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Abstract. We investigate a class of parametric timed automata, called lower
bound/upper bound (L/U) automata, where each parameter occurs in the tim-
ing constraints either as a lower bound or as un upper bound. For such automata,
we show that checking if for a parameter valuation (resp., all parameter valu-
ations) there is an infinite accepting run is PSPACE-complete. We extend these
results by allowing the specification of constraints on parameters as a linear sys-
tem. We show that the considered decision problems are still PSPACE-complete,
if the lower bound parameters are not compared to the upper bound parameters
in the linear system, and are undecidable in general. Finally, we consider a para-
metric extension of MITL0,∞, and prove that the related satisfiability and model
checking (w.r.t. L/U automata) problems are PSPACE-complete.

1 Introduction

Timed automata [2] are a widely accepted formalism to model the behavior of real-time
systems. A timed automaton is a finite–state transition graph equipped with a finite set
of clock variables which are used to express timing constraints. The semantics is given
by an infinite-state transition system where transitions correspond either to a change of
location (instantaneous transition) or to a time consumption (time transition). Over the
years, timed automata have been intensively studied by many authors, and significant
progresses have been done in developing verification algorithms, heuristics, and tools
(see [6] for a recent survey).

Timing constraints in timed automata allow the specification of constant bounds on
delays among events. Typical examples are upper and lower bounds on computation
times, message delays and timeouts. In the early stages of a design, when not much is
known about the system under development, it is however useful for designers to use
parameters instead of specific constants.

In [5], Alur et al. introduce parametric timed automata, i.e., timed automata where
clocks can be compared to parameters. For such class of automata, they study the empti-
ness problem: “is there a parameter valuation for which the automaton has an accepting
run?” This problem turns out to be undecidable already for parametric timed automata
with only three parametric clocks, while it is decidable when at most one clock is com-
pared to parameters. In case of two parametric clocks, the emptiness problem is closely
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related to various hard and open problems of logic and automata theory [5]. In [11],
Hune et al. identify a subclass of parametric timed automata, called lower bound/upper
bound (L/U) automata, in which each parameter occurs either as a lower bound or as an
upper bound in the timing constraints. Despite this limitation, the model is still interest-
ing in practice. In fact, L/U automata can be used to model the Fisher’s mutual exclusion
algorithm [13], the root contention protocol [12] and other known examples from the
literature (see [11]). Hune et al. show that the emptiness problem for L/U automata with
respect to finite runs is decidable. The case of infinite accepting runs (which is crucial
for the verification of liveness properties) is not investigated, and does not follow from
their results.

In this paper, we further investigate the class of L/U automata and consider accep-
tance conditions over infinite runs. Given an L/U automaton A, denote with Γ (A) the
set of parameter valuations for which the automaton has an infinite accepting run. We
show that questions about Γ (A) can be answered considering a bounded set of param-
eter valuations of size exponential in the size of the constants and the number of clocks,
and polynomial in the number of parameters and locations of A. Therefore, we are able
to show that checking the set Γ (A) for emptiness and universality (i.e., if Γ (A) con-
tains all the parameter valuations) is PSPACE-complete. The main argument for such
results is as follows: suppose that A is an L/U automaton which uses parameters only
as either upper bounds or lower bounds; then if an infinite run ρ is accepted by A for
large-enough values of the parameters, we can determine appropriate finite portions of
ρ which can be “repeatedly simulated” (resp., “deleted”) thus obtaining a run ρ′ which
is accepted by A for larger (resp., smaller) parameters values.

Parameters in system models can be naturally related by linear equations and in-
equalities. As an extension of the above results, we consider constrained emptiness and
constrained universality on L/U automata, where the constraint is represented by a lin-
ear system over parameters. We show that these problems are in general undecidable,
and become decidable in polynomial space (and thus PSPACE-complete) if we do not
compare parameters of different types in the linear constraint.

An important consequence of our results on L/U automata is the extension to the
dense-time paradigm of the results shown in [3]. We define a parametric extension of
the temporal logic MITL0,∞ [4], denoted PMITL0,∞, and show that (under restrictions
on the use of parameters analogous to those imposed on L/U automata) the related
satisfiability and model-checking problems are PSPACE-complete. The proof consists of
translating formulas to L/U automata. To the best of our knowledge this is the first work
that solves verification problems against linear-time specifications with parameters both
in the model and in the specification.

Besides the already mentioned research, there are several other papers that are re-
lated to ours. The idea of restricting the use of parameters (in order to obtain decidabil-
ity) such that upper and lower bounds cannot share a same parameter is also present
in [3] where the authors study the logic LTL [14] augmented with parameters. The
general structure of our argument for showing decidability (“pumping” argument) is
inspired to their approach. However, let us stress that there are substantial technical dif-
ferences with that paper since we consider a different framework, and in particular, we
deal with a dense-time semantics. Parametric branching time specifications were first
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investigated in [16,9] where decidability is shown for logics obtained as extensions of
TCTL [1] with parameters. In [7], decidability is extended to full TCTL with Presburger
constraints over parameters. In [8], decidability is established for the model checking
problem of discrete-time timed automata with one parametric clock against parametric
TCTL without equality (for full TCTL with parameters the problem is undecidable).
Finally, recall that the undecidability of systems with parameters is also captured by the
undecidability results shown in [10]. However, the limitations we consider for obtaining
decidability seem to be orthogonal to those considered there. We are not aware of any
way of obtaining our decidability results from those presented in [10].

