DECISION PROBLENMS CONCERNING PARALLEL PROGRAMMING

Jehe Bergstra

Institute of Applied Mathematics and Computer Science
University of ILeiden
2300 R,A. Leiden Postbus 0512 ILeiden the Netherlands

ABSTRACT. 4 notiom of a correct (= deadlock free} scheduling of
geveral recursive processes using common resources is
introduced. The existence of correct schedulings is scho-
wn to be undecidable from recursive indices of the rele-
vant processes., Further-more we isolate several cases
where the mere existence of a correct scheduling does
not imply the existence of a compubable (recursive) cor-
rect scheduling.

§ 1 INTRODUCTICH

4 detailed account of {recursive) processes can be found in
41 » To be self-contalned, however, we include the basic defi-
nitions.
We assume that L., guestion language and LA’ answer langu-
age, are two decidable languages. 1¥ Genotes the collection
of finite strings of words in L.
11 Definition. The collection of prcess graphs wW.r.t. LQ
and LA is defined as follows:
*
PG(Lq,LA) = LQ — LA
If no confusion arises we use PG as an sbbreviation. Words
{sentenses) in LQ are seen as questions on which proces—
ses give answers in LA’ If P is the name of a process
then we denote its imitial graph with PFP.. Further we maine
tain a function ext which associates at any instant to all
relevant process name their current graph (= extension).
Let 1_¢€¢ L. Then ZP{l)) denobtes the amswer of P on
guestion lq. Formally P(lq} = la = ext{P)(lq}. After
the answer has been given exbt has been changed as follows:

ext(P) o = AT, ¥ exb(P) (LX)

In this way P remembers that it has been asked lq,

1.2

1.5

135

Definition. P 1is a recursive process if IE is a re-
cursive function, after coding of LQ and LA in the na-
tural numbers,

Notation. |P] is the process with P, =¢e

Here ¢ is the p-~th (partial) recursive function. For
this notation and for all obther notations and resulth from
recursion theory we refer to |2].

In 1.5 we will fix Lq and LA suitable for the des-
cripticn of parallel programming of sequential processes
using commen resources. To explain the definition it is
useful first to define the cooperation of a scheduling
system(s.s.) and processes Pl...Pn. A s.s8. for n pro-
cesses 1s a proces S with languages Lg and QE as
follows:

1] = {smare} y I,

LS = {1,...,11} x LQ

The cooperatiomn of S and i? works as followss START
triggers S. 1t answers with <3’.1,11> for some i; < n.
Then 1 is given as a question to P 1. The answer

li is given as a question fo S. The next answer < ia,li‘>
of 8 question 12 for P2 which in turn gives its
answer back to S, and so on.

Now we define LQ and LA‘ We assume that there are com-
mon resources Al“‘Ak' LA contains sublanguage L plus
the following reserved wordss

words meaning

request(i) P asks acces to resource Ai

(for i £ k)

BLANK P made no progress in its last step
release (i) P releases resource Ai

L. consists of reserved words only

granted(l) " the request for Ai is granted
{(for i £ k) (by 8)
g0 on evaluate the process one step

further

136

Remark, Nobe that the s.s., speaks to the cooperating
processes in L. and that the processes answer in L,.
We have nob yet specified in what way the resources are
used. With an exception im 2.7 and 3.6. we will assu-
me that there is no communication between the processes and
the resources. So the Pi do not change the Aj. Pi has
used Aj during the scheduling if Aj has been granted to
Pi for some period.
1.6 Definition. § is a correct scheduling for Pl,...,PX if
the cooperabtion between S eand F satisfies the following
properties:
i) every P? is infinitely often on turn,
i1i) every Pt gives infinitely often an answer not equal
to BLANK,
i1ii) at any stage in the cocperation every resource is gran-
ted to at most ome of the P* {which has not yet relea~
sed it).
iv) every resource is evenbually released by 8ll processes
to which it has been granted.
We write ECS(?) for: "there exisbs a correct scheduling
for '?", and ERCS(iﬁ fors "there exists a recursive cor-
rect scheduling for fh.

k

§ 2 PROBLEMS AND RESUILDS

We will define some classes of processes and state problems

concerning EGS(?) and ERCS(?% for i? in these classes.

The proofs are postponed till § 3.

241 Definition. RCP is the collection of processes P over
L and LA which are recursive and satisfy ERC3(P).
Motivation. This is the most general class we are inte-
rested in. Clearly if P alone has no correct scheduling
it is useless to consider its cooperation with other pro-
cesses.

2.2 Theorem. It is not possible to decide effectively
ECS(PY,...,P?) from indices Dpyy..ssb, Oof PT...P® RCP.
This theorem shows that if we are going to rum Pl...Pn
in parallel we must have some strong information on bhefow
rehand indicating that this is possible. We will then
consider the following general problem for a class K of
processes.,

2.3

245

2.6

247

137

GP : Does ECS(P) imply ERCS(B) for B e K ?

