
Acta Informatica (2007) 44:75–90
DOI 10.1007/s00236-007-0040-5

O R I G I NA L A RT I C L E

Decision problems for pushdown threads

Jan A. Bergstra · Inge Bethke · Alban Ponse

Received: 22 March 2006 / Accepted: 23 January 2007 /
Published online: 22 March 2007
© Springer-Verlag 2007

Abstract Threads as contained in a thread algebra emerge from the behavioral
abstraction from programs in an appropriate program algebra. Threads may make
use of services such as stacks, and a thread using a single stack is called a pushdown
thread. Equivalence of pushdown threads is shown decidable whereas pushdown
thread inclusion is undecidable. This is again an example of a borderline crossing
where the equivalence problem is decidable, whereas the inclusion problem is not.

1 Introduction

A challenging question in language theory is to decide whether the languages accepted
by two different machines in some given class are the same. This question is called the
equivalence problem. Another important question, known as the inclusion problem,
is that of determining whether one language is a subset of another. The most obvious
connection between these two problems is that the latter implies the former, that is,
that any algorithm that decides inclusion for some family of languages can also be

J. A. Bergstra · I. Bethke · A. Ponse (B)
University of Amsterdam, Faculty of Science,
Programming Research Group, Amsterdam, The Netherlands
e-mail: alban@science.uva.nl
URL: http://www.science.uva.nl/∼alban

J. A. Bergstra
e-mail: janb@science.uva.nl
URL: http://www.science.uva.nl/∼janb

I. Bethke
e-mail: inge@science.uva.nl
URL: http://www.science.uva.nl/∼inge

J. A. Bergstra
Utrecht University, Department of Philosophy,
Applied Logic Group, Utrecht, The Netherlands

76 J. A. Bergstra et al.

used to decide equivalence. The question then arises whether the converse holds, i.e.,
whether there are natural examples of language families with a decidable equivalence
problem and an undecidable inclusion problem.

In 1973, Bird [9] found that the languages accepted by two-tape Rabin and Scott
machines possess a decidable equivalence problem and an undecidable inclusion
problem. Valiant explored this question further, finding two other families exhibiting
this feature: the languages accepted by deterministic finite-turn pushdown automata
[23] and deterministic one-counter pushdown automata [24]. In 1976, Friedman [10]
investigated another subclass of deterministic pushdown automata|simple machines
that have only one state and operate in real-time|and showed that these languages
indeed have an undecidable inclusion problem. More recently, e.g. erasing and noner-
asing pattern languages [14,18] and deterministic context-free languages [20,21] have
been added to this growing list.

In this paper we investigate yet another class: pushdown threads, a form of pro-
cesses describing sequential program behaviour and using the services offered by a
single stack. In this approach, threads as contained in a thread algebra emerge from
the behavioral abstraction from programs in an appropriate program algebra. A basic
thread models a finite program behaviour to be controlled by some execution environ-
ment: upon each action (e.g. a request for some service), a reply true or false from
the environment determines further execution. Any execution trace of a basic thread
ends either in the (successful) termination state or in the deadlock state. Both these
states are modeled as special thread constants. Regular threads extend basic threads
by comprising loop behaviour, and are reminiscent of flowcharts [15,11]. Threads may
make use of services, i.e., devices that control (part of) their execution by consuming
actions, providing the appropriate reply, and suppressing observable activity. Regular
threads using the service of a single stack are called pushdown threads. Apart from
the distinction between deadlock and termination, pushdown threads are comparable
to pushdown automata. We show that equivalence of pushdown threads is decidable,
whereas pushdown thread inclusion is undecidable.

The paper is structured as follows: in Sect. 2, we outline the fundamental properties
of thread algebra. In Sect. 3, we show that equivalence between pushdown threads
is decidable by reducing this problem to the equivalence problem for deterministic
pushdown automata [20–22]. In Sect. 4, we prove that inclusion is undecidable for
pushdown threads. Here we reduce the halting problem for Minsky machines to the
inclusion problem|an approach also taken in Jančar et al. [13]. The paper is ended
with some conclusions in Sect. 5.

2 Threads and services

Basic thread algebra [6],1 BTA, is a form of process algebra which is tailored for the
description of sequential program behaviour. Based on a finite set of actions A, it has
the following constants and operators:

– the termination constant S,
– the deadlock or inaction constant D,
– for each a ∈ A, a binary postconditional composition operator _ � a � _.

1 In [5], basic thread algebra is introduced under the name basic polarized process algebra.

Decision problems for pushdown threads 77

The operational intuition behind this algebraic framework is that each action rep-
resents a command which is to be processed by the execution environment of the
thread. More specifically, an action is taken as a command for a service offered by
the environment. The processing of a command may involve a change of state of
this environment. At completion of the processing of the command, the service con-
cerned produces a reply value. This reply is either true or false and is returned
to the thread under execution. The thread P � a � Q will then proceed as P if the
processing of a leads to the reply true indicating the successful processing of a, and
it will proceed as Q if the processing of a leads to the unsuccessful reply false.

Technically speaking, a basic thread can be viewed as a finite binary tree with leaves
in {S, D}. As an example, we can depict the basic thread (S � b � D) � a � S in the
following way:

〈 a 〉
��� ���

〈 b 〉
��� ���

S

S

D

where 〈 a 〉
��� ���

≈ P � a � Q.

P Q

The inclusion relation � on threads in BTA is the partial ordering generated by
the clauses

1. For all P ∈ BTA, D � P, and
2. For all P1, P2, Q1, Q2 ∈ BTA, a ∈ A,

P1 � Q1 & P2 � Q2 ⇒ (P1 � a � P2) � (Q1 � a � Q2).