Due to the lack of space, for the omitted details we refer the interested reader to a
forthcoming extended version of this paper.

2 Parametric Timed Automata

Throughout this paper, we fix a finite set of parameters P = {p1, . . . , pm}. Let R≥0 be
the set of non-negative reals, N the set of natural numbers, and Z the set of integers.

A linear expression e is an expression of the form c0 + c1p1 + . . . + cmpm with
c0, c1, . . . , cm ∈ Z. We say that parameter pi occurs in e if ci �= 0. A (parameter)
valuation is a function v : P → N assigning a natural number to each parameter. The
null parameter valuation, denoted vnull, is the valuation assigning 0 to each parameter.
For the linear expression e above, e[v] denotes the integer c0+c1v(p1)+. . .+cmv(pm).

We fix a finite set of clocks X . For the ease of presentation, we allow in our model
a special clock x0 ∈ X , called zero clock, which always evaluates to 0 (i.e., it does not
increase with time).

An atomic (clock) constraint f is an expression of the form x − y ≺ e, where
x, y ∈ X , e is a linear expression, and ≺∈ {<, ≤}. We say that f is parametric if some
parameter occurs in e. A (clock) constraint is a finite conjunction of atomic constraints.
A clock valuation is a function w : X → R≥0 assigning a value in R≥0 to each clock
and s.t. w(x0) = 0. For a constraint f , a parameter valuation v, and a clock valuation
w, the pair (v, w) satisfies f , denoted (v, w) |= f , if the expression obtained from f by
replacing each parameter p with v(p) and each clock x with w(x) evaluates to true.

A reset set r is a subset of X containing the clocks to be reset to 0. For τ ∈ R≥0 and
a clock valuation w, the clock valuation w + τ is defined as (w + τ)(x) = w(x) + τ
for all x ∈ X \ {x0} and (w + τ)(x0) = 0. For a reset set r ∈ 2X , the clock valuation
w[r] is defined as w[r](x) = 0 if x ∈ r and w[r](x) = w(x) otherwise. Let Ξ be the
set of all clock constraints over X and P .

Definition 1. A parametric timed automaton (PTA) is a tuple A = 〈Q, q0, Δ, F 〉, where
Q is a finite set of locations, q0 ∈ Q is the initial location, Δ ⊆ Q × Ξ × 2X × Q is a
finite transition relation, and F ⊆ Q is a set of accepting locations.

Let A = 〈Q, q0, Δ, F 〉 be a PTA. A state of A is a pair (q, w) such that q ∈ Q is a
location and w is a clock valuation. The initial state is (q0,

−→
0 ), where

−→
0 maps every

x ∈ X to 0. We denote by X(P ) the set of parametric clocks, that is the set of x ∈ X
such that A contains a parametric atomic constraint of the form x−y ≺ e or y −x ≺ e.
A PTA A is called a timed automaton (TA, for short), if A does not contain occurrences
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0 1 2 3

x := 0 x < u−y < 2 − �

y := 0

y := 0

Fig. 1. An L/U automaton

of parameters. For a PTA A and a parameter valuation v, we denote by Av the TA
obtained by replacing each linear expression e of A by e[v].

Let A = 〈Q, q0, Δ, F 〉 be a PTA and v be a parameter valuation. The concrete
semantics of A under v, denoted [[A]]v , is the labelled transition system 〈S, �〉 over

(Δ ∪ {⊥})× R≥0, where S is the set of A states and for τ ≥ 0, (q, w)
δ,τ
−−� (q′, w′) iff:

– either δ = (q, g, r, q′), τ = 0, (v, w) |= g, and w′ = w[r] (instantaneous transi-
tion),

– or δ = ⊥, q′ = q, and w′ = w + τ (time transition).

An infinite run of [[A]]v is an infinite path ρ = s0
δ0,τ0−−−� s1

δ1,τ1−−−� s2 . . . of [[A]]v such
that

∑
i≥0 τi = ∞ (progress condition) and for infinitely many i ≥ 0, δi �= ⊥ (there

are infinitely many occurrences of instantaneous transitions). Moreover, ρ is accepting
iff for infinitely many i ≥ 0, we have that qi ∈ F , where si = (qi, wi). A finite run of

[[A]]v is a finite path ρ = s0
δ0,τ0−−−� s1 . . . sn−1

δn−1,τn−1
−−−−−−−� sn of [[A]]v . The duration of

ρ, denoted by DUR(ρ), is defined as DUR(ρ) =
∑i=n−1

i=0 τi. We denote with Γ (A)
the set of parameter valuations v such that there exists an accepting infinite run of [[A]]v
from the initial state (q0,

−→
0 ).