The motivation for GP is of course that we are not ine

terested in the existence of a correct scheduling bub in

het possibility to genmerate such a scheduling effectively.

Theorem. In RCP +the answer on GF in no.

We denobte an initial seggent of a cooperation by s. We

define the predicate EP(S} as followss EP(S} «=> "there

exists a correct schedulin for F which extends s".

Definitigp. EDP is the class of processes in RCP for

which EF is a decidasble predicate,

Theorem. In EDP +the answer on GP is positive.

The proof of 2.3 depends on the possibility of the sg.s.

to communicate information to the processes during the

cooperation,

This is possible by the fact that we comsider processes

which individualy admit infinitely meny correct schedu -

lingse.

This motivates the following definition:

Definition. RPU is the class of recursive processes P

satisfying the following condition:

A scheduling for P (alone) is correct if and only if

it grants every request immedistely and every grant is

always preceded by the corresponding request.

We will present two variastions on RFPU

Definition.

RPUY similar to RPU but there are infinitely many me-
sources AnyA1yees o (A straigthforward modificat-
ion of L, and LA is required).

rpul Similar to RPU but now the resources Ayseeeydy
can be changed by the processes. More precise they
may contain one register for a matural number which
can be read and changed by the processes using the
resource. In this case we need a modification of
LQ’LA to include a READ and WRITE statement,
The idea is that § executes READ and WRITE in-
structions for the P in the Aj. Important is
that if a scheduling for P RPUM is to be correct
its questioms %o P are all completely determi-
ned by the history of the cooperationm.

§3

138

2.8 Theorem. The answer on GP is:

2.9

i} unknown to us in RPU {open problem)
1i) negative in RPUT
iii) negetive in RPUM
ég to i) we notg?the follo@EPg without proof. Suppose
PcRPU amd ECS(P)a— ERCS(P) holds then there must
be uncountebly many correct scheduling for ‘fi
Conclusions. There is no uniform method to decide whether
or not a collection of computable processes admits a cor-
rect scheduling. Moreover, the existence of a correct sch-
eduling on itself is of limited importance as it does not
imply, in many cases, the existence of a compubable cor-
rect scheduling.
Therefore apriori restrictions on the processes must en-
sure that they admit psrallel programming,
One final remark should be made concerning the importance
of computable correct scheduling. Suppose we admit sche-
duling mechanisms which are compubtable from a random ge—
nerator ? which may assume values O and L, Then the
following situation existss There are Pl, P° in RCP
such thats
1) Eos(ph,P?)
11) — ERCS(PL,P?)

iii) for ever 1?73 > 0 thgre is a scheduling mecha-
nism B recursive in P such that the probabi-
lity that the cooperation of Sg and Pl and
is a correct scheduling exceeds 1 = 5 .

The proof is along the lines of 3.3. The point to make,
however, is that the above fact suggests a strong argument
not to restrict to recursive schedulings (and processes).
It should be noted that the complexity of a description

of S increases with 1/5 .

PROOFS
As the ideas involved are rather simple we will give very
sketchy proofs using algorithmic descriptioms of processes

in an antropomorphic style, 1 >
3.4 Lemma, There are processes P~ and P° in RCP n RFU

such that ECS(PY,P°) does not hold.

3e2

33

139

Proof. We can take P* and P° identical to P,
where P works as followss

It asks acces to AO. As soon as acces To AQ has
been granted it requests for Al. (ST)e As soom as
Aq has been granted it releases AO and immediately
afterwards requests for A, again. Then if 4y is
granted Al is released and immediately afterwards it
is requested again. Now the process is in situation
{(ST) again.

ERCS(P} holds as it is possible to allow P %o use
alternatively Ao and Al. However, ECS(Pl,PZ) is
false. Clearly in any correct scheduling of Pl and
Pe, Pl and P2 are (after they have been granted ac—
ces to 4 for the first ti?e) both using at least
Ao or Al‘ If, however, P~ wants to proceed it
needs both AO and Al for some time.

Proof of theorem 2,2

Let P be a recursive function such that for all

n B" = [P(n)] is a process in RCP with the follo-
wing description:

B® maintains a counter C which counts the number of
turns it has had. 4s long as the predicate

dmsgc T{n,n,m) 1is false it amswers questions "go
on" with the amswer 1 (for some 1 ¢ L). As soon as
Amg ¢ T(m,n,C) has become true B2 transforms
itself intoe P as introduced in the previous lemma,.
Now we sees

i) If~3 =n T(n,n,m) then ECS(B®,B%) (T is
Kleene s, T - predicate)
ii) If 3m T(n,n,m) +then eventually both copies of
B" behave like P and hemce ECS(B%,B%) is fal-
se (see lemma 3.1).

