DECISION PROBLEMS OF FINITE AUTOMATA DESIGN
AND RELATED ARITHMETICS(})

BY
CALVIN C. ELGOT

CHAPTER 1. BACKGROUND

1. Motivation. Many variants of the notion of automaton havé appeared
in the literature. We find it convenient here to adopt the notion of E. F.
Moore [7]. Inasmuch as Rabin-Scott [9] adopt this notion, too, it is con-
venient to refer to [9] for various results presumed here. In particular,
Kleene's theorem [5, Theorems 3, 5] is used in the form in which it appears
in [9]. It is often perspicacious to view regular expressions, and this notion
is used in the sense of [3].

In general, we are concerned with the problems of automatically design-
ing an automaton from a specification of a relation which is to hold between
the automaton’s input sequences and determined output sequences. These
“design requirements” are given via a formula of some kind. The problems
with which we are concerned have been described in [1]. With respect to
particular formalisms for expressing “design requirements” as well as the
notion of automaton itself, the problems are briefly and informally these:
(1) to produce an algorithm which when it operates on an automaton and a
design requirement produces the correct answer to the question “Does this
automaton satisfy this design requirement?”, or else show no such algorithm
exists; (2) to produce an algorithm which operates on a design requirement
and produces the correct answer to the question “Does there exist an auto-
maton which satisfies this design requirement?”, or else show no such algo-
rithm exists; (3) to produce an algorithm which operates on a design require-
ment and terminates with an automaton which satisfies the requirement
when one exists and otherwise fails to terminate, or else show no such algo-
rithm exists.

Interrelationships among problems (1), (2), (3) will appear in the paper
[1]. This paper will also indicate the close connection between problem (1)
and decision problems for truth of sentences of certain arithmetics. The paper
[1] will also make use of certain results concerning weak arithmetics already
obtained in the literature to obtain answers to problems (1) and (3). Thus

Presented to the Society, January 21, 1959, under the title Weak second order arithmetics
of finste automata. Preliminary report. I, II; received by the editors June 17, 1959.

(") 1 wish to thank Drs. J. B. Wright and J. R. Biichi for stimulating and helpful discus-
sions, my wife for typing and editing the manuscript of this thesis, and the following Federal
agencies for financial support: National Science Foundation, Office of Naval Research, Office
Ordnance Research, and the Signal Corps.

21

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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[1], in part, concerns applications of logic to automata theory. In the follow-
ing pages, we shall give some applications of automata theory to logic.
More particularly, we shall use automata theory to produce decision pro-
cedures for the truth of sentences of certain weak arithmetics.

Theorem 5.3 provides a uniform and surprisingly powerful technique for
proving that various operations on sets of finite sequences preserve regular-
ity.

2. Some basic notions.

DEFINITION. (a) An J-automaton is a quadruple %=(S, f, d, D) where I
is a finite nonempty set (the snput states or the alphabet), S is a finite non-
empty set (the internal states), f is a function, f: IXS—S (the transition func-
tion), dC.S (the initial internal state), and DC.S (D may be called the output

of ;).
(b) T(:) is the set of all sequences (%6, %1, - - +, %n-1), #20, such that
there is a sequence (so, 1, - - -, $.) satisfying:
(1) f(ik’ sk)=sk+1, Oékén— 1,SEES,ikEIp
(2) s» € D,
(3) so = d.

T(9) is the set of tapes [9] accepted by 9 or the behavior of 9. The null se-
quence A€ T(:) if and only if dED.

(¢) T(W) may also be described as the set of all functions
i:{0,1,2, - - -, n—1}—I, n20 (the empty function is included) satisfying
the formula: V, [s(0)=dAs(n) ED AN.<u [(i(x), s(x))=aDs(x+1)=f(c)]
AlGEE); s@)=aDsE+1D)=Ffe) A - - - Alk), s&))=enDs(x+1)=F(cm) ]
where ¢y, ¢, - * -, Cm is an enumeration of all the elements of I X.S (the com-
plete states of the automaton).

3. Two characterizations of automata behavior. Let V: be the set of all
finite sequences of elements of I (including the null sequence A). If o, & V7,
then «-f is the subset of Vi obtained by concatenating a sequence from «
with a sequence from 8; a*= {A}UaUa-a\Ja-a-a\J - - - . A subset of V;
is I-regular if and only if it is obtainable from & and the unit sets, {a} ,a&l,
by a finite number of applications of \U, -, *. Otherwise stated: The class of
I-regular sets is the smallest class containing &, {a}, a €1, and closed under
U, -, *. An I-regular expression is constructed out of symbols denoting each
{a } aEI & (the empty set), and U, -, *. [Note that &*={A}.] A set is
regular if it is I-regular for some I. (Cf. [3 p. 182] and [9, p. 17].)

3.1. Kleene’s theorem. If 91 is an I-automaton, then T(9) is I-regular
and an I-regular expression denoting T(91) may effectively be obtained. Con-
versely, if a is I-regular, then there exists an I-automaton such that T(N) =«
and, furthermore, 9 may be effectively obtained from an I-regular expression
denoting a.
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1961] FINITE AUTOMATA DESIGN AND RELATED ARITHMETICS 23

The following statement is immediate from the definition of I-regular.

3.2. If ais I-regular and if ICJ, then a is also J-regular.

3.3. The class of I-regular sets is closed with respect to union, intersec-
tion, complementation (with respect to Vi) (cf. [9, p. 17]).

3.4. The class of regular sets is closed with respect to symmetric differ-
ence, intersection. This follows from 3.2 and 3.3.

Let p be a mapping of I onto J. There is a unique homomorphism from
the free semi-group Fr on I onto the free semi-group F; on J which extends p.
This homomorphism in turn induces a mapping # on subsets of Fr onto sub-
sets of Fs. If a is a set of I-sequences, then f(a) is a set of J-sequences, f is a
projection, and (@) is a projection of a.

3.5. If e is regular and p is a projection, then p(a) is regular.

Proof. Suppose a is I-regular and p: I—J. If a €1, then p{a} = {p(a)} is
J-regular. Since p(a-B) = p(a) - p(B) and p(a*) = (p(a))*, the result follows.

(Medvedev [6, p. 13] gives a construction which, given an I-automaton
9 and a p: I—J, yields a J-automaton 3, such that T(N,) = p(T(N)).)

From the point of view of regular expressions: the projection of a regular
s{et is (})btained by replacing each symbol a (denoting {a}) by p(a) (denoting

p(a) ).

The following theorem strengthens a result of Medvedev [6, p. 11, Theo-

rem 2].

3.6. THEOREM. (1) Every regular set is oblainable from a finite number of
sets of the types:

(@) Va: the set of all finite A-sequences (including the null sequence) where
A is any finite sel (nonempty),

(b) Es(a, b): the set of all sequences uaby where a, b&B and u, v&Vp and
where B is any finite (nonempty) set, by a finite number of applications of sym-
metric difference, intersection, and projection.

(2) Each V4, Eg(a, b) is regular.

Otherwise stated: Given a regular set o there is a Boolean ring polynomial (in
+, M), an assignment of sets chosen from (a), (b), and a projection p such that
if +, M\ are interpreted as symmetric difference and intersection respectively
and if B is the set denoted by this polynomial under this assignment, then $(B) =c.

Furthermore, if a regular expression is given which denotes o, then the poly-
nomial, the assignment, and the projection may all effectively be determined.

Proof. (1) (i) If ANB=F, then VaNVz={A}.

(i) VA+U(a.b)GA><A E4(a, b)= {A, ay, Qg * * *, Gr} where {ax, Qg * * ar}
=4 and U peaxa E4ala, b) is equivalent to a polynomial in 4, M and the
basic sets V4, E4(a, b).

(iii) If ANB= {a}, then there is a polynomial in the basic sets equal to

ai.
(iv) If Risa binary relation over a finite set 4, then a sequence a1a; - * * @»
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is an R-sequence if and only if for each 7 <n, (a;, ¢i1) €R. (Thus the sequences
of length less than or equal to one are R-sequences.) The set of all R-sequences
is equal to

VA - [EA(al, bl) |V EA(az, bz) U L U EA(a,, b,)]

where {(al, b)), (as, ba), - - -, (ar, b,)} =R=(4XA4)—R.

(v) Let SA(a)={au|a€A/\u(—: VA}. Let R be a binary relation on
AV (b}, b & A,viz,[x,9) ERle[x=bAyE AV EAAyEA)]
o=[yc4 /\(x=beEA)]. Then the set of R-sequences intersected with

{6} U U Eauwi(s, b)
acd
is the set M of R-sequences (of length >0) beginning with the letter “5.”
Now if p: AU {b}—A4 takes b into @ and is the identity on 4, then

(M) = Sa(a).

(vi) Let Tyu(a)= {ualaEA Au& VA}. Then T4(a) is expressible as the
projection of a polynomial in the basic sets. The argument is analogous to (v).

