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Abstract: The personal thermal comfort model is used to design and control the thermal environment
and predict the thermal comfort responses of individuals rather than reflect the average response
of the population. Previous individual thermal comfort models were mainly focused on a single
material environment. However, the channels for individual thermal comfort were various in real life.
Therefore, a new personal thermal comfort evaluation method is constructed by means of a reliable
decision-based fuzzy classification model from two views. In this study, a two-view thermal comfort
fuzzy classification model was constructed using the interpretable zero-order Takagi–Sugeno–Kang
(TSK) fuzzy classifier as the basic training subblock, and it is the first time an optimized machine
learning algorithm to study the interpretable thermal comfort model is used. The relevant information
(including basic information, sampling conditions, physiological parameters, physical environment,
environmental perception, and self-assessment parameters) was obtained from 157 subjects in exper-
imental chambers with two different materials. This proposed method has the following features:
(1) The training samples in the input layer contain the feature data under experimental conditions
with two different materials. The training models constructed from the training samples under these
two conditions complement and restrict each other and improve the accuracy of the whole model
training. (2) In the rule layer of the training unit, interpretable fuzzy rules are designed to solve
the existing layers with the design of short rules. The output of the intermediate layer of the fuzzy
classifier and the fuzzy rules are difficult to explain, which is problematic. (3) Better decision-making
knowledge information is obtained in both the rule layer of the single-view training model and in the
two-view fusion model. In addition, the feature mapping space is generated according to the degree
of contribution of the decision-making information from the two single training views, which not only
preserves the feature information of the source training samples to a large extent but also improves
the training accuracy of the model and enhances the generalization performance of the training
model. Experimental results indicated that TMV-TSK-FC has better classification performance and
generalization performance than several related state-of-the-art non-fuzzy classifiers applied in this
study. Significantly, compared with the single view fuzzy classifier, the training accuracies and
testing accuracies of TMV-TSK-FC are improved by 3–11% and 2–9%, respectively. In addition, the
experimental results also showed good semantic interpretability of TMV-TSK-FC.

Keywords: personal thermal comfort model; fuzzy classification; two-view learning; different obser-
vation materials; classification performance

1. Introduction

Every day, people spend most of their time (approximately 90%) indoors [1]. The
indoor environment is critical to the health [2], productivity [3–5], and well-being of

Appl. Sci. 2022, 12, 11700. https://doi.org/10.3390/app122211700 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211700
https://doi.org/10.3390/app122211700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6492-952X
https://doi.org/10.3390/app122211700
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211700?type=check_update&version=1


Appl. Sci. 2022, 12, 11700 2 of 19

occupants [6,7]. Among different indoor environmental factors, thermal comfort is one of
the most important considerations [8].

In the field of traditional thermal comfort research, the predictive mean vote (PMV)
model is a classical model widely accepted in environmental assessment standards [9]. In
the practice and application of these models, it has been found that most of them predict
the average thermal comfort of a group of people rather than that of an individual [10].
Because significant differences exist between individuals [11], the use of population average
prediction to guide the building environment control may fail to meet the thermal comfort
requirements of individuals [12]. In addition, these models often lack self-learning and self-
correction capabilities. The PMV model has neither self-learning ability nor self-correction
ability [13]. The adaptive comfort model [14] has a self-learning ability to a certain extent,
but its self-correction ability is limited. Once the empirical coefficients are determined, they
can only be applied to familiar backgrounds [15]; when these models are applied to new
environments, such as new climatic conditions or new building operation patterns [16–20],
accuracy is barely satisfied.

To overcome these limitations of traditional thermal comfort prediction models, the
strategy of using machine learning algorithms to predict thermal comfort has been pro-
posed [21]. Compared with the traditional model [22–33], the ML-based comfort model
can establish an individual model based on input data [34]. The performance of the
comfort model is remarkable [35–38]. However, there are still some situations worth
further investigation.

(1) Acquisition of datasets. Datasets can be roughly divided into two categories. One
category contains field measurement datasets, which have a small number of subjects
(less than 20), and it is worth considering whether the research results are applicable to
other individuals; the other category consists of datasets that come from databases. The
subjects in this type of dataset come from different climatic regions, and their thermal
comfort expectations are different [39]. It is difficult to predict the comfort feeling in one
climatic region using type of this dataset. In the selection of the feature dimension for this
type of dataset, in addition to the six elements proposed by Professor Fanger (metabolism,
clothing thermal resistance, indoor temperature, relative humidity, radiation temperature
and wind speed), some individual indicators that may affect comfort, such as sex and skin
temperature, are included. However, comprehensive measures of the impact of personal
information, such as basic information, physiological indicators, psychological indicators,
and indoor and outdoor physical parameters, which affect individual comfort indicators,
on thermal comfort are still lacking.