Given a linear expression e = c0 + c1p1 + . . . cmpm and a parameter pi ∈ P , we say
that pi occurs positively in e if ci ≥ 0. Analogously, we say that pi occurs negatively in
e if ci ≤ 0. A lower bound parameter (resp., an upper bound parameter) of a PTA A is a
parameter that only occurs negatively (resp., occurs positively) in the expressions of A.
We call A a lower bound/upper bound (L/U) automaton if every parameter occurring
in A is either an upper bound parameter or a lower bound parameter. Moreover, we say
that A is a lower bound automaton (resp., upper bound automaton) iff every parameter
occurring in A is a lower bound parameter (resp., an upper bound parameter).

Example 1. Consider the automaton A in Fig. 1. It has four locations 0, 1, 2, 3, two
clocks x, y, and two parameters � and u. Note that the constraint −y < 2 − � imposes
a lower bound on the possible values of y, while x < u imposes an upper bound on
the possible values of x. Thus, � and u are respectively a lower bound and an upper
bound parameter, and A is an L/U automaton. Also, it is easy to verify that [[A]]v has
an infinite run from location 0 visiting infinitely often location 3 iff v(�) < v(u)+2 and
v(u) > 0. Therefore, Γ (A) = {v | v(�) < v(u) + 2 and v(u) > 0}.

For an L/U automaton A, we consider the following decision problems on Γ (A):

– Emptiness: is the set Γ (A) empty?
– Universality: does the set Γ (A) contain all parameter valuations?
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Relations over states. For t ∈ R≥0, �t� denotes the integral part of t and fract(t)
denotes its fractional part. We define the following equivalence relations over R≥0:

– t ≈ t′ iff (i) �t� = �t′� and (ii) fract(t) = 0 iff fract(t′) = 0;
– for every K ∈ N, t ≈K t′ iff either t ≈ t′ or t, t′ > K .

Let A = 〈Q, q0, Δ, F 〉 be a PTA and v be a parameter valuation. We denote by Kv

the largest |e[v]| + 1 such that e is a linear expression of A. The region equivalence of
A with respect to v, denoted ≈v, is the equivalence relation over A states defined as:
(q, w) ≈v (q′, w′) iff q = q′ and for all clocks x, y ∈ X , (i) w(x) − w(y) ≥ 0 iff
w′(x) − w′(y) ≥ 0, (ii) |w(x) − w(y)| ≈Kv |w′(x) − w′(y)|, (iii) fract(w(x)) ≤
fract(w(y)) iff fract(w′(x)) ≤ fract(w′(y)) (ordering of fractional parts).

A region of A with respect to v is an equivalence class induced by ≈v. Recall that
the number of these regions is O(|Q| · (2Kv + 2)|X|2) [2] (note that we consider also
diagonal constraints). Moreover, ≈v is a bisimulation over [[A]]v . Note that if A is a
timed automaton, then the value of Kv is obviously independent on specific valuation
v, and we denote it with KA. Thus, the emptiness for a timed automaton is reduced
to check emptiness of the finite–state quotient graph induced by region equivalence
(region graph) [2].

Theorem 1. Checking emptiness for a timed automaton A is PSPACE-complete and
can be done in time O(|Δ| · (2KA + 2)2|X|2).

To answer questions on Γ (A), for a parametric timed automaton A, we need to examine
an infinite class of region graphs, one for each parameter valuation. However, in the
next sections we will show that for an L/U automaton A, it is possible to effectively
determine a parameter valuation v such that our decision problems can be reduced to
check emptiness of Av . In our arguments, we use a preorder � over the set of states
defined as (q, w) � (q′, w′) iff

– (q, w) ≈vnull (q′, w′) (recall that vnull is the null parameter valuation);
– for all clocks x, y ∈ X(P ) such that w(x) − w(y) > 0: either w′(x) − w′(y) ≥

w(x) − w(y), or (w′(x) − w′(y)) ≈ (w(x) − w(y)) hold.

The first condition establishes that (q, w) and (q′, w′) are equivalent w.r.t. all non-
parametric clock constraints. The second condition ensures that, for a lower (resp. up-
per) bound automaton, each parametric clock constraint which is fulfilled in (q, w)
(resp. (q′, w′)) is also fulfilled in (q′, w′) (resp. (q, w)). We will show that � indeed
defines a simulation relation over the states of a lower (resp. upper) bound automaton.

For an L/U automaton A, we will use the following constants:

– kA denotes the number of parametric clocks of A, i.e. the size of X(P );
– cA is the maximum over {|c| + 1 | there is a linear expression of A of the form

c0 + c1p1 + . . . + cmpm and c = ci for some 0 ≤ i ≤ m}.
– NR(A) is the number of regions of A with respect to the null parameter valuation.