For example, (S � b � D) � a � S includes itself and six other threads.
Every thread in BTA is finite in the sense that there is a finite upperbound

to the number of consecutive actions it can perform. The approximation operator
π : N × BTA → BTA is determined by the equations

1. For all P ∈ BTA, π(0, P) = D,
2. For all n ∈ N, π(n + 1, S) = S,
3. For all n ∈ N, π(n + 1, D) = D, and
4. For all P, Q ∈ BTA, n ∈ N,

π(n + 1, P � a � Q) = π(n, P) � a � π(n, Q).

We further write πn(P) instead of π(n, P). The operator π finitely approximates every
thread in BTA. That is, for all P ∈ BTA,

∃n ∈ N π0(P) � π1(P) � · · · � πn(P) = πn+1(P) = · · · = P.

Taking P = (S � b � D) � a � S, we find π2(P)
= π3(P) = P.
Following the metric theory of [1] in the form developed as the basis of the intro-

duction of processes in [4], BTA has a completion BTA∞ which comprises also the
infinite threads. Standard properties of the completion technique yield that we may
take BTA∞ as the cpo consisting of all so-called projective sequences. That is,

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & πn(Pn+1) = Pn)}

78 J. A. Bergstra et al.

with

(Pn)n∈N � (Qn)n∈N ⇔ ∀n ∈ N Pn � Qn,

and

(Pn)n∈N = (Qn)n∈N ⇔ ∀n ∈ N Pn = Qn.

For a detailed account of this construction see [2]. In this cpo structure, finite linear
recursive specifications represent continuous operators having as unique fixed points
regular threads, i.e., threads which can only reach finitely many states. A finite linear
recursive specification over BTA∞ is a set of equations

Xi = ti(X)

for i ∈ I with I some finite index set and all ti(X) of the form S, D, or Xil � ai � Xir for
il, ir ∈ I. Before we provide some examples, we introduce action prefixing

a ◦ P

as an abbreviation for P � a � P and take ◦ to bind strongest. Furthermore, for n ∈ N

we define an ◦ P by a0 ◦ P = P and an+1 ◦ P = a ◦ (an ◦ P). In the following example
we consider some threads defined by a recursive specification.

Example 1 For n ≥ 0 we define the regular threads

1. an ◦ D,
2. an ◦ S and
3. a∞ (this informal notation will be often used in the sequel)

as the fixed points for X1 in the specifications

1. Xk = a ◦ Xk+1 for 1 ≤ k ≤ n and Xn+1 = D,
2. Xk = a ◦ Xk+1 for 1 ≤ k ≤ n and Xn+1 = S,
3. X1 = a ◦ X1, respectively.

Both an ◦ D and an ◦ S are finite threads. The thread a∞ corresponds to the projective
sequence (Pn)n∈N with P0 = D and Pn+1 = a ◦ Pn. Observe that e.g. an ◦ D � an ◦ S,
an ◦ D � a∞ but an ◦ S
� a∞.

In reasoning with finite linear specifications, we shall from now on identify vari-
ables and their fixed points. For example, we say that P is the regular thread defined
by P = a ◦ P instead of stating that P equals the fixed point for X1 in the finite linear
specification X1 = a ◦ X1. Furthermore, in a finite linear specification

P1 = t1(P), . . . , Pn = tn(P), (1)

(with n ≥ 1) the threads Pi will sometimes be referred to as states.
Using these conventions, we can easily argue that P � Q is decidable for regular

threads P and Q (of course, � is decidable for finite threads). Because one can always
take the disjoint union of two recursive specifications it suffices to show that given (1)
above, Pi � Pj is decidable. We prove this from the following assertion:

∀i, j ≤ n πn(Pi) � πn(Pj) ⇒ Pi � Pj (2)

where πl(Pk) is defined by πl(tk(P)). To prove (2), assume that n > 1 and πn(Pi) �
πn(Pj) for certain i, j. Now suppose Pi
� Pj. Then, for some k > n, πk(Pi)
� πk(Pj)

Decision problems for pushdown threads 79

while πk−1(Pi) � πk−1(Pj). So, writing atrue (afalse) for action a followed by reply
true (false, respectively), there exists a trace of length k from Pi of the form

Pi
atrue−−−−→ Pi′

bfalse−−−−→ . . .

that is not a trace of Pj, while by the assumption the first n actions of this trace are a
trace of Pj. These n actions are connected by n+1 states, and because there are only n
different states, a repetition occurs in this sequence of states. So the traces witnessing
πk(Pi)
� πk(Pj) can be made shorter, contradicting k’s minimality and hence the
supposition. Thus Pi � Pj. As a corollary, also P = Q is decidable for regular threads
P and Q.

Services model (part of) the execution environment of threads. A service is a pair
〈Σ , F〉 consisting of a setΣ of special actions and a reply function F. The reply function
F of a service 〈Σ , F〉 is a mapping that gives for each finite sequence of actions from
Σ the reply produced by the service. This reply is a Boolean value true or false.

Example 2 Services that will occur in Sect. 3 and 4 are

1. C = 〈Σ , F〉 with Σ = {inc,dec} consisting of the increase and decrease actions
of a natural number counter and the reply function F which always replies true
to an increase action inc, and false to a decrease action dec if and only if the
counter value is zero. We denote by C(n) a counter with value n.