Now let %={(S, f, d, D) be an I-automaton. Let R hold between complete
states (4, s1), (42, $2) if and only if f(4z, 51) = so. Then the set of R-sequences be-
ginning with (¢, s) where €I and s=f(3, d) and terminating with an (7, s)
such that s€D when projected by p, where (7, s) =1 for all (i, s)EIXS,
yields T(91) — {A}. (Cf. the definition of T(31).)

Result (1) now follows from (i) through (vi).

(2) Va=A*; Eg(a, b)=B*-{a}-{b}-B* which shows V4 and Ex(a, b)
are regular. (Alternatively one may directly construct automata which ac-
cept tapes V4, Eg(a, b).)

COROLLARY. If R is a binary relation over a set A, then the set of all R-
sequences is regular.

Proof. Follows from (iv), (2).

3.7. THEOREM. The class of all T(N), N an automaton, is the smallest class
of sets containing V4, Eg(a, b) (for every A, B, a, bEB) and closed under sym-
metric difference, intersection, and projection.

Proof. Immediate from 3.4, 3.5, 3.6.
3.8. THEOREM. Every set obtainable from the sets
VAU EA,(G, b)) Sda(a); Tdc(a)

by a finite number of applications of Boolean ring operations and projections is
obtainable from the same sets by Boolean ring operations followed by a single
projection (and these sets are exactly the regular:sets).

Proof. Same as proof of 3.6.
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CHAPTER II. TRUTH ALGORITHMS FOR CERTAIN ARITHMETICS

4. Truncation lemma.

DerINtTION. If % is a finite sequence, b is a letter, and, for some n, u
=9b™, (n iterations of b), =0, and v does not terminate with &, then
u*=v9. This is called right truncation of u by b. If a is a set of finite sequences,
then o= {ubl uCa} (right truncation of a by b). The meaning of left trunca-

tion is analogous.
Notice that ACa? if and only if {b} *Na7 .

4.1. LEmMA. (a) (a-B)=a- (B — {A})Uab- (8~ (B~ {A})).
(b) (a*)P=a*-(*—{A})U{A}.

Proof. (a) Let /(x) be the length of the finite sequence u. Let ps(%) mean

u terminates with the letter b.

#€ (@p)p e V[w®EaBAnz 0N~ pw)]
SV [nr=w® An2Z0A0EaAu€B A~ pu)]

n,u),ug

& V [mte =P An2Z0ANmEaNuER

n,u1, U

A ~ pp(1) N\ Uuz) > n)
V (e = bW AnZ 0N w1 € a A\ us €8 N\ ~ po(u)
A Uus) < m)] |

eV [wmum=uAw AAuE e uCHh)

uy.ug

V@=mAtus=AA0EaAucp)]
@V w=mmAmCaNmcpAucs —{A)

Va=mAncB —@ - (A AuECanmnchl.

(b) = AN u€ (a*)?
V™ Ea* Anz0A~p(u) A\ ust Al

=3 \% [rZ0Ar>0Awu -+ - u,

f,r.th],ug, * Uy

=w™A A 4 Ea A ~py(u) A\ uEAl

lgisr

lsigr

= v [m>0/\u=uxuz---um_l-u:./\u:.#A/\ A Ea

m,uy,ug, 000,

o ucat(ab — {A})
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4.2. LeEMMA. The class of regular sets is closed under right truncation. More-
over, from a regular expression denoting o one can obtain effectively a regular ex-
pression denoting ab. Analogous statements hold for left truncation.

Proof. If x is a letter, then {x}®={x} if bx and {x}*={A} if b=x. The
result for right truncation now follows by 4.1. The result for left truncation
follows from this and the fact that the class of regular sets is closed under
conversion (reversing the order of the sequences) (cf. [9, p. 17]).

5. Characterization of automata behavior via a formal arithmetic. Let L,
be the class of formulas constructed out of

(2) G EF i€ Fy o x5 EFgye - i,i=1,23-,

(b) =y, 2 <y,

by means of propositional connectives and quantifiers V.;, Vr; The x; are
individual variables, the F; set variables, and x{ is interpreted as the suc-
cessor of x;.

5.1. Let the individual variables of L, range over the natural numbers
and the set variables range over finite sets of natural numbers. Call the sys-
tem consisting of the class of formulas L, and this interpretation L]. If
AlFR, F,, -+, F,], r20, is a formula in which at most the variables
Fi, Fa, - -+, F, (the first r set variables in the alphabet of L,) occur free, then
associated with A4 is the class of r-tuples (Fy, Fy, - - -, F,) of finite sets for
which A[Fy, Fs, - - -, F,] is true. Alternatively we may associate with such a
formula a function f on the natural numbers with values which are (column)
r-tuples of zeros and ones (i.e., an r X «© matrix) as follows:

ay
fm) = |- |ifandonlyif n € F; = a; = 1.
ar

If x=max(FI\JF,\J - . . \UF,) and y>x, then f(y) is the r-tuple of all zeros.
Let o, be the restriction of f to the domain {O, 1,2, ., x} ; ¢ may be identi-
fied with the r X (x+1) matrix whose 7th column is f(z). Moreover o, is a 1-1
correspondence between all X « matrices of zeros and ones whose columns
are ultimately zero and remain zero and all those r Xs matrices of zeros and
ones, s 20, whose last (rightmost) column is not the all zero r-tuple. Call these
r X s matrices admissible. (The matrix with zero columns is admissible.) Thus
with each formula 4 of L} is associated a set T,(4) of admissible 7 X s matrices,
s20, where 4 is a formula without free individual variables and the number
of free set variables is less than or equal to 7. [If r=0, let T,(4) = {A} if A
is true and T,(4) = & if 4 is false.] Let U, be the set of all r-tuples of zeros
and ones, r20; let Ul=U,— {O,} where 0, is the all zero r-tuple. [If r=0, let
U,={0}, U’= 4. Recall that V,=*={A}.]
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5.2. Notice that in L}:
r=y=N@xEF=yEF),
F

t=0AN~y =q2,
v

x<y¢=>V|:/\(z’EFDzEF)/\xEF/\y&F].
F s

5.3. TueoreMm. () If A[Fy, Fy, - - -, F,] is a formula of L}, then T,(4)
is U,-regular and one can effectively find a regular expression which denotes
T.(4).

(b) For every regular set aC Vy, of admissible sequences there is a formula
E(A) of L} such that T,(E(A)) =«a, where E is a string of existential set quanti-
fiers, A is free of set quantifiers, and the only terms in A are of the form x, x'.

COROLLARY. Let a be an arbitrary I-regular set. Let p be a 1-1 mapping of
I into UL. Then p(a) is a Ul-regular set (“isomorphic” to «, i.e., the set is o tn
coded form) and so there is a formula A of L} such that T.(A) = p(c).

REMARK. It will be convenient to abbreviate formulas of L} by replacing
an r-tuple of finite set variables by a function variable interpreted as having
as its domain the naturel numbers and range an element of U, and satisfying
(f(x));=1exEF; as well as the property V. f(x) =0,AA, (y>xDf(y)=0,),
where 0, is the r-tuple of all zeros, so that any such function is associated with
a finite sequence of elements of U,.

If f abbreviates (Fi, Fs, - - -, F,), then V,; abbreviates Vg, Vg, - -+ Vp,.

5.4. LEMMA(?). Every formula A[Fy, F,, - - -, F,] of L} is equivalent to a
formula B[Fy, - - -, F.] of L} in prenex form and such that every individual quan-
tifier occurs to the right of every set quantifier.

Proof. Observe that

VAc=V A /\[(G(x):)C)/\VG(z)]
(1) z F ¢ F = s
=V AAC
Q F z
and
AVe=AYV V[VG(z)DG(x)/\C]
(2) z F G F =z s
EA V VC;,
@ F z

() This was pointed out to me by J. R. Biichi.
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where G is a set variable not occurring free in C.

Assume A [Fy, F;, - - -, F,] has the property that every set quantifier
has as its scope the entire formula to the right of it.

Notice that in applying (1) or (2) to A the number of set quantifiers to
the right of the x-quantifier is reduced by one. Thus, if V, {A,] is the right-
most individual quantifier which has set quantifiers to the right of it, by iter-
ating (1) and (2) a finite number of times one obtains a formula 4’ in which
the x-quantifier appears to the right of all set quantifiers. Moreover, the
number of individual quantifiers with set quantifiers to the right is one less
in A’ than in A. Thus one ultimately obtains a formula B equivalent to 4
and having the desired properties.

5.5. A formula of the form

V [x(”W)ano /\ x(ml)ﬂFkl /\ “ .. /\ x(mr)an'],

where each occurrence of 5 is independently @ or €, will be called a principal
formula where 0=Smo<m < - - - <m,.

Call a formula normal if it is a disjunction of conjunctions of (1) principal
formulas, (2) atomic formulas, (3) negations of (1) or (2).

LeEMMA 1. Every formula of L} is equivalent to a formula of L} of the form
Q[M] where Q is a string of set quantifiers and M is a disjunction of conjunc-
tions of principal formulas and negations of principal formulas. [By appropri-
ately permuting Fy, Fy, - - -, F, in the given formula, the variables in Q may be
assumed to appear in alphabetical order terminating with F,.]