3 Emptiness and Universality for Lower Bound Automata

In this section, we study the considered decision problems for lower bound automata.
We fix a lower bound automaton A = 〈Q, q0, Δ, F 〉. Also, for two parameter valuations
v1 and v2, we write v1 ≤ v2 to mean that v1(p) ≤ v2(p) for all p ∈ P .
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Emptiness. We recall that every linear expression of A is of the form c0 − c1p1 − . . .−
cmpm with ci ∈ N for 1 ≤ i ≤ m. By decreasing the parameter values, the constraints
of A are weakened. Thus, if v ≤ v′ and v′ ∈ Γ (A), then also v ∈ Γ (A) (i.e., Γ (A) is
downward-closed). Hence, to test emptiness of Γ (A) it suffices to check emptiness of
the TA Avnull . By Theorem 1, we obtain:

Theorem 2. Given a lower bound automaton A, checking emptiness of Γ (A) is
PSPACE-complete and can be done in time O(|Δ| · (2cA + 2)2|X|2).

Universality. For checking universality of Γ (A), we define a parameter valuation vA
(assigning “large” values to parameters) and show that if vA ∈ Γ (A) then each v ≥ vA
also belongs to Γ (A). Since Γ (A) is downward closed, checking universality of Γ (A)
reduces to checking if vA ∈ Γ (A), and thus, checking for non-emptiness of the timed
automaton AvA .

Define NA as the constant kA(NR(A) + 1) + cA, and denote by vA the parameter
valuation assigning NA to each parameter. The choice of such a large constant is to ensure
that in any run ρ of [[A]]vA we can find subruns ρ′ that can be repeatedly and consecutively
simulated such that we can construct a corresponding run for [[A]]v , for any v ≥ vA.
Intuitively, NA is sufficiently large to ensure that there is a portion ρ′ of ρ (of duration
larger than 1) which corresponds to a cycle of Avnull and such that each parametric clock
constraints is either always or never satisfied in all the states visited along ρ′.

A parameter valuation v evaluates negative for A if for each parametric atomic con-
straint x − y ≺ e of A, e[v] < 0. Note that vA evaluates negative for A. We give two
technical lemmas that will be used in the proof of the main theorem of this section. In
these two lemmas, v is a parameter valuation which evaluates negative for A.

Lemma 1. [Simulation Lemma for Lower Bound Automata] Let ρ = s0
δ0,τ0−−−� s1

δ1,τ1−−−�
. . . be a run of [[A]]v and s′0 � s0. Then, there is a run of [[A]]v of the form ρ′ = s′0

δ0,τ ′
0−−−�

s′1
δ1,τ ′

1−−−� . . . such that s′i � si for each i, and DUR(ρ′) ≈ DUR(ρ) if ρ is finite.

The following lemma allows us to append to a run in [[A]]v , which corresponds to a
cycle in the region graph of Avnull , another cycle such that its initial state s and its
final state s′ satisfy the strongest condition s � s′. Note that once we apply this lemma,
further cycles can be appended by repeatedly applying the Simulation Lemma. Also,
note that from classical properties of timed automata the Simulation Lemma continues
to hold if we replace � with the region equivalence ≈v. However, this does not hold for
the following Lemma (the properties of � are crucial).

Lemma 2. Let ρ = s0
δ0,τ0−−−� s1 . . . sn−1

δn−1,τn−1
−−−−−−−� sn be a run of [[A]]v such that

s0 ≈vnull sn and for every parametric clock x ∈ X(P ) \ {x0}, if a parametric atomic
constraint of the form y − x ≺ e appears along ρ then x is never reset along ρ. Then,

there is a run ρ′ = s′0
δ0,τ ′

0−−−� s′1 . . . s′n−1

δn−1,τ ′
n−1

−−−−−−−� s′n of [[A]]v such that DUR(ρ′) ≈
DUR(ρ), s′0 = sn, and s′0 � s′n.

In the next theorem we show that vA is the key valuation for reducing universality to
membership to Γ (A).
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Theorem 3. Let v, v′ be parameter valuations such that v′ ≥ v ≥ vA. Then, v ∈ Γ (A)
implies v′ ∈ Γ (A).

Proof of Theorem 3: Let v, v′ be parameter valuations such that v′ ≥ v ≥ vA. We
can assume that each parameter appears precisely once in A. In fact, if a parameter
p appears twice, we can rename the second occurrence to p′ and let v(p′) = v(p)
and v′(p′) = v′(p). Note that this assumption does not affect the constant NA which
depends on the number of parameterized clocks and not on the number of parameters.