2. S = 〈Σ , F〉 with Σ = {push:i,topeq:i,empty,pop | i = 1, . . . ,n} for some n
where push:i pushes i onto the stack and yields reply true, the action topeq:i
tests whether i is on top of the stack, empty tests whether the stack is empty,
and pop pops the stack if it is non-empty with reply true and yields false
otherwise. We denote by S(α) a stack with contents α ∈ {1, . . . ,n}∗. Observe that
counters can be seen as particular stacks (take n = 1).

In order to provide a specific description of the interaction between a thread and
a service, we will use for actions the general notation c.a where c is the so-called
channel and a is the so-called co-action. In particular, we will write e.g. c.inc to
denote the action which increases a counter via channel c and s.pop to denote the
action which pops a stack via channel s. For a service S = 〈Σ , F〉 and finite threads P
and Q, the defining rules for the use operator /c , where P/c S represents the thread
P using the service S via channel c, are:

S/c S = S,
D/c S = D,

(P � c′.a � Q)/c S = (P/c S) � c′.a � (Q/c S) if c′
= c,
(P � c.a � Q)/c S = P/c S ′ if a ∈ Σ and F(a) = true,
(P � c.a � Q)/c S = Q/c S ′ if a ∈ Σ and F(a) = false,
(P � c.a � Q)/c S = D if a
∈ Σ ,

where S ′ = 〈Σ , F ′〉 with F ′(σ) = F(aσ) for all co-action sequences σ ∈ Σ+. So, in
a thread-service composition P/c S, the task of S is to support P in its execution:
actions processed by S are solely used to control execution and are not observable
(or ‘external’). Upon S or D, the service is forgotten and so is the state it is in.

The use operator /c is expanded to infinite threads P by stipulating

P/c S = (πn(P)/c S)n∈N.

80 J. A. Bergstra et al.

Fig. 1 The thread P0 as
defined in Example 4

P0:

P1:

P2:

a

a

a

.....
a a

D

a

D
a

D

where a ≈ P a Q.

P Q

As a consequence, P/cS = D if for any n,πn(P)/cS = D. Finally, repeated applications
of the use operator bind to the left, thus P/c0 S0/c1 S1 = (P/c0 S0)/c1 S1.

Thread-service composition was introduced in [7] (in that paper a service is called
a state machine). In other papers on program and thread algebra (e.g., in [2,3,6,8,19]),
channel and co-action are often referred to as focus and method, respectively.

Example 3 We consider again the threads an ◦ D, an ◦ S and a∞ from Example 1 but
now in the versions c.an ◦D (short for (c.a)n ◦D), c.an ◦S and c.a∞ for some channel
c and some service S = 〈Σ , F〉 with a ∈ Σ . Then (c.an ◦ D)/c S = D and therefore
c.a∞/c S = D, and (c.an ◦ S)/c S = S.

In the next example we show that the use of services may turn regular threads into
non-regular ones. This example will play an important role in Sect. 4.

Example 4 Let a ∈ A. Consider the following regular thread P: 2

P = (c0.inc ◦ P) � a � ((P � c0.dec � D) � a � (D � c0.dec � P)).

With the counter C defined in Example 2, define for n ∈ N the thread Pn by

Pn = P/c0 C(n).

This definition yields the following infinite recursive specification:

P0 = P1 � a � (D � a � P0)

Pk+1 = Pk+2 � a � (Pk � a � D) for k ∈ N.

The thread P0 can be depicted as in Fig. 1.
Now assume that Pn � Pm for some n
= m, say n > m. Then, by the recursive

equations above,

(Pn−m−1 � a � D) � (D � a � P0).

It is clear that � does not hold, thus we obtained a contradiction and Pn
� Pm. In the
same way it follows that Pn
� Pm. We conclude that P0 is not regular: for each k ∈ N,
the state Pk can be reached, and if n
= m then the states Pn and Pm are different.

We finish this example with the observation that for all n ∈ N, Pn � a∞ (this follows
from πk(Pn) � πk(a∞) = ak ◦ D for all k) and Pn
� S. We will use these properties in
Sect. 4.

We call a regular thread that uses a stack or a counter as described in Example 2 a
pushdown thread. Typically, any thread Pk defined in Example 4 is a pushdown thread.

2 Note that a linear recursive specification requires (at least) six equations in this case.

Decision problems for pushdown threads 81

3 Decidable equality

In this section we prove the decidability of P/s S(α) = Q/s S(β) for regular threads
P and Q, and a stack S over some finite data type with contents α, respectively β. We
first discuss deterministic pushdown automata (dpda’s). Then we exploit the decid-
ability result establishing dpda-equivalence by Sénizergues in [20,21]. We base our
proof on Stirling’s formulation of this result in [22], as this is closer to the equivalence
of pushdown threads. Henceforth we shall write ε for the empty sequence over any
alphabet.

A pushdown automaton (pda) A is given by a finite set P of states, a finite set S of
stack symbols, a finite alphabet A, and a finite set of basic transitions of the form

Px a−−→ Qα

with P, Q ∈ P, x ∈ S, a ∈ A ∪ {ε}, and α ∈ S
∗. A configuration of A is any expression

Pα whose behaviour is determined by the basic transitions and the prefix rule

if Px a−−→ Qα then Pxβ a−−→ Qαβ.

The language accepted by a configuration Pα, notation

L(A, Pα),

is {w ∈ A
∗ | ∃Q ∈ P.Pα w−−→ Q} where the extended transitions for words are defined

as expected. Note that ε-transitions are swallowed in the usual fashion and that accep-
tance is by empty stack. Also note that L(A, Pε) = ∅.