Proof. In view of 5.2, it may be assumed that the given formula contains
atomic parts 5(a) only. Suppose 4 is normal.

(a) Then ~A is equivalent to a normal formula (with the same free
variables).

(b) Consider V, 4. V, distributes over the disjuncts of 4. Let D be a dis-
junct of the form D,(x) A D, where x does not occur free in D, and no variable
other than x occurs free in D,. Then V, D =D, AV, Di(x).

Starting with a formula B[Fy, Fs, - - -, F,] of Lemma 5.4 one makes use of
(a) and (b) until all the individual quantifiers are “moved in.” This yields a
formula of the desired form.

LEMMA 2. The set of all admissible sequences in Vy, is UF- U\ {A} and is,
therefore, regular.

5.6. Proof of 5.3 (a). Consider a formula of L} of the form Q[M] of
Lemma 1 of 5.5 with free set variables Fy, F, - - -, F,. Assume that it is known
that if 4 is a principal formula then T,(4) is regular, and that from 4, a
regular expression denoting T,(4) may be effectively obtained. Then since
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T,-(A A B) = Tr(A) N Tr(B),
T.(A N\ B) = T,(4) U T.(B),
T,(~A4) = compl T,(4)
[complementation is with respect to the set of all admissible sequences in
Vu, (which is regular) | for 4 and B any formulas of L, without free individual
variables, it follows then T,(M) is regular and a regular expression denoting
it is effectively obtainable.
Now if A=A[Fy, F, - - -, F,], r>1, then T,_y(Vr, A) is the set obtain-

able from T,(A4) by deleting the rth row followed by right truncation of the
all zero (r—1)-tuple, ie., if r>1

o v 4) = Ty

where p, maps an r-tuple of zeros and ones onto the (r—1)-tuple obtained
by deleting the rth component and b is the all zero (r—1)-tuple. Hence
T.-1(Vr, 4) is regular and from a regular expression for T,(4) one may effec-
tively obtain one for T,_1(Vr, 4).

It remains only to show that T,(4) is regular for 4 a principal formula. To
simplify the exposition we point out that the principal formulas can, without
loss of generality, be taken to be of the form

1) V A (sgF; A a'yFy),

z lsisr

where each occurrence of 7 is independently & or . This follows from the
fact that (assuming m>1)

x(’n)ﬂpﬁyl = x’/\y2= yl’ /\ A /\ym-l = y:n—z/\y,m—lﬂF
SANEGC=rECAREGC=y{ EGAN - -
[e]

A Yt € G = Y2 € G A Ym1F]

and
mF & (xogF A\ & € F) \/ (ogF N\ &’ & F),
¥9F = (x EF AN xF)\V (x &€ F N\ «/nF).

Let 4 be V. [f(x) =aAf(x’)=b] (cf. Remark 5.3).
Case I. aE U, and &€ U?. Then

T4) = UF-{a}-{8}-((UX-U) V {A}).
Case 11. e€ U? and b=0,. Then
T,(4) = (U#-{a}) U (UX-{a} {8} -UX- V).
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Case I1I. a=0,=b. Then
T.(4) = (U*-U) V {A}.

5.7. Proof of 5.3 (b). Let < Vy, be a regular set of admissible sequences.
Then a— {A} is regular and is a projection of a regular set C Vu?,,, s>0.
Specifically: there exists a U,-automaton %= (S, f, d, D) such that a= T(3).
Without loss of generality, let S be a subset of U? for a suitable s> 0. The com-
plete states U,X.S of9 may be identified with a subset of U?,, as follows:
(x, ¥)E U, XS is identified with the (r+s)-tuple whose ith member, 1 i <7,
is the 7th member of x and whose (r+7)th member, 1 £j=<s, is the jth mem-
ber of y. Let BC U, be the set {(x, f(x, d))|xEU,}. Let E= U’XD. Define
RC UL, XU, as follows: {{x1, y1), {2, ¥:))ER if and only if f(xs, 31) =7..
Then B is the set of finite R-sequences beginning with an element of B and
ending with an element of E and a= $(8) where p is the mapping which takes
(x, )EU, XS into x.

B is the intersection of the three following sets.

(@) Uses Sv,,.(a), B&UY,, (those elements of Vy,,, beginning with an
element of B).

(b) Usex Wu,,,(a), E=U?XD (those elements of Vy,,, terminating with
an element of E).

(c) The set of all R-sequences, RC U?,, X U?,..

We now obtain formulas “corresponding” to (a), (b), (c).

a) Let B= {bl, bz, -+ -, b"}. b is the kth component of . For each b’
the formula A%: Aycksrrs OniFi, where mi is € if bi=1 and n, is € otherwise,
corresponds to Su,,,(b"), so that (a) corresponds to A'\VA?V - .- \VA"
Then A'\/A?\/ - - .- \/A" is an abbreviation of a formula 4 of L! and

Tr+l(A) = U SU,+.(G).

aEB

b) Let E={e!, e?, - - -, er}. With each ¢’ associate the formula

A V[ A xm,Fk/\/\(y>x3(yGEF1/\y€§Fz/\"'/\}'@Fﬂ»a))]

z 1sksrts

where ni is € if e¢=1 and otherwise 7 is €. Then 41\/A4A?\V/ - - - VA*is an
abbreviation of a formula 4 of L} and

Trya(4) = U WUr-h(a)'

acE
¢) Let H=RU(U,;,X {2z}) where z is the all zero (r+s)-tuple. Let
{eh, ), (et D, -+ -, (e",f")} = H. With each e associate 4 (¢): A1sx<rexniFi

where 1; is € or & depending on whether e, =1 or not. With each f# associate
B(f): Migksrss ¥ Fr where 1, is &€ or & depending on whether fi=1 or not.
Then if 4 is the formula abbreviated by A, Vigign 4(e?) AB(f%), then T,y (4)
is the set (c).
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If & is the conjunction of the formulas a), b), c), then T, .(F)=8 and
Tr(vF,.H VF',+3 ct VF"_‘_. ‘J) =a.
Note that {A} =Ti(A, x&F).

5.8. COROLLARY TO 5.3 (a)(®). EHRENFEUCHT'S THEOREM (unpublished).
The set of true sentences of LY is effective.

Proof. It may be assumed (5.4) that the given sentence is of the form

(a) V A[F]

or

(b) ~ VY A[F]
F

where 4 is a formula in which at most the set variable F occurs free. Then
(a) is true if and only if T1(4 [F]) is nonempty, and (b) is true if and only if
Ti(A [F]) is empty. T1(A[F)) is empty if and only if To(Vr 4 [F]) is empty.

Thus, one can effectively find an automaton 9 ={(S, f, d, D) with one in-
put state (sometimes called an input-free automaton or autonomous auto-
maton) which represents (a) (or (b)).

If the automaton has # internal states, then the (unique) input sequence
of length n will determine a sequence of internal states starting with d of
length #+41. At least one internal state must occur more than once in this
sequence so that T'4(97) is nonempty if and only if an s&€D occurs in this
sequence.

5.9. For each finite set F of natural numbers let 7(F) = E,ep 2%, Then 1
is a 1-1 correspondence between the class of all finite subsets of the natural
numbers and the natural numbers.

G) =1(F) +7(F) oV OECANOEGC=0EF,A0E Fy)
[+
ANNG@FEC=EFRFNxEF)V (EEFLANxEC)

VEEFNx€()- A2 EG
=@xEFAxEF.AxE Q)]
where A represents ‘‘exclusive or”. Thus:

CoROLLARY(Y). (1) The first order theory of addition of natural numbers is

decidable. (2) Furthermore, for any relation A [x\, %, - - + , %,| in the first order
theory of matural numbers there is a formula B[Fy, Fy, - -+, F,| such that
A[xl, Xgy, * 0, x,]@B [T_lxx, 7%y, » - -, T_lx,].

(®) This result has been obtained independently by J. R. Biichi.
(Y) This was suggested by J. R. Biichi.
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Statement (1) with “natural numbers” replaced by “integers” was estab-
lished by Presburger; statement (1) itself was established by Hilbert and
Bernays. The proof of (1) indicated here appears to be simpler than either
of the two proofs mentioned, both of which make use of the theory of con-
gruences.

5.10. For each #, n=1, consider the 2%* n-place predicates

V. [anl AN 1 SWANRRRWAN 2 T SWANE £ 1 SWANE 47 CYANKICIIVAN x,ﬂFu]

where each occurrence of 7 is independently replaced by € or €. Call the
class of all these predicates ®. Then every first order formula in ® is equivalent
to one in L] (without free individual variables) and vice versa. Let 7® be the
class of predicates A[rFy, 7F,, - - -, 7F,] defined to hold if and only if
A[F, F,, - -+, F,] holds and A[Fy, Fy, - - -, F,] is a predicate of ®. Then:

CoRrOLLARY. The first order arithmetic theory based upon v® 1s decidable
and this theory strictly contains the elementary theory of addition of natural
numbers in the sense that while addition is definable in the theory of T®, not every
predicate in T® is definable in the first order theory of addition.