Fix a parameter p of A. Let fp = z−y ≺ e be the unique atomic constraint of A such
that p occurs in e. We define vp such that vp assigns the value v(p) + 1 to p and v(p′) to
all the other parameters p′. Since we can obtain v′ from v by a sequence of steps, where
a step corresponds to incrementing only one parameter by 1, it suffices to prove:

v ∈ Γ (A) implies vp ∈ Γ (A) (1)

Observe that since v ≥ vA and A is a lower bound automaton, we have that v eval-
uates negative for A, and in particular, e[v] < 0. Therefore, if y is the zero clock x0,
fp is unsatisfiable under valuation v and Assertion (1) trivially holds. Consider now the
case y �= x0 and also assume that z �= x0 (the other case being simpler).

Let ρ = s0
δ0,τ0−−−� s1

δ1,τ1−−−� s2 . . . be an infinite accepting run of [[A]]v where
si = (qi, wi) for i ≥ 0 and such that clock y is zero in s0 (note that if s0 is the
initial state of A, this last condition is satisfied). Then, we need to show that there
is an infinite accepting run ρ′ in [[A]]vp from s0. In the following, for i ≤ j, denote

ρ[i, j] = si

δi,τi−−−� . . .
δj−1,τj−1
−−−−−−� sj .

In the rest of the proof, we first determine a finite portion of the run ρ that is crucial
for the satisfaction of fp under valuation vp and suitable for repeated simulation, i.e.,
such that it meets the hypothesis of Lemma 2. Then, simulate this finite run an arbitrary
number of times by applying Lemma 2 for the first simulation and Lemma 1 for the re-
maining ones. We end with the simulation of the remaining suffix of the run ρ applying
again Lemma 1. The process is iterated until the resulting run is a run of [[A]]vp .

Assume that the clock constraint fp appears along ρ (in the other case, ρ is also a
run of [[A]]vp ), and let M be the smallest index such that fp is in the clock constraint
of transition ρ[M, M + 1]. Thus, (v, wM ) |= fp. Since fp = z − y ≺ e and e[v] ≤
e[vA] < cA −NA, by simple arguments, it is possible to show that there are My, Mz ∈
[0, M ] such that: My < Mz , wMy (y) = 0, wMz (z) = 0, clock y is never reset along
ρ[My, Mz], and DUR(ρ[My, Mz]) > NA − cA.

Observe that in a run, each time transition can be split into an arbitrary number of
time transitions. Thus, we can assume without loss of generality that for every τ ∈ N,
there is i ≥ My such that DUR(ρ[My, i]) = τ . The following claim allows us to apply
Lemma 2. Its proof relies on a counting argument that uses the constant NA, and thus
also gives a more concrete explanation of our choice for its value.

Claim. There is an interval [i, j] ⊆ [My, Mz] such that DUR(ρ[i, j]) ≥ 1, si ≈vnull sj ,
and for every clock x ∈ X(P ) \ {x0}: if a parametric atomic constraint of the form
x′ − x ≺ e′ appears along ρ[i, j], then x is never reset along ρ[i, j].
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Proof of the Claim: Let My ≤ K ≤ Mz be such that DUR(ρ[My, K]) = NA − cA
(recall that DUR(ρ[My, Mz]) > NA − cA). Let Y = {x1, . . . , xn} with n ≤ kA −1
be the set of clocks in X(P ) \ {x0} which are reset along ρ[My, K] and for h =
1, . . . , n, let ih be the smallest index in [My, K] such that clock xh is reset on the
transition ρ[ih − 1, ih]. Assume without loss of generality that i1 ≤ i2 ≤ . . . ≤ in.
We set i0 = My and in+1 = K + 1. Thus, for every interval [ih, ih+1 − 1], 0 ≤
h ≤ n, the following holds: for all x ∈ X(P ), either clock x is never reset along
ρ[ih, ih+1 − 1] or its value is always less than NA − cA. Since for each parametric
atomic constraint f = x′ − x ≺ e′ of A, e′[v] ≤ e′[vA] < cA − NA, we have that
(v, w) |= f implies w(x) > NA − cA. Hence, for every interval [ih, ih+1 − 1] and
x ∈ X(P ) \ {x0}, either clock x is never reset along ρ[ih, ih+1 − 1], or none of
the parametric atomic constraints along ρ[ih, ih+1 − 1] is of the form x′ − x ≺ e′.
Since n + 1 ≤ kA, NA − cA = kA(NR(A) + 1), and DUR(ρ[ih − 1, ih]) = 0 for
h = 1, . . . , n (i.e., the only transition of ρ[ih − 1, ih] is instantaneous), there is a k
such that DUR(ρ[ik, ik+1 − 1]) ≥ NR(A) + 1. Recall that for each τ ∈ N there is
i ≥ My such that DUR(ρ[My, i]) = τ , and NR(A) is the number of equivalence
classes induced by ≈vnull . Hence, there are indexes i, j ∈ [ik, ik+1 − 1] such that
DUR(ρ[i, j]) ≥ 1 and si ≈vnull sj . Therefore, the claim holds. ��

Let [i, j] ⊆ [My, Mz] be an interval satisfying the above claim. We can apply Lemma 2
to ρ[i, j] obtaining a finite run ρ1 starting from sj and leading to s′j � sj . Thus we can
repeatedly apply Lemma 1, to append an arbitrary number d of simulations of ρ1 and
then simulate the remaining part of ρ. Let ρ′ = ρ[0, j] ρ1ρ2..ρd ρ′Mz

ρ′′ be the obtained
run, where for h = 2, . . . , d, runs ρh are the simulations of ρ1, ρ′Mz

is the simulation
of ρ[j, Mz], and ρ′′ is the simulation of the remaining suffix of ρ. Note that by Lem-
mas 1 and 2 ρ′ is an accepting infinite run of [[A]]v and the clock constraint fp never
appears along η = ρ[0, j] ρ1ρ2..ρd ρ′Mz

, hence η is also a finite run of [[A]]vp . Moreover,
DUR(ρh) ≈ DUR(ρ[i, j]) for h = 1, . . . , d, and y is not reset in ρ1ρ2..ρd ρ′Mz

.
Let s = (q, w) be the last state of ρ′Mz

. Since s � sMz and wMz (z) = 0, we have
w(z) = 0. Being DUR(ρ[i, j]) ≥ 1, by carefully choosing d, we get that (vp, w) |=
fp. Thus, if clock y is never reset along ρ′′, then ρ′′ is also a run in [[A]]vp , hence ρ′

is an infinite accepting run in [[A]]vp . Otherwise, there is a non empty prefix π of ρ′′

(containing some instantaneous transition) such that ρ[0, j] ρ1ρ2..ρd ρ′Mz
π is a run of

[[A]]vp and the remaining suffix of ρ′′ starts at a state in which clock y is zero. By
iterating the above reasoning (starting from ρ′′) we get an accepting run of [[A]]vp , and
the theorem is proved. ��

Since Γ (A) is downward-closed, by the above theorem checking universality re-
duces to check non-emptiness of the TA AvA . Since the largest constant in AvA is
bounded by |P | · NA · cA and NA = O(|Q| · kA · (2cA + 2)2|X|2), by Theorem 1 we
obtain the following result.

Theorem 4. Given a lower bound automaton A, checking for the universality of Γ (A)
is PSPACE-complete and can be done in time exponential in |X |4 and in the size of the
encoding of cA, and polynomial in the number of parameters and locations of A.
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4 Decision Problems for L/U Automata

In this section, we briefly discuss our results concerning the other decision problems
we have mentioned in the introduction. We start giving the results on emptiness and
universality for upper bound automata. Next, we combine the results we have given
for lower bound and upper bound automata to solve such problems for general L/U
automata. Then, we extend the considered problems placing linear constraints on the
parameters. Finally, we use L/U automata to decide satisfiability and model-checking
related problems for a dense-time linear temporal logic.

Upper bound automata. The arguments used to show the results for upper bound
automata are dual to those used for lower bound automata. We fix an upper bound au-
tomaton A = 〈Q, q0, Δ, F 〉. Recall that every linear expression of A is of the form
c0 + c1p1 + . . . + cmpm with ci ∈ N for each 1 ≤ i ≤ m. By increasing the parameter
values, the clock constraints of A are weakened, thus the set Γ (A) is upward-closed.
An immediate consequence of this property is that testing universality of Γ (A) re-
quires checking non-emptiness of the TA Avnull (vnull assigns 0 to each parameter).
For checking emptiness of Γ (A), we establish a version of Theorem 3 for upper bound
automata. Here, we use a slightly larger constant NA = 8kAcA(NR(A) + 1)+ cA. The
definition of such constant is again motivated by counting arguments as in the case of
lower bound automata. Define vA as the valuation assigning NA to each parameter.

Theorem 5. Let v, v′ be parameter valuations such that v ≥ v′ ≥ vA. Then, v ∈ Γ (A)
implies v′ ∈ Γ (A).

Since Γ (A) is upward-closed, Theorem 5 implies that Γ (A) is not empty iff vA ∈
Γ (A). Thus, checking emptiness of Γ (A) reduces to checking emptiness of the timed
automaton AvA .

General case. Given an L/U automaton A, if we instantiate the lower bound parame-
ters of A, we get an upper bound automaton and, similarly, if we instantiate the upper
bound parameters of A, we get a lower bound automaton. Furthermore, monotonicity
properties continue to hold: if v ∈ Γ (A) and v′ is such that v′(p) ≤ v(p) for each
lower bound parameter p and v′(p) ≥ v(p) for each upper bound parameter p, then
v′ ∈ Γ (A). By Theorems 3 and 5, it follows that

– To check for non-emptiness of Γ (A), it suffices to check for non-emptiness of the
timed automaton resulting from setting all the lower bound parameters to 0 and all
the upper bound parameters to 8kAcA(NR(A) + 1) + cA.