We may conclude that it is not possible do decide
ECS({P(n]] ,[P(n)]) as it would lead %o a decision
method for the halting problem (i.e. 4m T(n,n,m)).
Proof of theorem 2.3

As in the proof of 2,2 we define a process R ¢ RCP
which reacts on a certain event by transforming it~

140

self into P, Then ECS{R,P} is true but ERCS{R,P) is
false as during all recursive scheduling, R is trans-
formed into P, To obtain this situation we define R

in such a way that, at infinitely many places, it allowms
the s.s. exactly two ways to proceed. In this way in-
formation in the form of an infinite O -~ 1 sequsnce can
be transferred from the s.s. to R. Let £ be this
function and let at any stage + f(O),...,f(rt) be the
intial segment of £ that has been transferred to R
up to stage +t. Before proceeding R +tests a predicate
SEC on <f(0),..‘,f(rt)> « We will define BSEC below.
If SEC holds then from that stage R behaves like P
otherwise it gives answers which are used for the mecha~
nism to read £,

For SEC we take a recursive predicate which has the
following propertiess

i) VfREC A5 SEC(<£(0)yeesf(n=1) >)

ii) SEC(¢") —» SEC(c *7)
iii) 3f Vn-SEC(< £(0)yeee,f{n-1) >)

We assume that the mechanism feeding in £ can be rum
in parallel with P, Them S 1is & correct scheduling
if it transfers a function f such that
Vn - SBC(< £(0)yeseyfi{n=-1)>). Such am f exists bub
cannot be recurgive. If 8 1is recursive then s0 is the
corresponding f. From some stage R will behave like
P and a deadlock will occur.

The existence of predicates like SEC is well~
known in recursion theory.
Proof of theorem 2.5
Let Pl...Pn be in HEDP. We want to define a recursive
corpggt scheduling S5 for '57 given the fact that
ECS(P) is true. Suppose, for simplicity, that n = 2.
The cooperation of 8§ and Pl,P2 has to satisfy the
conditions i)e.siv) from l.6. This is done as follows:
S can be in two overall states, I and II., In both
states it performs a finite number of steps. Iet s Dbe
the initial segment of the cooperation at a ssage <That
8 enbters state I. In stabte I S will extend & %to

3.5

3.6

141

5 % sl where s1 is minimal (in length) such that
-
i) Ef(s«s®) holds
ii) Pl has given at least one non BLANK answer

during the steps coded in sl

iii) after s *-sl Pl has released all resources

that it had been granted after s at least once,

The descripbion of state II is similar wit P2 instem
ad of Pl. Note that sl must exist if E (s) is true
and that the search for a minjipal such s1 is effective
due to the decidability of E-,

Proof of theorem 2,8 ii)

Again we construct a counterexample using two processes,
Let Pi be the process which behaves like P but uses
AQi instead of AO and A21+1 instead of 4. Let

Let Q; be as follows: it counts the number of steps in
a counter C. At any sbage it evaluates T(i,i,0). If
the value is false and has been false before then an
angwer 1€ L is given. If, however, T(i,1,0) holds
this invokes Qi to request for Aai and A21+l‘ Then
after both have been granted simultaneously for one step
both are released and Ql answers 1 for ever. Now
consider a scheduling S for Pl,ql. There are two ca-
ses if V0 -T (i,i,C) then S must just run Q% and
P' in turns. However, if JC T(i,1,C) then S must
first get Qi through the stage where it needs both
Azi and A21+1 « Only there after Pt may get permis-
sion to start using Azi' So we conclude that no uniform
method exists to £find S given 4, although S exists.
Using the fact that there are infinitely many resources
it is now possible to glue together the P1 and the Q}
to processes P snd Q im such a way that a scheduling
S for P, Q exists but requires solution of the hal-
ting problem (and hence caunot be recursive).

Proof of theorem 2,8 iii)

Again we have a counber using two processes Ro,Rl. We
use a regource A which is in fact a register for natu-
ral numbers. In A a numeral is stored which codes a

142

finite 0O-1 sequence., The activities of the Ri are
divided into blocks which must be executed separately.
This is regulated by the acces to A. Execution of a
block of R* amounts to attaching an 1 +to the end of
the list stored im A. After any block execubtion the
S.5, is free to choose whether RO or Rl will be on
turn for execution of the next block. In this way s.s.
can communicate a function £ +to 4. A will contain
sequence numbers < f(0),es.,f(n~1)>.

Now we let the RT evaluate SEC(< £(0),eeeyf(n=1)>)
at any stage, where SEC is as in 3.3.

If the values are never True them S is e correct sche~
duling and must be nonrecursive., On the other hand if 8
is recursive. On the other hand if 8 is recursive both
R® ana Rl will see that BSEC{<f{0),...f(n-1})>) hol~-
ds at some stage, Now they will transform themselves to
P from that stage thus making deadlock unavoidable,

Acknowledgement. Henh Goeman has made several helpful remarks
after reading a previous draft of this paper.

REFERENCE

(1]
[2]

J.he Bergstra, Recursion theory on processes, Techn. Report
Leiden, July 1977

H. Rogers, The theory of recursive functions and effecti-
ve compubability.