Proof. 7{ V. [xEFAx' CFAN, YEFD(y=xVy=x')] } is the set 3, 6, 12,
24, - - -, l.e., the set {3)(2"},.20. This set is not definable in the first order
theory based upon + because the sets definable in this latter theory are
exactly those whose characteristic function is ultimately periodic while the
set {3X27},.0 does not have this property. (Cf. [4, last paragraph, §3].)
The rest of the argument is contained in 5.9.

5.11. CorOLLARY 1. The first order theory of finite sets of natural numbers
based upon M, ® (symmetric difference), &, =, and the unary operation
F-—>F* defined by

xS Feifandonlyif VxS yAyEF
v

is decidable. Furthermore, the relations on finite sets definable in L} are exactly
the same as those definable in this theory.

Proof. The operation M, @, * and the relations F=G and F=( are defin-
able in L.

The principal formula V., [xEGiA%' CGIAx &G Ax'EG,] has as its
counterpart in this new theory the formula (i.e., the set of ordered pairs of
finite sets defined by this formula is the same as that given by the formula
below):

V {Fi=FiAF, =F,AF;,=F AF, CFCF,
F,.Fy,Fy

AN G-=GC ANFICGCDF,CGOANG=GCNF,CGDF:CG)]

Gs

/\Fs@Flng/\Fseszgcz/\(F2@F1)mG2=Q}.
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Similarly for other principal formulas.
The unary operation F—F* may be replaced by the property F= F* with-
out changing the strength of the system.

COROLLARY 2. The first order theory of natural numbers based upon (M),
7(®), =, +, and the property P(n) of being of a power of 2 is decidable where

xr(MN)y =z Ny =713
wr(®)y =z @ 1l =11z

Notice that P(r)<7!n is a unit set and the property of being a unit set
is definable in L}.

Note, too, that we have, in particular, a proper strengthening of Pres-
burger’s result, viz., the first order theory of natural numbers based upon
addition and the property of being a power of two is decidable and the prop-
erty of being a power of two is not definable in the Presburger system.

5.12. Let L? be the system consisting of the formulas L; with individual
variables interpreted as ranging over integers rather than natural numbers
and set variables ranging over finite sets of integers.

LEMMA. For each formula A[F:, Fs, - - -, F,] of L} and for each integer I,
A[F, F,, -+ -, F,|=A[F, F,, -+ -, F]| where x&€F,<x—ICF,, ie., the
class of r-tuples of finite sets defined by a formula of L? is closed under translation
(¢f. 5.13).

Lemma 1 of 5.5 is valid for L2. Let R, be the relation between two r-tuples
of finite sets that one is a translate of the other. Each R,-equivalence class is
included in A[Fy, Fs, - - -, F,]orin ~A[Fy, Fs, - - -, F,] for every formula
A for this is true for principal formulas and is preserved by the Boolean
operations and projection.

Analogous to 5.1 and in view of the lemma one may associate with
A[F, Fy, - - -,F,Jof L¥aset TX(A[Fy, F,, - - -, F,]) of admissible-2 matrices,
an admissible-2 matrix being a finite sequence of r-tuples of zeros and ones
which neither begins nor terminates with the all zero r-tuple. Analogous
to the proof of 5.3 one may establish the following theorem.

THEOREM. (a) If A[Fy, Fa, - - -, F.] is a formula of L%, then T}(4) is U,-
regular and one can effectively find a regular expression which denotes TF(4).

(b) For every regular set a of admissible-2 U,-sequences there is a formula
E(A) of L? such that T2(E(A)) =a where E is a string of existential set quantifiers
and the only terms in A are of the form x, x'.

COROLLARY T0 (a). There is a decision procedure for the truth of sentences
of L%

5.13. In L%
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zr=yoA@EF=yEP),
F

s<yeoN[GEFANz=2D - EF)Dy&EF)
P,z

However, x =0 is not definable in L? by virtue of the lemma of 5.12. Compare
with 5.2.

5.14. Let A be an arbitrary finite set. A sequence of V4 is admissible-3 if
and only if (1) it is of length one or (2) it is of length greater than one and
the last two elements of the sequence are distinct.

LEMMA 1. The set of all admissible-3 sequences in Va is A-regular.

Proof. Identify elements of A with sequences of length one. The set of all
admissible-3 sequences is:
4V U V(4 - {b])-b.

beA

DEFINITION. If «CV, and b€ A4, then a? (modified truncation by b) is
defined as follows: v&a ? if and only if

(1) v&a and v does not terminate with b, or

(2) there exists #€a which terminates with b and if
wbb - - - b=u and w does not terminate with b, then v=1wb.

LEMMA 2. If aC V4 is A-regular and bE A, then a® is A-regular.

Proof. Cf. Corollary 5.3 and remark. Without loss of generality assume
that A = U? for appropriate 7. There is a formula §[f] such that 7, =a. It is
sufficient to prove the theorem for A &a. Then f(x) =0,Dx>0. Let G[g] be
the formula:

VA ST ASE) = 0. AS0) %00 [f(y) %53 A fa) = g(x)]

5w

/\[f(y)=b3/z\[f(x)=bA(YZ’=fo(Z)#b))

A(Nsz 2D =8V f6) = 0)-2+ A (glw) = S) A A gtw) = o]J}-

wsz

Then T,§=a? By Theorem 5.3 (a), a? is regular.

5.15. By a guasi-finite set of natural numbers (integers) is meant a set
which is finite or whose complement is finite. Let L} be the system consisting
of the set of formulas L; with individual variables interpreted over the natural
numbers and set variables interpreted over quasi-finite sets of natural num-
bers. Let Fy, Fs, - - -, F, be quasi-finite sets. Let ¢i(n) =1=nEF,. Let
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ci(n)

Cz(.”)

c(n) = :
Cr(.")

_Thus, with each r-tuple of finite sets of natural numbers is associated c& vy
(N is the set of non-negative integers). Because the F; are quasi-finite, there
exists x& N such that A, y>xDc(y) =c(x). The function ¢ restricted to the
first x such that this property holds is an element ¢?(Fy, Fs, - - -, F,) of Vy,.
Moreover, ¢ is 1-1. Briefly: ¢®(Fy, Fy, - - +, F,) =f where domain f= {xl xéy}
and y=(uz)A; [N, x22DxEF:- VA, x22Dx & Fi] and if xSy then (f(x)):
=1exCEF; and V, 2>yDf(y) =f(2). The image of ¢® is the set of all admis-
sible-3 elements of Vy,. If A[Fi, Fs, - - -, F,] is a formula of L3, then T3(4)
is the set of all ¢*(Fy, F, « - -, F,) such that A[Fy, Fa, - - -, F,] holds.

Notice that 5.2 holds in L.

THEOREM. (a) If A[F\, F,, - - -, F,] is a formula of L%, then TH(A) is
U,-regular and one can effectively find a regular expression which denotes it.

(b) For every regular set a < Vy, of admissible-3 sequences there is a formula
E(A4) of L? such that T}(E(A)) =a where E is a string of existential set quanti-
fiers, A is free of set quantifiers, and the only terms in A are of the form x, x'.

Proof. (a) The proof is analogous to 5.6. Lemma 1 of 5.5 holds with
“I3 in place of “L}”. If 4, B are formulas of L} with at most Fy, Fs, - - -, F,
free, then

T)(A A\ B) = T,(4) N\ Ti(B),
THA\ B) = TX(4) U T«B),
T (~A4) = compl T(A4)

where complementation is with respect to the set of all admissible-3 sequences
of Vy, (cf. 5.14, Lemma 1).

If a=T3(4), then T7_;(Ve, (4))=("((($(e))®)'*) ") where p maps an
element of U, into the element obtained by deleting the rth component and
a, b, - - - is an enumeration of the elements of U,_;. Since regularity is pre-
served by projection and modified right truncation (Lemma 2, 5.14) it follows
that T¢_,(Vr, 4) is regular.

It remains only to show that if 4 is V. [f(x) =a Af(x") =b], then T3(4) is
regular, where f abbreviates (Fy, Fy, + -+, F,) (cf. 5.3). Let

g= U (Ufe}-{o} - UT{c}-{ahV U U{a}-{a}-{c}.

cd;e,delU, emb;eel,
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Then @ is regular. If a b, then T3(4) =B\J(U?- {a}- {b}) while if a=b, then
T3(A) =B J(U* U,—{a}-{a})U{a}. Then T3(4) is regular and the proof
is completed.

(b) Let aC Uf be a regular set of admissible-3 sequences. Thus a= T(9t)
for some automaton N ={(S, f, d, D). We may take S as a subset of U, for
some s>0. Identify U, XU, with U,,,, the complete states of 9. Then a is
a projection of a set BC U7, , and B is the set of all R-sequences [RC Urys X Urss]
beginning with an element of B= {({a, f(a, d))|a € U,} and terminating with
an element of U, XD where {u;, v1)R{us, v2) if and only if u1, u, S U,, v, 1. € U,
and f(u,, v;) =v,. Notice that the elements of 3 are admissible-3.