– To check for universality of Γ (A), it suffices to check for non-emptiness of the
timed automaton resulting from setting all the upper bound parameters to 0 and all
the lower bound parameters to kA(NR(A) + 1) + cA.

Thus by Theorem 1, we obtain the following result.

Theorem 6. For an L/U automaton A, checking for the emptiness (resp. universality)
of Γ (A) is PSPACE-complete and can be done in time exponential in |X |4 and the size
of the encoding of cA, and polynomial in the number of parameters and locations of A.
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Linearly constrained parameters. A linear constraint C is a boolean combination
of inequalities and equations of the form e ∼ 0, where e is a linear expression and
∼∈ {<, =}. A parameter valuation v is a solution of C if the boolean expression ob-
tained from C by replacing each inequality/equation e ∼ 0 with the truth value of
e[v] ∼ 0, evaluates to true. With Sol(C) we denote the set of C solutions. Given an
L/U automaton A and a linear constraint over the A parameters, we consider the fol-
lowing decision problems:

– Constrained emptiness: given a constraint C, is the set Γ (A) ∩ Sol(C) empty?
– Constrained universality: given a constraint C, does Γ (A) ⊇ Sol(C) hold?

We show that constrained emptiness and universality are decidable for both lower
and upper bound automata. However, they become undecidable for L/U automata (the
main reason being that a linear constraint can be used to force a lower bound param-
eter to be equal to an upper bound parameter, thus removing the restriction that has
been placed on L/U automata). Decidability can be regained if we keep separated lower
bound and upper bound parameters also in the linear constraint. In this case our ap-
proach relies on a bound for the set of minimal solutions of a linear constraint, given by
Pottier [15], and our results on unconstrained emptiness and universality.

Theorem 7. Constrained emptiness and constrained universality are undecidable for
L/U automata. However, if we restrict to constraints where each equation/inequality is
either over the set of lower bound parameters or over the set of upper bound parame-
ters, then the problems are PSPACE-complete.

Parametric dense-time linear temporal logic. We define the logic PMITL0,∞ as a
parametric extension of the logic MITL0,∞ [4]. We impose a restriction on the use of
parameters reflecting that imposed on the parameters of L/U automata (by [3], if we
remove this restriction, then basic decision problems become undecidable). To this aim
we fix two disjoint finite sets of parameters U and L, and denote with μ (resp., λ) a
linear expression over parameters U ∪ L such that each parameter from U (resp., L)
occurs positively and each parameter from L (resp., U ) occurs negatively.

PMITL0,∞ formulas ϕ over a finite set AP of atomic propositions are defined as:

ϕ := a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ U≺μ ϕ | ϕ U�λ ϕ | ϕ R≺λ ϕ | ϕ R�μ ϕ,

where a ∈ AP , ≺∈ {≤, <}, �∈ {≥, >} and U≺μ and U�λ (resp., R≺λ and R�μ) are
the parameterized versions of the until modality (resp., release modality).

PMITL0,∞ is interpreted over timed sequences over 2AP , defined as infinite se-
quences ρ = (σ0, I0)(σ1, I1) . . ., where for all i, σi ∈ 2AP , and I0, I1, . . . represents a
partition of R≥0 in non-empty intervals such that for all i, the upper bound of Ii equals
the lower bound of Ii+1. For t ∈ R≥0, let ρ(t) be the unique σi such that t ∈ Ii.

For a formula ϕ, a timed sequence ρ = (σ0, I0)(σ1, I1) . . ., a parameter valuation
v, and t ∈ R≥0, the satisfaction relation (ρ, v, t) |= ϕ under valuation v is defined as
follows (we omit the clauses for boolean connectives, which are standard).
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– (ρ, v, t) |= a ⇔ a ∈ ρ(t);
– (ρ, v, t) |= ϕ U≺μ ψ ⇔ for some t′ ≥ t such that t′ ≺ μ[v] + t, (ρ, v, t′) |= ψ

and (ρ, v, t′′) |= ϕ for all t ≤ t′′ < t′.
– (ρ, v, t) |= ϕ U�λ ψ ⇔ for some t′ � t + λ[v], (ρ, v, t′) |= ψ and (ρ, v, t′′) |= ϕ

for all t ≤ t′′ < t′.
– (ρ, v, t) |= ϕ R≺λ ψ ⇔ for all t′ such that t ≤ t′ ≺ λ[v]+ t, either (ρ, v, t′) |= ψ,

or (ρ, v, t′′) |= ϕ for some t ≤ t′′ < t′;
– (ρ, v, t) |= ϕ R�μ ψ ⇔ for all t′ � μ[v] + t, either (ρ, v, t′) |= ψ, or (ρ, v, t′′) |=

ϕ for some t ≤ t′′ < t′.

For a formula ϕ, a timed sequence ρ, and a parameter valuation v, ρ satisfies ϕ under
valuation v if (ρ, v, 0) |= ϕ. Note that we have defined PMITL0,∞ formulas in positive
normal form. It is simple to verify that the until and the release operators are dual, and
therefore, the logic is closed under semantic negation.

