed separately. 

This is regulated by the acces to A. Execution of a 

block of R i amounts to attaching an i to the end of 

the list stored in A. After any block executiom the 

s.s. is free to choose whether R 0 or R 1 will be on 

tur~ for execution of the next block. In this way s.s. 

cam communicate a function f to A. A will contain 

sequence numbers <f(0),...,f(n-1)> . 

Now we let the R i evaluate SEC(< f(O},...,f(n-1)> ) 

at any stage, where SEC is as in 3.3. 

If the values are never true then S is a correct sche- 

duling and must be nonrecursive. On the other hand if S 

is recursive. (m the other hand if S is recursive both 

R 0 and R 1 will see that SEC(<f(O),...$(n-1)~) hol- 

ds at some stage. Now they will transform themselves to 

P from that stage thus making deadlock unavoidable. 

Acknowledgement. Henh Goeman has made several helpful remarks 

after reading a previous draft of this paper. 

REFERENCE 

~I] J.A. Bergstra, Recursion theor~j on processes, Techn. Report 

Leiden, July 1977 

[2] H. Rogers, The theory of recursive functions and effecti- 

ve computability. 