Define R and R+ as follows:

(a, c)R(b,dy = aRb N ¢c=1=d;
(a, YRH(b, d) & (a, c)R(b,d)-V-a=bA(c=1Ve=0 Ad=0,

for all a, b&E U,4..

OBSERVATION. Every finite non-null R-sequence has a unique extension
to an infinite Rt-sequence in which (g, 0) occurs for some a € U,4,, and every
infinite R*+-sequence in which {a, 0) appears for some ¢ € U,, is an extension
of some finite non-null R-sequence. If g is an infinite R*+-sequence such that
g(x)={a, 0), then for all y>x, g(y)={e, 0).

Letfabbreviate Fy, Fs, - - -, Fryop1. Let F=A, Vi nert [f(x) =a Af(x") =b]
AV, y & F, 1.1 Then sequences in T},,,1(F) have the property:

(1) if it is of length one, it is of the form (a, 0);

(2) if it is of length two, it is of the form (g, 1){a, 0);

(3) if it is of length greater than two, then its last three members are of
the form (b, 1)¥a, 1){a, 0), where a, b&EU,;, and as£b. It follows that
T2 .(Vr,,,., (%)) is the set of all R-sequences.

Let G[g] be Vr,,,., (5). Let 5¢[g] be:

SleJ N EBA V) EU, X DA A (y> 2D gly) = g(x).
z v
(The second and third conjuncts are abbreviations of disjunctions.) Then

ﬁ(v V--'VW>=m
F

v+l Frig Fria

COROLLARY 1. There is a decision procedure for the truth of sentences of L}
(and one such procedure is given by the proof of Theorem 5.15 (a) together with
the last paragraph of 5.8).

CoOROLLARY 2. The first order theory L? of the Boolean algebra of all quasi-
finite sets of natural numbers (based, say, upon \J, M, ) with operator F* (cf.
5.11) is decidable. More generally, the relations on gquasi-finite sets definable in
L3 are exactly the same as those definable in LY.
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Proof. Similar to 5.11.

5.16. Let L} be the system consisting of the formulas L, with individual
variables ranging over all the integers and set variables ranging over quasi-
finite sets of integers.

THEOREM. There is a decision procedure for the truth of sentences of L.

Proof. If Fy, F, - - -, F, satisfies a formula of L}, then any translate (cf.
5.12) of this r-tuple satisfies the formula. The function f: N— U, such that
(f(x))i=1exEF; has the property that V. ;.. [A,5. f(z) =a AA.:, f(2) =a and
x<y] because of the quasi-finite character of the F;. If f is not constant, let

2= (maxx) V A [z 22D f(2) = a],
yo=(min ) V A [z2 y D) = a].

Then the finite sequence g=0}(Fi, Fy, - - -, F,) if domain g= {x|x§y0—xo}
and A, [g(x) =f(x+x0)]. If f is constant and equal to b, then let domain
g= {0} and g(0)=b. The mapping ¢} takes all members of a translation
equivalence class into the same element of U, and distinct equivalence classes

go into distinct elements. Moreover, if ¢7(Fy, Fs, - - -, F,)=g and domain
g={x|x=<y} and y>0, then y>1 and g(0) =g (), g(0) #g(1), gly—1) #g(3).
Via ¢, with each formula iF[F;, Fy - -, F,] of L} is associated a set of

finite sequences TH(F) which may be shown to be regular and a regular expres-
sion may effectively be obtained as in the proof of 5.15, Theorem (a). This,
together with the last paragraph of 5.8, yields a decision procedure for truth.

CHAPTER III. SOLVABILITY ALGORITHMS

6. Some operations which preserve regularity. Let ¢C V5. A sequence
in A XB will sometimes be indicated thus: |u, v|, where « €V, and vE V5
and # and v have the same length. Thus, the ith member of Iu, vl is the
ordered pair whose first member is the ith member of # and whose second
member is the 1th member of v and [ u, v| is an initial segment of | u, v| | ', v’| .
Similarly the ¢th member of |u, v, w| , where %, v, w all have the same length,
is the ordered triple whose first, second and third members are respectively,
the ith member of #, of » and of w. A sequence |u, v| E¢ is A-extendable in o
if and only if Acs Vies |u, v| |a, b| €o. A sequence in ¢ is strongly A-extenda-
ble in ¢ if and only if every initial segment of the sequence is in ¢ and is 4-
extendable in ¢. The set o is strongly A-extendable if and only if every sequence
in o is strongly A-extendable in ¢. If ¢ is strongly 4 -extendable, every initial
segment of an element in ¢ is in o.

6.1. LEMMA. If yC& Vaxp is regular, then there is a y4a Sy such that
(1) ~ya is regular,
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(2) 74 s strongly A-extendable,

(3) if BCy and B is strongly A-extendable, then 8T y4. Furthermore, from
an automaton € such that T(C) =+ one can effectively construct (by the method
given in proof) an automaton €, such that T(C4)=+a.

Proof. Let € be the A X B-automaton (S, f, d, D). Then ¥ is $(8), where
3 is the union of {A} and the set of all R-sequences beginning with an element
of E={(a, f(a, b, d))| (a, b)EA XB} and terminating with an element of
(AXB) XD, and R holds between {{(a1, b1}, s1) and ({(as, b;), s2) if and only if
f({as, b2), s1) =33 and p((a, b), s)={(a, b). Let R, be the restriction of R to
AXBXD=M,,ie., Ro=RN(M¢XM,). For n20 let R,,, be the restriction
of R, to M1 where

(a1, b1, €1) € Mpy1=> {81, b1,¢1) E Mo A A V (e, by, c1)Ru{a, b, c).
a€A (b,c)eBxD

Inasmuch as M, is finite, there exists 7 such that Rn=Rmi1=Rm4ya= + + *
Define R, to be R, for this m and M4 to be M,, for this m. Then

(al, by, 61> EMse= A v (dl, b1, 01>R4(d«, b, C).

acA (b,c)eBXD

[Of course, M4 may be empty. | Let o be the set of all R4-sequences beginning
with an element of E, i.e., beginning with an element of ENDR, (DR, is the
domain of the binary relation R,). Let y1= po.

(1) v is regular since it is a projection of a regular set a.

(2) We shall show 4 is strongly 4-extendable. Let

| 1, 01 | 42, v2] € 74
where u;, 4. V4 and v, 12 V; then there exists w,, w2 & Vg such that
| %, 03, w1| I U3, V2, ‘IU2| &o.
Then
l %y, 01, wll & o and | u, 01| € va.

Since the elements in the sequence Iul, 0, 'w1I are in My, and, in particular,
the last element of this sequence is in My, it follows that

A V  u, o, |abc €Ea

acd4 (b,deBXD

so that
ANV |u,ul]|eb| €va

acA deB

(3) Suppose 8 is strongly A-extendable and BC. Let Iu, v[ €8; then
every initial segment of |, v] €8 so that if w is the sequence of internal states
determined by the automaton € (i.e., if |u, v| is aoth * + - an<SA XB, then
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wis 551 - - + S, where f(ao, @) = so and, for 0 <r =, f(a,, 5,—1) =s,), then every
initial segment of ‘u, v, 'w| is an element of 8. Thus, every member of the
sequence Iu, v, w| is an element of My and I u, v, wl is A or is an Ry-sequence
beginning with an element of E. Consider an arbitrary initial segment

| %o, Vo, ‘ZOol I ao, bo, Col of Iu, v,’wl
where ay©C A, byEB, cv&D, i.e., {as, bo, co)E M,. Since
| wo, 20| | a0, Bo| € 8,

AV | w0 | ao,bol | a0 €E8SH.

ai1€A b EB

Hence

A \ [I uo,'vo,'wol |ao,bo,Co| |ax,b1,61| 65/\<01,b1,61>€ Mo].

a;€A {by,c)eBXD
It follows that {ae, bo, co)E M,. Similarly
A \' A v [[ o, Vo, 'wol | ao, bo, Co| I ay, by, Cl| I as, bs, C2|

aj€A (by,e))EBXD ascd {by.c) €BXD

€ 6 A {as, ba, 02) € Mo A (a4, by, c1) € M),

It follows that {ao, be, ¢o)E M. It should now be clear that (g, by, co)E M4
so that l u, 9, 'w| is A or is a R4-sequence beginning with an element of E. Thus
Iu, v, w| &o and |u, vl Ev4. We have shown that: if 8Cy and 8 is strongly
A-extendable, then 8Cv,.

6.2. If aCV,, define the interior of & (Int @) to be the set of sequences
uCa such that every initial segment of # is in a. A set « is open if and only
if @ =Int o. We note incidentally that it is immediate from the definition that
arbitrary unions and arbitrary intersections of open sets are open so that the
class of open sets constitute a topology in the usual sense for V4. Notice that
if o is open, then a# <A Ea. Medvedev [6, p. 11, Theorem 2] proves that
if o is regular, then Int « is regular by direct construction of an automaton.
The result is established below by means of 5.3.

LEMMA. If « is regular, then Int « is regular.