A deterministic pushdown automaton (dpda) A′ has two restrictions on its basic
transitions:

– if Px a−−→ Qα and Px a−−→ Rβ for a ∈ A ∪ {ε}, then Q = R and α = β,
– if Px ε−−→ Qα and Px a−−→ Rλ then a = ε (and Q = R and α = λ).

Note that the language accepted by any configuration of a dpda A′ is prefix-free: if w
is accepted then no proper prefix of w is accepted. For dpda’s it is decidable whether
L(A′, Pα) = L(A′, Qβ), as was proved in [22]. With this decidability result we can
easily prove the main result of this section: we only have to show how to deal with
an initially empty stack, with a non-empty stack upon termination (S), and with both
forms of divergence, i.e. “infinite words” (an infinite trace of external actions) and
deadlock (D).

Theorem 1 For regular threads P and Q, and a stack S over a finite data type it is
decidable whether

P/s S(α) = Q/s S(β),

where α, β represent the contents of S.

Proof Let S be the (empty) stack controlled by the actions

{s.push:i,s.topeq:i,s.empty,s.pop | i = 1, . . . ,n}
for some n ≥ 1. We write S(α) if the stack contains the elements from sequence
α ∈ {1, . . . ,n}∗ with the leftmost element of α on top. Furthermore, s.push:i pushes
i onto the stack and yields reply true, the action s.topeq:i tests whether i is on

82 J. A. Bergstra et al.

top of the stack, s.empty tests whether the stack is empty, and s.pop pops the stack
if it is non-empty (reply true) and yields false otherwise. Finally, assume without
loss of generality that both P and Q are defined by a single finite linear specification.
Using four transformations, we reduce our question P/s S(α) = Q/s S(β) to the the
dpda-equivalence problem as discussed above.

Adapting the stack contents. In order to use the dpda-equivalence result in [22],
the stack should be non-empty at the start and empty upon termination (S) because
language acceptance is by empty stack and starts from configurations with non-empty
stack. This can be achieved as follows:

– Let S0 be the stack over {0,1, . . . ,n} (the stack symbol 0 will be used as an empty
stack marker).

– In the specification of P and Q,
1. Replace each equation R = Rl � s.empty � Rr by

R = Rl � s.topeq:0 � Rr,
2. Replace each equation R = Rl � s.pop � Rr by

R = Rr � s.topeq:0 � s.pop ◦ Rl,
3. Replace each equation R = S by R = s.pop ◦ S (where S is fresh), and
4. Add the equation S = S � s.pop � S.

Call the resulting threads P0 and Q0, respectively, and assume these are given by an
appropriate adaptation of the linear specification of P and Q (note that s.push:0
and s.empty do not occur in this specification). It follows straightforwardly that for
α,β ∈ {1, . . . ,n}∗,

P/s S(α) = Q/s S(β) ⇔ P0/s S0(α0) = Q0/s S0(β0),

and that upon S, the stack S0 is empty.
Replacement of D by explicit loops. In the specification of P0 and Q0, replace

each equation R = D by R = s.push:1 ◦ L (where L is fresh) and add the equation
L = s.push:1 ◦ L. Call the resulting threads P1 and Q1, respectively, for some appro-
priate adaptation to a linear recursive specification. Again it is straightforward that
for α,β ∈ {1, . . . ,n}∗,

P0/s S0(α0) = Q0/s S0(β0) ⇔ P1/s S0(α0) = Q1/s S0(β0),

and that upon S, the stack S0 is empty.
Normalization of infinite traces. Let halt be a fresh external action. Replace in P1

and Q1’s specification each equation R = Rl � a � Rr with a an external action by
R = S � halt � (Rl � a � Rr). Call the resulting threads P2 and Q2, respectively. Again
it is straightforward that for α,β ∈ {1, . . . ,n}∗,

P1/s S0(α0) = Q1/s S0(β0) ⇔ P2/s S0(α0) = Q2/s S0(β0),

and that upon S, the stack S0 is empty. Moreover, each infinite sequence of external
actions in P1/s S0(α0) or Q1/s S0(β0) becomes after this transformation interlarded
with halt ◦ S exits, so gives rise to an infinite number of (finite) traces.

Transformation to dpda-equivalence. From the linearized specification of P2 and
Q2, construct a pda A as follows: for P, the set of states, take those of the linear
specification; for S, the set of stack symbols, take {0, . . . ,n}; and for the alphabet A

take {atrue, afalse | a an external action in P2 or Q2}. As for the basic transitions,

– for each equation R = Rl � a � Rr with a an external action and i ∈ {0, . . . ,n},
define transitions Ri atrue−−−−→ Rli and Ri afalse−−−−→ Rri,

Decision problems for pushdown threads 83

– for each equation R = Rl � s.push:j � Rr and i ∈ {1, . . . ,n}, define transitions
Ri ε−−→ Rlji,

– for each equation R = Rl � s.topeq:j � Rr and i ∈ {0,1, . . . ,n} \ {j}, define
transitions Ri ε−−→ Rri, and define a transition Rj ε−−→ Rlj,

– for each equation R = Rl � s.pop � Rr and i ∈ {0, . . . ,n}, define transitions
Ri ε−−→ Rl.

It follows immediately that for α,β ∈ {1, . . . ,n}∗,

P2/s S0(α0) = Q2/s S0(β0) ⇔ L(A, P2α0) = L(A, Q2β0).