For such a logic, we study the related satisfiability and model-checking problems.
For a given PMITL0,∞ formula ϕ and an L/U automaton A such that the lower (resp.,
upper) bound parameters of A are from L (resp., U ), we consider the emptiness and
universality problems for the following sets of parameter valuations: the set S(ϕ) of
parameter valuations that make ϕ satisfiable, and the set V (A, ϕ) of parameter valu-
ations v for which every timed sequence accepted by [[A]]v satisfies ϕ. Note that the
semantics of L/U automata can be slightly modified such that an L/U automaton recog-
nizes timed sequences (see [4] for standard timed automata).

We solve the above decision problems by reducing them to corresponding problems
on L/U automata. The key of these reductions is the translation of a PMITL0,∞ formula
into an equivalent L/U automaton. Such translation relies on the construction given in
[4] for MITL0,∞ and TA.

Theorem 8. For a PMITL0,∞ formula ϕ and an L/U automaton A, checking for empti-
ness and universality of S(ϕ) and V (A, ϕ) is PSPACE-complete.

5 Conclusion

We have studied some decision problems on L/U automata. In particular, we have shown
that the emptiness and universality problems for the set of parameter valuations for
which there is an infinite accepting run are decidable and PSPACE-complete. This allows
us to prove decidability of a parametric extension of MITL0,∞. Furthermore, we have
studied a constrained version of emptiness and universality with parameters constrained
by linear systems of equations and inequalities. For the ease of presentation we do not
allow to specify clock invariants on locations of L/U automata. However, it is simple to
verify that the addition of invariants would not change the validity of our arguments.

There are other results that can be derived from those presented here. As an example,
we could combine the results on constrained decision problems along with those on
PMITL0,∞ to solve the constrained versions of the decision problems for PMITL0,∞.
Moreover, when all the parameters in the model are of the same type (i.e., either lower
bound or upper bound), it is possible to compute an explicit representation of the set
Γ (A) by linear constraints over parameters (this can be done similarly to what is done
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in [3] for PLTL). Also, we can solve some optimization problems on the parameter
valuations, which can be very interesting for system designers, and decide the finiteness
of the set Γ (A).

As future research, we think of the extension of our results to real-valued parameters.
The results we have shown in this paper answer only partially to this problem. Another
interesting direction is to investigate the parametric extension of MITL [4], where con-
straints are expressed in form of intervals as opposed to bounds as in PMITL0,∞. The
technique we have used here for PMITL0,∞ does not seem to scale to such a logic, and
a different approach may be required.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and
Computation 104(1), 2–34 (1993)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

3. Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for model measur-
ing. ACM Transactions on Computational Logic 2(3), 388–407 (2001)

4. Alur, R., Feder, T., Henzinger, Th.A.: The benefits of relaxing punctuality. Journal of the
ACM 43(1), 116–146 (1996)

5. Alur,R.,Henzinger,Th.A.,Vardi,M.Y.:Parametricreal-timereasoning.In:Proc.ofthe25thACM
Symposium on Theory of Computing (STOC’93), pp. 592–601. ACM Press, New York (1993)

6. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS, vol. 3185,
pp. 1–24. Springer, Heidelberg (2004)

7. Bruyère, V., Dall’Olio, E., Raskin, J.F.: Durations, Parametric Model-Checking in Timed
Automata with Presburger Arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS,
vol. 2607, pp. 687–698. Springer, Heidelberg (2003)

8. Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. In: Pandya,
P.K., Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 2914, pp. 100–111. Springer, Heidelberg (2003)

9. Emerson, E.A., Trefler, R.: Parametric Quantitative Temporal Reasoning. In: Proc. 14th Ann.
Symp. Logic in Computer Science (LICS’99), pp. 336–343. IEEE Computer Society Press,
Los Alamitos (1999)

10. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata.
Journal of Computer and System Sciences 57, 94–124 (1998)

11. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of
timed automata. Journal of Logic and Algebraic Programming 52,53, 183–220 (2002)

12. IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std 1394-1995
(August 1996)

13. Lamport, L.: A Fast Mutual Exclusion Algorithm. ACM Transactions Computer Sys-
tems 5(1), 1–11 (1987)

14. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46–77. IEEE Computer Society Press, Los Alamitos (1977)

15. Pottier, L.: Minimal solutions of linear diophantine systems: bounds and algorithms. In:
Book, R.V. (ed.) Rewriting Techniques and Applications. LNCS, vol. 488, pp. 162–173.
Springer, Heidelberg (1991)

16. Wang, F.: Parametric timing analysis for real-time systems. Information and Computa-
tion 130(2), 131–150 (1996)


	Decision Problems for Lower/Upper Bound Parametric Timed Automata
	Introduction
	Parametric Timed Automata
	Emptiness and Universality for Lower Bound Automata
	Decision Problems for L/U Automata
	Conclusion