Proof. Assume A C U? for an appropriate 7. Suppose that 7,5 [f] =« for an
appropriate formula § of Li. Define G[g] as follows:

A:hsg D 5[
A

where h =g abbreviates

A (h(x) # 0, D h(x) = g(x))
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and O, is the all zero r-tuple. Note that A =g means that the element of V¢’
represented by k is an initial segment of the element of Vy? represented by g.
[Each of the r set variables abbreviated by & are distinct from each of the r
set variables abbreviated by g.]

6.3. LEMMA. The intersection a’ of all open sets containing a given regular
set a 1s regular (and open).

Proof. Let aC V! be regular. The intersection of all open sets containing
a is simply the set of all initial segments of elements in a. Thus if T,F [f] =a
and if g[g] is defined as follows:

Vig[fIA A -g(x) = 0. D glx) = f(=),
J z

the desired set is T.G[g].

6.4. LEMMA. Let aC V(o) be regular. Suppose A&a. Let Ki(a), 1=0, 1,
be the set of sequences aody + + - @n, G;EA, such that there exists by, by, - - -,
ba satisfying

(1) bi e {07 1}’

(2) 'aorbo:llalybll "'la"’b"l € a

3) b, = 1.

Then K (a) is regular. If A€a, let Ki(e)=Ka—{A})\J{A}; then Ki(a) is
regular.

Proof. Let 9={(S, f, d, D) be an 4 X {0, 1} automaton and suppose
T(N) =a. Let ®=(S, f, d, DNA X {i}). Let 8= T(®). Then B is the set of all

sequences
Iao,bol Ial,bll AR Ia'n,bnl ea
such that b,=1. If p(a, b) =a, where €4, b& {0, 1}, then K;(a) = p(8).

6.5. LEMMA. Let BC Vaxp be regular. Let X be the lexicographical ordering
of Vs induced by a given fixed ordering (<) of B. Define a= £ < (B) as follows:

Iu,v] Cas |u,v| EBAA |u,v| €E8Dv<w
Then « is regular (and the set of ordered pairs (u, v) of sequences such that
|u, vl Ea is a function).

Proof. Suppose (without loss of generality) that A CU?, BC U? for ap-
propriate 7, s. Suppose that

T.+.5[f1, fo] =8  for an appropriate formula § of Li.
Define G[g, g.] as follows:
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Flgn g2l AN 2 Slgn, o] Afa(2) # g2(2) AN (9 < 2D foly) = g2())

S22 v

+ D ga(x) L fa(x),
where g, abbreviates Fy, - - -, F,, g, abbreviates F,yy, + + -, Foy,, and fo
abbreviates F,y 41, * -+, Fria, and ga(x) Xf2(x) abbreviates a conjunction of

conditionals of the form
ga(x) = 6D fax) = b1V falx) = b2V « + - V fu(x) = bn

where {bl, e b,.} is the set of all elements b; in B such that b <b;.

Then T,,,§=a, and a is regular (cf. Theorem 5.3 and remark).

7. Characterizations of 4/B-automata behavior. An A/B-automaton is a
quadruple 9t= (S, f, d, g) where f: A XS—S and g: S—B. The finite behavior
3(N) of N is defined as follows:

lu, 0] €3() S Vasae= (1) |u,0] = Aor (2) |u,0| =4

and V[wEVs/\u=aoa1~--a,./\v=bob1-’-b,./\w=sos1---s,.-D-so

—f @A A fmsw) =5 A A glsw =b,,].

<mgn 0Sm3n

7.1. THEOREM. A set aC Vaxp ts the behavior of an A /B-automaton if and
only if

(1) ais regular,

(2) ais open,

3) {{u, v): Iu, v[ Ea} is a function,

4) {u:|u, v|Eal=Va.
Further, if a satisfies the conditions, the proof gives an effective procedure for
producing an N such that I(N) =a.

Proof. Assume o= 3(N) for some A/B-automaton N. Let = {(S, f, d, g).
Define a binary relation R on 4 X B XS as follows: (g1, by, 51)R(as, by, s2) if and
only if f(az, s1) =s2/Ag(s1) =b1/\g(s2) =bs. Let &P if and only if u=A or u
is an R-sequence beginning with an element of {a,f(a, d), gf(a,d):a€A}. Let
pla, b, s)={a, b) for a€ 4, bEB, s&S. Then pB=c. (Cf. the definition of
3(9).) Hence (1) is satisfied by a.(®)

Conversely, assume aC Vaxs and « satisfies (1), (2), (3), (4). Without
loss of generality assume BC U, for an appropriate 7. Let a;= pi(a), 1 Si <7,
where pila, c1, ¢oy -+ -, €i -+ -, 6)=(a, ¢;), a€E A, and, for all j, ¢;& {O, 1}.
Let 91;=(S;, fi, di, D.), 1Si=<r, be A-automata such that T(9;) = Ki(as)

(%) This was pointed out to me by J. B. Wright.
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(cf. 6.4). Let M=(S, f, d, g) be an 4/B-automaton where B="U,, S=5;
XS X + - - XS, (f(s))i=fi(sd), 1S1=r, where s€S and the subscript “:”
indicates the ith component of an r-tuple, and d={(d, ds, - - -, d,) and
(g(s)i=1es5:,€D;.

Because of condition (3), for all 4, 1Si<r, Ki(a:)N\Ki(a) =& and be-
cause of (4), Ki(a:)\JKq(a;) = V4. Now, 3(91) satisfies (1), (2), (3), (4) by the
first part of the theorem. Thus it is sufficient to show that for each u &V, if
v, is the unique element of Vp such that | «, »,| €a and m is the unique element
of Vg such that |u, v,| €3(9), then v;=1v,.

It is obvious that AEaM3(3). Suppose |, v| CaN3(9) and |u,w|
. Ia, b| €. Because a is open, | u, 'w| Ea, and so by (3), w=v. Let b; be the ith
component of b and let w; be the sequence of sth components of its members.
Now,

lu, 0] |a,0] €Eae A |u,0| | 0,0 Exsa A [b; = 1 = ua € Ki(a)].
1gisr 1

Note that | %, v| |a, ¢| €E3(N)=|u, v, w| |a, ¢, 5| satisfies conditions given in

7 above, for some (unique) ws& V. In particular, g(s) =c. For this s, g(s)

=ceh; [ci=1=5:ED;] and since (for this 5) A; [s;€ED;=uaEK,(as)], it
follows that A; [c;=1=uaEK ()], so that b=c.

REMARK. Suppose Ty, 5 [f1, fo] =aC Vaxs, A T U, BC U for appropriate
7, s, and  is a formula of L. One can effectively decide whether a is the be-
havior of an A/B-automaton as follows:

(1) a is open if and only if “A,;: F[f]Ag<f-D-F[g]” is true, where
abbreviates (r+s) set variables, cf. 6.2;

(2) 7.1 (4) holds if and only if “A;, Vy, [fu, f2]” is true;

(3) 7.1 (3) holds if and only if “Afl-fzvﬂz: ﬁ[fl, fz]/\ff[fl, gz]D 'f2=gz” is
true.

7.2. We wish to show that none of the conditions of 7.1 can be dropped
without the statement becoming invalid.

7.2.1. Let A= {1} and B={0, 1}. Consider the set a:

(o) () vta

Since 0*-1U{A} denotes this set if “0” denotes {(1, 0)} and “1” denotes
{(1, 1)}, ais regular and 7.1 (1) is satisfied. It is obvious that 7.1 (3), (4) are
satisfied and that 7.1 (2) is not satisfied.

7.2.2. Let 4, B, a be as in 7.2.1. Then a’ (cf. 6.3) satisfies (1), (2), (4) but

not (3).
7.2.3. Let A=1{0, 1}, B={1}, and let a be the set:

(.)

then « satisfies (1), (2), (3), but not (4).
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7.2.4. Let A={a, b} and let B= {0, 1}. Let 8 be the set:

a(")ba"‘), n 0.

It is known (cf. [9]) that 8 is not regular. Let |ay, bs| |as, ba] -+ - |as, bs| - - -
| @n, ba] Easaias - - - axELL=by=1. Since B~ is open, it follows that

lu,o]Ea= V  |u,0| = |uy0| |us0] Avs€EViy A€ V.

UL, 1,42, 92

Now a satisfies 7.1 (2), (3), (4). We wish to show a is not regular. If a were
regular, then y=aM Vi is regular. Further, ¥ is isomorphic to 8Z. Hence
to show «a is not regular, it is sufficient to show BZ is not regular.

Suppose L were regular; then, assuming a, b& U, for some formula
5[f] of L}:

T»(5) = B~
Let g[g] be the formula:
5[3]/\/>=g§f/\§[f]-3-g=f (cf. 6.2).

Then T2(g) =8 is regular. Contradiction. Thus « is not regular.

7.3. If A is an arbitrary finite nonempty set, A¥ is the set of all infinite
sequences (functions on natural numbers) of elements of A. If aC V4, then
fEIM aer {f} LCa, where 8%, for BC AY, means the set of all finite initial seg-
ments of elements in S.