Finally, observe that A’s transition relation is deterministic. Therefore A is a dpda and
we are done. ��

We conclude this section with a short comment. The restriction to a stack over
a finite data type is not essential for the decidability of equality between pushdown
threads: also for a stack SN over the natural numbers N and regular threads P and Q it
holds that P/s SN(α) = Q/s SN(β) is decidable. This can be seen by representing nat-
ural numbers in some unary notation and using a second data element as a separator.
For example,

011101101111

represents the stack containing 2, 1, 3 (so, the natural number n is represented by n+1
pushes of 1). For any i ∈ N, the actions s.push:i and s.topeq:i can be expressed
in this notation, albeit a bit cumbersome. The action s.pop is easier to define, and
s.empty need not be redefined. Thus given regular threads P and Q, there exists a
transformation φ (depending on the stack-actions in P and Q) such that

P/s SN(α) = Q/s SN(β) ⇔ φ(P)/s S(α) = φ(Q)/s S(β)

where S is the stack over {0,1} and α transforms a sequence of natural numbers as
indicated above.

Successor and predecessor for SN can be easily defined using the representation
discussed here. This is not the case for any action controlling SN. For instance, an
action swap that exchanges the two top-elements of SN is not definable because with
this action the functionality of a Minsky machine (discussed in Sect. 4) is obtained: use
the bottom stack position to hold the value of the first counter, and the top position
for the value of the second counter. So with swap equality is not decidable.

4 Undecidable inclusion

The Minsky machine is a universal model of computation first used in [16,17]. It is a
simple imperative program consisting of a sequence of instructions labelled by natural
numbers from 1 to some L. It starts from the instruction labelled 1, halts if stop is
reached and operates with two natural number counters c0 and c1. The instruction
set consists of three types of instructions:

1. l : ci := ci + 1;goto l′
2. l : if ci = 0 then goto l′ else ci := ci − 1;goto l′′
3. l : stop

84 J. A. Bergstra et al.

where i ∈ {0,1} and l,l′,l′′ ∈ {1, . . . ,L}. It should be clear that the execution pro-
cess is deterministic and has no failure. Any such process is either finished by the
execution of the stop instruction or lasts forever. As expected, the halting problem
for Minsky machines is undecidable:

Theorem 2 (Minsky [16,17]) It is undecidable whether a Minsky machine halts when
both counter values are initially zero.

In our setting, a counter C is a service 〈Σ , F〉 as defined in Example 2.1, i.e., with
increase and decrease actions Σ = {inc,dec} and a reply function F which always
replies true to inc, and false to dec if and only if the counter value is zero. We
write C(n) for a counter C with value n. A Minsky machine canonically defines the
equations of a specification of a regular thread:

l : ci := ci + 1;goto l′
l : ifci = 0 then goto l′

else ci := ci − 1;goto l′′
l : stop

�→ Ml = ci.inc ◦ Ml′
�→ Ml = Ml′′ � ci.dec � Ml′

�→ Ml = S.

We call a thread Ml as defined above a Minsky thread, thus a regular thread over S
and the counter actions c0.inc,c0.dec,c1.inc,c1.dec where the channels c0 and
c1 refer to the two internal counters C0 and C1, respectively. The halting problem for
Minsky machines can now be rephrased as follows:

Theorem 3 It is undecidable whether for a Minsky thread M it holds that

M/c0 C0(0)/c1 C1(0) = S.

(Of course, if M/c0 C0(0)/c1 C1(0)
= S, it equals D.) The undecidability proof that
follows consists of a reduction from the above halting problem to the inclusion prob-
lem for the use of a single internal counter|and thus to the inclusion problem for the
use of a single internal stack.

For technical purposes we introduce the norm of a Minsky thread operating on
counters C0(n) and C1(m) as the number of counter actions until termination occurs
(possibly ∞). The norm is formally defined with help of a transformation θ of finite
linear recursive specifications.

Definition 1 (Norm) Let M1 be a Minsky thread defined by a finite linear recursive
specification E = {Mn = tn(M) | n = 1, . . . , k} (for some k > 0) and let a be some
action. Define θ(E) = {θ(Mn) = θ(tn(M)) | n = 1, . . . , k} and define θ(tn(M)) by

1. θ(S) = S, and
2. For i ∈ {0, 1} and b ∈ {inc,dec},

θ(Ml � ci.b � Mr) = a ◦ θ(Ml) � ci.b � a ◦ θ(Mr).

For n, m ∈ N define the norm ‖M1, n, m‖ ∈ N ∪ {∞} by ‖M1, n, m‖ = 0 if θ(M1) = S ∈
θ(E), and for k > 0,

‖M1, n, m‖ = k if

{
πk+1(θ(M1)/c0 C0(n)/c1 C1(m)) = ak ◦ S and
πk(θ(M1)/c0 C0(n)/c1 C1(m)) = ak ◦ D.

For n, m ∈ N, ‖M1, n, m‖ = ∞ if for no k ∈ N, ‖M1, n, m‖ = k.

Decision problems for pushdown threads 85

Note that
‖M, n, m‖ ∈ N ⇔ M/c0 C0(n)/c1 C1(m) = S. (3)

So the question whether ‖M, n, m‖ ∈ N is undecidable.
We now introduce a transformation ψ of Minsky threads which replaces specific

runs with the second counter C1(0) by regular threads where the C1-actions are simu-
lated by external actions a. This transformation is such that the behaviour of a Minsky
thread M is preserved in the following sense:

M/c0 C0(0)/c1 C1(0) = S ⇔ P0
� ψ(M)/c0 C0(0),

where P0 is the pushdown thread defined in Example 4. The reply choices to the
a-actions in our simulated thread lead the way to the distinguishing properties D � S,
D � a∞, and P0
� S, P0 � a∞. A small technical complication of our transformation
is that each C0-action is preceded by the simulation of a c1.inc ◦ c1.dec-prefix. The
reason for this is that divergence on C0-actions in the original Minsky thread (as in
c0.inc∞) then also yields an infinite sequence of simulating a-actions, which enables
us to use a smooth proof strategy.