THEOREM. If aC(A XB)Y, then there exists an A/B-automaton such that
lim 3(N) =a if and only if

1) alis regular,

) |fu &l EaAlfe, gl EaNfiln=Fo I n-D-g1 | n=gs | n where f [ n is
the restriction of f to the set of natural numbers <n,

@3) {f: 11, ¢l €Ea} =47, '

Proof. Assume (1), (2), (3) hold. From (2), it follows that 7.1 (3) holds for
al; 7.1 (2) is obvious from the definition of a¥; and 7.1 (4) follows from condi-
tion (3). Hence, there exists an A/B-automaton 9 such that 3(9N) =«
Claim: lim et =a. If |f, g| Ee, then {|f, g| } *Cal so that |, g| Elim a® and
aClim aZ. Suppose |f, g| €lim a®. Because of (3), |f, k| Ea for some k. Con-
sider an arbitrary n, |f, g| [ n=|f, ¢’| | n for some |f’, g’| Ea. Since f | n
=f" | n, it follows that k [ n=g' [ n=g [ n (using condition (2)). Thus, g=#
and our claim is established (based only upon conditions (2) and (3)).

Let 9 be an A/B-automaton. It is obvious that lim 3(M) satisfies (2)
and (3). Hence, the “claim” of the previous argument establishes that
(lim 3(M))L=73(9N) so that (1) is satisfied.

8. Solvability-synthesis algorithms. The fundamental solvability-syn-
thesis theorem that we have obtained is given in 8.1. A reformulation is given
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in 8.3. In 8.6 we obtain a result closely related to results obtained by A.
Church [2].

8.1. THEOREM. Suppose vy Vaxp. There exists an A/B-automaton N such
that 3(N) Sy if and only if ya (¢f. 6.1) is nonempty. If ya is nonempty, then
one may effectively obtain an automaton N such that 3(N) = £ < (y4) where X is
an arbitrary ordering of B (cf. 6.5.). -

Proof. Suppose 3(M) Sy for some . Then, since 3(IN) is strongly A-
extendable, 3(N) Cy4 and va7# .

If y47 &, then because it is open, A€+, and because it is A-extendable,
the set {u: |, v| €v4} = Va4 By Lemma 6.1, v, is regular. Let £<(y4) =a.
From the definition of £<, it follows that {(x, v): Iu, v| €a} is a function
and, since {u: | u, 0| Ev4}= V4, so, too, {u: |4, | Ea} = V4. By Lemma 6.5,
o is regular. It remains only to show that a is open and then the result follows
from 7.1.

Suppose |u1, vl| qu, vgl €a. For some v, Iu,, v| Ea. Since |u1, v;[ |u1,v|
€4, it follows v <v;. Because |uy, v| is A-extendable in y4,

| w1, 0] | g, w| € va, for some w € V.

Thus 9w, <vw, so that v, Xv (since X is a lexicographical ordering). It follows
that v=9 and « is open, and the theorem is proved.

8.2. COROLLARY. Given yC A X B, one can effectively decide (by the method
indicated by the proof) whether: 3(M) Cv and 3(N) &y implies I(Ny) = 3(INy).

Proof. If y4= &, then the condition is vacuously satisfied (cf. 8.1). Sup-
pose ya# . If 9 is the automaton picked out by 8.1 and 3(91:) Sy and
3(9,) £ 3(9), then there exists |u, v| €3(N,), |, w| €3(N), and v <w.
Hence, if 9N is the automaton picked out by 8.1 when the ordering of B is
reversed, 3(9) # 3(9N).

Thus, the conditional of the corollary holds if and only if (1) y4a=& or
(2) v4# & and if 9 is the automaton picked out via 8.1 by an ordering X of
B and 9, is the automaton picked out via 8.1 by the reverse ordering > of
B, then the symmetric difference of 3(3;) and 3(9%) is &.

8.3. An A/B-automaton, AC U}, BC Uy, may be identified, it will be
shown, with a formula of L} of a certain form. Let %= (S, f, d, g) be such an
automaton. Consider the formula

Forla, b] of Lz V [t 0D 5(0) = f(a(0),d) A A (s(=') = f(a(), s(x))

z<<t

A b(x) = gs(x) A\ A a(x) = 0, A\ b(z) = 0,,.:],

zat

where “a,” “b” are function symbols interpreted as taking values respectively
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in 4, B and, respectively, abbreviating finite sequences of set variables. It is
obvious that Tpym (F)=3(N). Thus the formula above may be identified
with 9. Given an arbitrary formula G[a, b] of L}, let Tpim(Q)=vC Vaxs.
Then 3(N) CSy=A.5-Fla, 5] DGla, b].

8.4. If p maps the finite set 4 onto B, § maps elements (and sets of ele-
ments) of V4 onto elements (and sets of elements) of V. We wish to extend
further the meaning of p. If fEAN, then (§f)(n) =p(f(n)). If «aSA¥, then
pa={#f: f€al.

LemMa. (1) If aC V4 s open, then lim(pa) = p(lim o).

(2) For arbitrary BC V4, lim B=lim(Int 8).

Proof. Let f&lima. For all 220, f | n€a and $(f | n)Epa. Now pf
€p lim @ and {pf} L= {H(f I n): n20}. Hence pfE€lim(pa). Thus, p(lim )
Clim(pa).

We shall now show lim(pa) S p(lim a)(®). Suppose gE€lim(pa). Let
o' =aMU,zo p~1(g | ). Note that o is open because « is. Then &' contains
an infinite number of elements. For u€d/, let p.-(4) be the number of elements
in o of which u is an initial segment. Now A€o’ N\pos(A) = . We define
a,Ca’ inductively. Let A€ a,. Suppose u& ¢, as well as every initial segment

of u and suppose po (4} = =. Let a4, @, - - -, a, be an enumeration of the ele-
ments of A. If # is an initial segment of v but # v, then, because ' is open,
v is an initial segment of either ua,, uags, - - -, ua,. Since po(#) = =, for some

1, par(ua;) = . Let % be the first such 7 and place ua; in oy Thus @, C V4 is
an infinite set simply ordered by the relation “initial segment of”. It is thus
unambiguous to define f(n) =u(n), where #E«, has 7 in its domain. It fol-
lows, for all m, f | mEa,Ca and p(f [ m) =g [ m. Thus f€lim e, pf=g and
g€ plima.

The proof of (2) is immediate from the definition of lim and Int.

8.5. LEMMA. Let BT AY be the set of all infinite R-sequences f such that
f I nis an element of a given set E of sequences of length n, where R is an n-ary
relation over A. Then (1) im(BL) =B, and if P is a projection, (2) (pB)L = p(BL),
(3) im(($B) L) = $B, (4) B~ and p(BL) are regular sets and a regular expression
denoting them may effectively be obtained.

Proof. (1) Let f&B. Then {f}"QBL. Hence f&€lim(8%) and SClim(BL).
Suppose fELim(BL). Then f | n& {g | n: g€} CE and, for all m, f [ m is an
R-sequence. Hence f is an R-sequence and f&8.

) uE@BreVom gEBNA((PE) M) =ucV,n gEBNI(@E I m)=u
euc p(Bh).

3) im((#8)%) =lim(p(B8%)) by (2) and by 8.4, lim p(BL) = p lim(B~), since
B is open and by (1) the result follows.

(®) The proof is closely related to Kénig's infinity lemma. Theorie der endlichen und unend-
lichen Graphen, Leipzig, Akademische Verlagsgesellschaft M. B. H., 1936, p. 81, Satz 6.
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C(4) Kw)=A*-{a}-{a:} - - - {aa} 4% a:EA4, is the set of sequences in
Va4 in which the sequence w=a,a; - - - @ occurs and this set is regular. The
set compl Uy,er K(w) is regular and is the set of all R-sequences. The set EX
is regular, as is any finite set. The set BZ is: compl Uuer K(w)NE¥® and is,
therefore, regular. Since projection preserves regularity, p(8%) is regular.

8.6. Let L? be the system consisting of the formulas of L,, with individual
variables interpreted over natural numbers and the set variables interpreted
over arbitrary sets of natural numbers. With a formula §[Fy, Fs, - - -, F,] of
L% we associate a set T;'F defined as follows:

fET?F if and only if FEUY and (f(x)):=fi(x), 1SiSr, where f; is the
characteristic function of F; and §[F,, Fs, - - -, F.] holds. Abbreviations
introduced for L} in Remark 5.3 will be used in L} as well.

8.6.1. Let M=(S, f, d, g) be an A/B-automaton. The following formula
Gor[a, b] of L] (abbreviated) below may be identified with 9:

v [8(0) = f(a(0),d) A A -(s(=') = fla(a'), s(2))) A\ b(x) = gS(x)]-
If =Ty, m(Gqr) (assuming range a € Uy, and range bC Uy,), then comparison
with S [a, b] shows that al=3(N) = Tnim Fgy (cf. 8.3) and by Lemma 8.5
(3), lim 3(N) =a.