Definition 2 (Simulation) Let M1 be a Minsky thread defined by a finite linear recur-
sive specification E = {Mn = tn(M) | n = 1, . . . , k} (for some k > 0). Define ψ(E) =
{ψ(Mn) = ψ(tn(M)) | n = 1, . . . , k} and define ψ(tn(M)) by

1. ψ(S) = S,

2. ψ(Mi � c1.inc � Mj) = ψ(Mi) � a � a∞,

3. ψ(Mi � c1.dec � Mj) = a∞ � a � (ψ(Mi) � a � ψ(Mj)), and

4. ψ(Mi � c0.b � Mj) = [a∞ � a � a ◦ (ψ(Mi) � c0.b � ψ(Mj))] � a � a∞
for b ∈ {inc,dec}.

We note that a∞/c0 C0(n) = a∞ and therefore we omit any such use-application in
reasoning about ψ(M)/c0 C0(n).

In order to prove undecidability of inclusion we use the family Pk (k ∈ N) of
pushdown threads discussed in Example 4:

Definition 3 For n ∈ N, define Pn = P/c0 C0(n) by

P = (c0.inc ◦ P) � a � ((P � c0.dec � D) � a � (D � c0.dec � P)).

This definition yields the following infinite recursive specification:

P0 = P1 � a � (D � a � P0)

Pk+1 = Pk+2 � a � (Pk � a � D) for k ∈ N.

Note that for all n, Pn � a∞ and Pn
� S (see Example 4). For future reference we
derive the following identities:

P0 = [P2 � a � (P0 � a � D)] � a � (D � a � P0) (4)

and for m > 0,

Pm = [Pm+2 � a � (Pm � a � D)] � a � (Pm−1 � a � D) (5)

As stated before, we shall prove that for any Minsky thread M,

M/c0 C0(0)/c1 C1(0) = S ⇔ P0
� ψ(M)/c0 C0(0).

86 J. A. Bergstra et al.

We first prove this equivalence for Minsky threads that use counters with arbitrary
initial values (Corollaries 1 and 2, respectively). To enhance readability we shall write
in proofs

M/n/m for M/c0 C0(n)/c1 C1(m) , and
ψ(M)/n for ψ(M)/c0 C0(n).

Lemma 1 Let k ∈ N. For all Minsky threads M and for all n, m ∈ N,

‖M, n, m‖ = k ⇒ Pm
� ψ(M)/c0 C(n). (6)

Proof By induction on k using case ramification, i.e., considering all possible forms
of the equation specifying M.

• k = 0. If ‖M, n, m‖ = 0, then M = S must be M’s defining equation and (6)
follows immediately.

• k > 0. If ‖M, n, m‖ = k, there are four possible forms for the equation specifying
M:

(a) M = Mi � c0.inc � Mj. Then ‖Mi, n+1, m‖ = k−1 and

ψ(M)/n = (a∞ � a � a ◦ ψ(Mi)/n+1) � a � a∞. (7)

By induction Pm
� ψ(Mi)/n+1. Assume Pm � ψ(M)/n. Then by (4) or (5) and
(7), Pm � ψ(Mi)/ n+1, contradicting the induction hypothesis. Hence Pm
�
ψ(M)/n.

(b) M = Mi � c0.dec� Mj. This case is proved similarly, making a case distinction
between n = 0 and n > 0.

(c) M = Mi � c1.inc � Mj. Then ‖Mi, n, m+1‖ = k−1 and

ψ(M)/n = ψ(Mi)/n � a � a∞. (8)

By induction Pm+1
� ψ(Mi)/n. Assume Pm � ψ(M)/n. Then by definition of
Pm and (8), Pm+1 � ψ(Mi)/ n, contradicting the induction hypothesis. Hence
Pm
� ψ(M)/n.

(d) M = Mi � c1.dec � Mj. Then

ψ(M)/n = a∞ � a � (ψ(Mi)/n � a � ψ(Mj/n). (9)

Let m = 0. Then ‖Mj, n, 0‖ = k−1 and by induction P0
� ψ(Mj)/ n. Assume
P0 � ψ(M)/n. Then by definition of P0 and (9), P0 � ψ(Mj)/n, contradicting
the induction hypothesis. Hence P0
� ψ(M)/n.

Let m > 0. Then ‖Mi, n, m−1‖ = k−1 and by induction Pm−1
� ψ(Mi)/ n. Assume
Pm � ψ(M)/n. Then by definition of Pm and (9), Pm−1 � ψ(Mi)/n, contradicting the
induction hypothesis. Hence Pm
� ψ(M)/n. ��
Combining (3) and Lemma 1 immediately yields the following corollary:

Corollary 1 For all Minsky threads M and for all n, m ∈ N,

M/c0 C0(n)/c1 C1(m) = S ⇒ Pm
� ψ(M)/c0 C0(n).

The next result is about the inclusion of finite approximations.