8.6.2. Consider arbitrary formulas of L? of the form V, A, M|a, b, s, %],
where range a C A4, range bC B, and where M: is free of quantifiers, contains
only s, a, b, x free (a, b, s, respectively, abbreviate finite sequences of set
variables), may contain numerals but not “=" nor “ <”. Assume M to be in
disjunctive normal form and let #» be the maximum of those m’s such that
x™ or 0 appears in M. Then Ty, w..(A: M), range sCSCU,, is the set of
all fE(4 XBXS)¥ which are R-sequences, for some n-ary R, and such that
f | nEE, for some finite set E (of elements of Vixsxs of length 7). Both R
and E are effectively, indeed readily, obtained from M in expanded disjunc-
tive normal form. If 8= Ty wi(Az M), then p8=Tm, (V. A: M), where p
maps an (m-+m'+r)-tuple into the appropriate (m+4m’)-tuple.

8.6.3. THEOREM. Given a formula V, A, M[a, b, s, x], M as in 8.6.2, of L},
there exists an A/B-automaton N such that lim 3(N) CB=Tm,w(V. Az M) if
and only if va=J (cf. 8.1) where v=PL. Whether or not ya= & can be effec-
tively decided (by the method given in proof) and if ya# &, one can effectively
produce an automaton satisfying the condition (by the method below).

Proof. From.8.6.l and 8.6.2, it follows that
lim 3(N) C < 3(9N) < BE,

The set 8% may be effectively obtained (8.5 (4)). The problem is now reduced
to 8.1.
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8.6.4. In connection with 8.6.3, it should be noted that:
lim3(M) S e A Gyle, 5] DV A Ma,b,s,x)
a,b s z

where Gy, 9U are as in 8.6.1.
9. REMARK. We give a metamathematical proof that the set

is not regular. Let a, b€ Uj. If the set were regular, then there would be a
formula §[f] of L} such that T,§=B. Then y=2x=V, f(x) =8Af(y)#0
AA; (> yDf(2) =0) AF[f]. Thus regularity of 8 implies that doubling is defin-
able in L} and by results of R. M. Robinson [10] it would follow that the set of
true sentences of L] is not effective, contradicting 5.8.

CHAPTER IV. NONEXISTENCE OF CERTAIN ALGORITHMS

10. Let L, be the class of well-formed formulas constructed out of indi-
vidual variables and monadic predicate variables, by means of the successor
operation (’), addition (4-), =, propositional connectives, and first order
quantification.

Let L; be the system consisting of L, with the individual variables ranging
over natural numbers and the monadic predicates range over properties of
natural numbers which are ultimately false and remain false (we could have
used finite set variables instead, as in 3) and the unary and binary (non-
logical) operations interpreted as indicated and the logical operators and =
interpreted in standard fashion.

It will be convenient, as a device for abbreviation similar to 5.3 remark,
to employ unary function symbols (we shall use “:”) in formulas such as
i(x) =a where a4 and A is a finite set of symbols. By coding 4, i.e.,
putting 4 into 1-1 correspondence with a set of r-tuples of zeros and ones,
for appropriate r, the function symbol “4” may be replaced by a sequence of
r distinct monadic predicate variables. To say 7 is free means that the associ-
ated r monadic predicate variables are free. If o =abc is a word (finite se-
quence), a,b, cE A4, then i(x)i(x+1)i(x +2) =owill abbreviate i(x) =a Ai(x+1)
=bAi(x+2)=c.

Notice that in Lj:

xr=0=2x+ 2 =12,
s<yeoVaxtu=yAu#0,

so that as further abbreviations, we shall employ 0, <.

Given a formula G=G[i, m] in which only %, m occur free where 7 is a
unary function (interpreted as a function on the natural numbers with values
in a finite set B) and m is a monadic predicate. With each ¢, m such that
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G[i, m] is true and m(0) holds associate the finite sequence T (3, m) of words
(in B) whose first n words are (1)£(2) : - - i(x1), (21 +1)5(x1+2) - - - i(x2),

e oy t(xaa+H1)(xn1+2) - - - #(xs) where 0 <x; <x3;< + + + <x, are the first
n-+1 numbers for which m holds. Let T(G) be the set of all T'¢(¢, m) such that
G|[i, m] is true and m(0) holds.

10.1. LEMMA. For every Post normal system P there is a formula F= F(P)
in Ly such that T(F) is the set of all proofs of P.

Proof. Let C.(x, ¥) abbreviatg:
m@m(y)(x < 9) A (z <3<y D ~m(z)),

ie.,

m) AmOAVestu=yA~utu=u

©

/\/\[(Vx+u=z/\~u+u=u

A Vz+u=y/\~u+u=u)3~m(z)].

With each production of P

(o1, 02)' : 1 — s

associate the formula

S, %9)1iw + Ditw+2) + il +He) = i AV wtUo) = 3
A i+ Vit +2) - - - i(u + ow) = o3
AYP+w+K$=xAz+x+W§=y

/\A(~u+u=u/\ Vvu+v=23i(w+l(a'f)+u)=i(x+u))):|

where /(o) represents the length of ¢. This formula expresses the condition
that i(w+1)i(w+2) - - - i(x) =diBand i(x+1)i(x+2) - - - i(y) =Bo} for some
B. Let (a1, 02)1, (01, 02)%, - - -, (01, 72)" be the productions of P and let & be
the axiom of P and define

SP(i, m): A [(Cm(wa x)Ca(x, y) D Sv;.a;(wx x, y) VeV S,;-,,:(w, x, y))

h Aw=0Dx=1a) Ai1)i2) - - - i) = &)].
Then F is
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[SP(i,m)/\m(O)/\ Vx#O/\y?fO/\x?fy/\m(x)/\m(y):I\/m(O)

zZ.y

A V[x#O/\m(x)/\(/\y#O/\m(y)Dy=x>Dx=l(a)

A i(Di) - - - i(i(e)) = a].

10.2. THEOREM. The set of satisfiable formulas of L} is effectively enumerable
but not effective. Indeed, the degree of unsolvability of this set is maximum among
all effectively enumerable sets. If P is a Post normal system with 2 letters (see
M. Davis, Computability and unsolvability, New York, McGraw-Hill, 1958, p.
100, Theorem 5.3) which generates the complete (Post, 1944) set of natural num-
bers and if Fu=F(P)AV,; Culx, x+n+1) Ai(x+1)=1Ai(x+2)=1A - - - A
t(x+n-+1)=1, then every recursively enumerable set is recursive in the set of
Gidel numbers of the satisfiable formulas F.,.

Proof. n< S, (see Davis, p. 85, Definition Lii) if and only if V; . F, is true,
i.e., if and only if F, is satisfiable,

The fact that the satisfiable formulas are effectively enumerable follows
readily from the Presburger result.

10.3. It is clear that the results of 10.1 and 10.2 hold if the individual
variables are interpreted over positive integers rather than non-negative
integers. Hence, one obtains for either the non-negative integers or the posi-
tive integers:

COROLLARY. If L3 is the system consisting of the formulas L; but with the
interpretation of the predicates unrestricted, then the set of satisfiable formulas of
L3 is not effective.

Proof. The property of a predicate that it becomes ultimately false and re-
mains so is definable in L2.

This (for positive integers) is Putnam's Theorem 4 [8, p. 50]. Putnam’s
argument can, however, be adapted to give the stronger result: The set of
satisfiable formulas of L3 is not arithmetic.

10.4. Let L3 be the system consisting of the class of formulas L, with in-
dividual variables interpreted as ranging over all the integers and with the
predicates ranging over finite sets of integers.

Analogues of the lemma of 10.1 and the theorem of 10.2 hold for L3. T(G)
is defined exactly as before.

Notice that in L3:

x=0<:>Vx+x=x, x=1¢=>Vy=O/\y’=x,

x>0V A Ay=1Dpy — D] A p()
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and

Py =1 e Vi =yAp@).

To establish the analogues for L3, we show that “V,” can be moved all the
way to the left.

Let D(p) stand for A, [p(y) Ay=1Dp(y—1)]. Notice that D(p) holds for
p if and only if p is a consecutive set of positive integers beginning with 1.

Then F=F(i, m) is modified by conjoining A, m(x) DD(p) Ap(x) and
prefixing the conjunction by V,. In the formula F, wherever one wishes to
express x <y, one writes YV, x+u=yAp(«).

10.5. Let L} be the system consisting of the class of formulas L, with in-
dividual variables interpreted over natural numbers and predicates inter-
preted over ultimately periodic sets (a set of natural numbers is ultimately
periodic if its characteristic function is).

CoOROLLARY. The set of satisfiable formulas of Lj is effectively enumerable
but not effective. The degree of unsolvability of this set is maximum among all
recursively enumerable sets.

Proof. That the set of satisfiable formulas is effectively enumerable follows
from the Presburger result. The rest of the statement follows from the fact
that the property of a predicate of being finite is definable in Lj and from 10.2.

A similar result holds for “integers” in place of “natural numbers”.

10.6. COROLLARY. Given an input-free automaton N and a formula B of L3
in which the predicates are interpreted as outputs: the problem of deciding whether
N satisfies B is effectively decidable while the question “does there exist an N such
that N satisfies B?” is undecidable. See Biichi, Elgot and Wright [1] and Elgot
and Wright [4, p. 68, last paragraph].
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