Decision problems for pushdown threads 87

Lemma 2 For all k ∈ N, Minsky threads M and n, m ∈ N,

M/c0 C0(n)/c1 C1(m) = D ⇒ πk(Pm) � πk(ψ(M)/c0 C0(n)). (10)

Proof By induction on k with base cases k = 0 and k = 1.
If k = 0 then (10) follows trivially.
If k = 1 and M/ n/m = D, then M = S is not M’s defining equation. Therefore,

π1(ψ(M)/n) = a ◦ D = π1(Pm), which proves (10). (Note that already in this case it
is essential that ψ introduces a-actions in the transformation of c0-equations.)

Assume k ≥ 2 and M/n/m = D. Again, M = S can not be M’s defining equation.
Consider the remaining four possibilities for M’s defining equation:

(a) M = Mi � c0.inc � Mj. Then Mi/n+1/m = D and

πk(ψ(M)/n) = [πk−2(a∞) � a � πk−2(a ◦ ψ(Mi)/n+1)] � a � πk−1(a∞).

By induction, πl(Pm) � πl(ψ(Mi)/n+1) for l < k. Assume m = 0. Then by (4)

πk(P0) = [πk−2(P2) � a � πk−2(P0 � a � D)] � a � πk−1(D � a � P0)

� [πk−2(a
∞) � a � πk−2(a ◦ ψ(Mi)/n+1)] � a � πk−1(a

∞)
= πk(ψ(M)/n).

Assume m > 0. Then by (5)

πk(Pm) = [πk−2(Pm+2) � a � πk−2(Pm � a � D)] � a � πk−1(Pm−1 � a � D)

� [πk−2(a
∞) � a � πk−2(a ◦ ψ(Mi)/n+1)] � a � πk−1(a

∞)
= πk(ψ(M)/n).

(b) M = Mi � c0.dec � Mj. Assume n = 0. Then Mj/0/m = D and

πk(ψ(M)/0) = [πk−2(a∞) � a � πk−2(a ◦ ψ(Mj)/0)] � a � πk−1(a∞).

By induction, πl(Pm) � πl(ψ(Mj)/0) for l < k. As in case a), it follows that both
for m = 0 and m > 0,

πk(Pm) � [πk−2(a∞) � a � πk−2(a ◦ ψ(Mj)/0)] � a � πk−1(a∞)
= πk(ψ(M)/n).

The case n > 0 is proved similarly.
(c) M = Mi � c1.inc � Mj. Then Mi/n/m+1 = D and

πk(ψ(M)/n) = πk−1(ψ(Mi)/n) � a � πk−1(a
∞).

By induction, πl(Pm+1) � πl(ψ(Mi)/0) for l < k. Assume m = 0. Then

πk(P0) = πk−1(P1) � a � πk−1(D � a � P0)

� πk−1(ψ(Mi)/n) � a � πk−1(a∞)
= πk(ψ(M)/n).

Assume m > 0. Then

πk(Pm) = πk−1(Pm+1) � a � πk−1(Pm−1 � a � D)
� πk−1(ψ(Mi)/n) � a � πk−1(a∞)
= πk(ψ(M)/n).

88 J. A. Bergstra et al.

(d) M = Mi �c1.dec� Mj. This case can be proved in a similar style, again making
a case distinction between m = 0 and m > 0. ��

In the proof above, the cases a) and b) clearly motivate ψ ’s definition on c0-terms:
the simulation of a “c1.inc ◦ c1.dec-prefix” generates in the case of divergence on
C0 the thread a∞, which is needed to include Pm. Lemma 2 immediately extends to
the inclusion of infinite threads:

Corollary 2 For all Minsky threads M and for all n, m ∈ N,

M/c0 C0(n)/c1 C1(m) = D ⇒ Pm � ψ(M)/c0 C0(n).

Corollary 1 and Corollary 2 connect the halting problem for Minsky machines and
inclusion between certain pushdown threads:

Corollary 3 Let M be a Minsky thread. Then

M/c0 C0(0)/c1 C1(0) = S ⇔ P0
� ψ(M)/co C0(0).

Since counters can be seen as particular stacks, we can by Corollary 3 summarize
the reduction from the halting problem for Minsky machines and threads (Theo-
rems 2 and 3) to the main result of this section:

Theorem 4 It is undecidable whether for a stack S and regular threads P and Q it holds
that

P/s S(α) � Q/s S(β).

5 Conclusions

Pushdown threads can be used in program algebra based semantics of sequential or
object-oriented programming, for instance as described in [3]. In that approach, a
single stack is used to store the arguments of a method call. Furthermore, pushdown
threads are important for the theoretical foundation of program algebra itself, for
instance admitting easy definitions of programming notations in which recursion can
be expressed. This explains our interest in the decidability result proved in Sect. 3.

The undecidability of inclusion for pushdown threads is proved using a particular
reduction of the halting problem for Minsky machines in which one of the counters
is “weakly simulated”. This method of Jančar is recorded first in 1994 [12], where it is
used to prove various undecidability results for Petri nets. In 1999, Jančar et al. [13]
used the same idea to prove the undecidability of simulation preorder for processes
generated by one-counter machines, and this is most comparable to our approach.3

However, in our case the inclusion relation itself is a little more complex than in pro-
cess simulation or language theory because D � P for any thread P. Moreover, threads
have restricted branching, and therefore transforming a regular (control) thread into
one that simulates one of the counters of a Minsky machine is more complex than
in the related approaches referred to above. Also, the particular thread P0 used to
prove our undecidability result (Corollary 3) is more sequentially structured than the
related nets/processes in [12,13].

3 Indeed, distinguishing the class of one-counter threads, i.e., regular threads using a single counter,
as a proper subclass of the pushdown threads, we have shown the slightly stronger result that inclusion
for one-counter threads is undecidable. More results on one-counter threads can be found in [19].

Decision problems for pushdown threads 89

We end this paper with a few remarks on the motivation for the use of our threads.
We started off by stating that “threads as contained in a thread algebra emerge from
the behavioral abstraction from programs in an appropriate program algebra”. This is
the source of our use of threads and merits some further elaboration. In [5], program
algebra was introduced as an approach that connects various sequential programming
notations, distinguishing the simple program algebra PGA as a basis. The crucial prop-
erty of a PGA-program is that it represents nothing more than a (finite or infinite)
sequence of primitive instructions. More advanced programming notations (e.g. com-
prising goto’s, conditionals or while’s) are defined on top of PGA. Any program in
such an advanced notation is given semantics by a projection to PGA. The execution
(or ‘behavioral semantics’) of PGA-programs is defined by so-called thread extrac-
tion: each PGA-program defines a regular thread (in BTA∞), and conversely, each
regular thread is specifiable as a PGA-program. Furthermore, a pushdown thread can
be considered as resulting from an ‘architecture’ that governs the interaction between
a program (text) that defines the regular control, and a stack service in some initial
state that supports execution. The so-called analytic execution architecture then spec-
ifies their interaction upon execution. In [8] we study such execution architectures for
program algebra and come up with some basic results about, amongst other things,
the modeling of Turing machines and rational agents that support optimal behaviour.

Acknowledgments We thank two reviewers for their valuable remarks and constructive suggestions.
We thank the organizers of the Logic Colloquium 2005 in Athens for providing the opportunity to
present this paper.

References

1. de Bakker, J.W., Zucker, J.I.: Processes and the denotational semantics of concurrency. Informa-
tion Control 54(1/2), 70–120 (1982)

2. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Automata, Languages and Programming, 30th
International Colloquium, ICALP, LNCS, vol. 2719, pp. 1–21. Springer, Eindhoven, 30 June–4
July 2003)

3. Bergstra, J.A., Bethke, I.: Predictable and reliable program code: virtual machine-based projec-
tion semantics. In: Electronic Report PRG0603, Programming Research Group, University of
Amsterdam. Submitted for inclusion in the Handbook of Network and Systems Administration
(2006)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information Con-
trol 60(1/3), 109–137 (1984)

5. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. J. Logic Algebraic Pro-
gram. 51(2), 125–156 (2002)

6. Bergstra, J.A., Middelburg, C.A.: A thread algebra with multi-level strategic interleaving. In:
Cooper, S.B., Loewe, B., Torenvliet, L. (eds.) CiE 2005, Springer, LNCS, vol. 3526, pp. 35–48
(2005)

7. Bergstra, J.A., Ponse, A.: Combining programs and state machines. J. Logic Algebraic Pro-
gram. 51(2), 175–192 (2002)

8. Bergstra, J.A., Ponse, A.: Execution architectures for program algebra. J. Appl. Logic 5(1), 170–
192 (2007)

9. Bird, M.: The equivalence problem for deterministic two-tape automata. J. Comput. Syst.
Sci. 7(2), 218–236 (1973)

10. Friedman, E.P.: The inclusion problem for simple languages. Theoret. Comput. Sci. 1, 297–316
(1976)

11. Greibach, S.: Theory of Program Structures: Schemes, Semantics, Verification, Springer,
Heidelberg (1975)

90 J. A. Bergstra et al.

12. Jančar, P.: Decidability questions for bisimilarity of Petri nets and some related problems. In:
Proceedings of STACS94, LNCS, vol. 775, pp. 581–592. Springer, Heidelberg (1994)

13. Jančar, P., Moller, F., Sawa, Z.: Simulation problems for one-counter machines. Proceedings of
SOFSEM’99: The 26th Seminar on Current Trends in Theory and Practice of Informatics, LNCS,
vol. 1725, pp. 398–407. Springer, Heidelberg (1999)

14. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Inclusion is undecidable for pattern languages. ICALP
93 LNCS, vol. 700, pp. 301–312. Springer, Heidelberg (1993)

15. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)
16. Minsky, M.L.: Recursive unsolvability of post’s problem of “Tag” and other topics in theory of

Turing machines. Ann. Math. 74(3), 437–455 (1961)
17. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall International, Englewood

Cliffs (1967)
18. Ohlebush, E., Ukkonen, E.: On the equivalence problem for E-pattern languages. Theoret.

Comput. Sci. 186(1/2), 231–248 (1997)
19. Ponse, A., van der Zwaag, M.B.: Risk assessment for one-counter threads. In: Electronic report

PRG0608, Programming Research Group, University of Amsterdam. To appear in Theory of
Computing Systems (2006)

20. Sénizergues, G.: L(A) = L(B)? In: Technical report 1161-97, LaBRI, Université Bordeaux (1997)
Available at www.labri.u-bordeaux.fr.

21. Sénizergues, G.: L(A)=L(B)? decidability results from complete formal systems. Theoret. Com-
put. Sci. 251, 1–166 (2001)

22. Stirling, C.: Decidability of DPDA equivalence. Theoret. Comput. Sci. 255, 1–31 (2001)
23. Valiant, L.G.: The equivalence problem for deterministic finite-turn pushdown automata. Infor-

mation Control 25(2), 123–133 (1974)
24. Valiant, L.G., Patterson, M.: Deterministic one-counter automata. J. Comput. Syst. Sci. 10(3), 340–

350 (1975)

	Abstract
	Introduction
	Threads and services
	Decidable equality
	Undecidable inclusion
	Conclusions