(2) Consideration of material factors. Materials affect indoor environment comfort,
which has been confirmed in many papers [40]. For example, Ref. [41] hypothesized
that the introduction of nature into the built environment can improve users’ sense of
well-being, similar to that in the wooden environment. Refs. [42,43] Studies have shown
that the difference in the proportion of wood in the interior wall can lead to different
physiological responses of the occupants. It showed that surgical recovery patients have
different needs for pain medication in wooded versus non-wooded environments in health
care facilities [44,45]. It proposed that in the classroom environment, wood plays a positive
role in improving attention and reducing stress [46]. However, the effect of this material on
thermal comfort has not been mentioned in the existing thermal comfort models. Therefore,
it is very important to construct an appropriate model to study the effect of different
materials on thermal comfort.

(3) Design of the machine learning algorithm. At present, the algorithms used in
thermal comfort model research can be roughly divided into random forest (RF), neural
network (NN), support vector machine (SVM), K-nearest neighbor (KNN), gradient boost-
ing machine (GBM), decision tree (DT) algorithms, and other algorithms [47–49]. Although
these algorithms can obtain good performance in the learning process, they also have
the following limitations: (1) they easily fall into local minima, which affects the optimal
learning speed; and (2) it is difficult for the constructed model to have good interpretability.
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Therefore, the following factors are considered in this study: (1) Existing thermal
comfort models are based on the view of a single material. However, how to convert a
single view to an observational view based on two or more materials is explored. What
is the effect of the influence of multiple materials on human thermal comfort? (2) Unlike
the single view decision-making methods, how can we consider the impact of two or more
different types of materials on human thermal comfort to construct a thermal comfort
model? (3) The black-box phenomenon of the traditional neural network algorithm makes
it difficult to explain the meaning of the output of the middle layer and the output of the
system. How to construct a fuzzy classifier with good performance and high interpretability
is also one of the difficulties in this study.

Therefore, the research contribution of this study can be summarized as follows:
(1) Collection of datasets. To obtain relatively large and comprehensive training

samples and avoid differences in the thermal expectations of individuals of different ages
and climate zones, subjects of a specific age were selected for laboratory situations using
two materials in a given climate zone (the humid climate zone that is south of the north
subtropical zone is between 31◦43′12′′–32◦02′′ N and 120◦21′57′′–120◦52′′ E) to measure
the indoor physical environment and the physiological and psychological indicators of the
human body (see Section 4.1 for details).

(2) Model construction. The joint membership function from two views was con-
structed to take into account the effect of the characteristic information of different materials
on the thermal comfort of the human body. Additionally, the design of the feature mapping
space under the joint view not only preserves the feature information of the training sample
from a single view but also considers the impact of different materials on the individual’s
thermal comfort, thereby optimizing the entire training model.

(3) Regarding the interpretability of the model, fuzzy rules are proposed in the ther-
mal comfort model. The output of the rules and the output of the whole model have
good interpretability.

On this basis, an individual thermal comfort model is proposed in this paper based on
a TSK fuzzy classifier (TMV-TSK-FC) from the dual-material view. This paper is arranged
as follows. In the first section, the relevant research background, current situation, and
research content are introduced. In the second section, the basic knowledge of this study is
introduced, and in the third section, the construction of the model and its related proofs
are mainly described. In the fourth section, the experimental analysis is conducted and
discussed, and in the fifth section, this paper is summarized.

2. Introduction of Relevant Domain Knowledge

This study mainly involves the classical zero-order TSK fuzzy classifier and the ex-
treme learning machine (ELM), so they are briefly introduced in this section.

2.1. Classical Zero-Order TSK Fuzzy Classifier

The classical zero-order TSK fuzzy classifier [50] is one of the most commonly used
fuzzy classifiers, and its basic principle is as follows:

Let x = [x1, x2, . . . , xn]
T be the input vector. Each component xi is a fuzzy linguistic

variable, µAk
i
(xi)(i = 1, 2, . . . , n, k = 1, 2, . . . , K) is each component’s corresponding mem-

bership function, and Ak
i (k = 1, 2, . . . , K) is the input vector xi in the k fuzzy subsets under

three rules. Then, in the kth fuzzy rule, the output is yk. The expression is:

Rule k: If x1 is Ak
1 And x2 is Ak

2 And . . . xn is Ak
n, then yk = pk

0, k = 1, 2, . . . , K.

where Rule k represents the first k rule and is the fuzzy connection operator, K is the total
number of fuzzy rules, and pk

0 represents the first k output of the fuzzy rules.
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According to [51–53], after a series of processing on the input vector, the final output
of the TSK fuzzy classifier can be expressed as:

y0 =

K
∑

k=1
µk(x)pk

0

K
∑

k′=1
µk′(x)

=
K

∑
k=1

µ̃k(x)pk
0 =

K

∑
k=1

µk(x)pk
0 (1)

where the fuzzy membership function µk(x) can be written as:

µk(x) =
d

∏
i=1

µk
Ak

i
(xi) (2)

where the normalized fuzzy membership function µk′(x) can be written as:

µ̃k(x) =
µk(x)

K
∑

k′=1
µk′(x)

(3)

Under normal circumstances, we use the Gaussian fuzzy membership function as the
fuzzy membership function, and its expression is:

µAk
i
(xi) = exp(

−(xi − ck
i )

2

2δk
i

) (4)

Two of the parameters, ck
i and δk

i , can be calculated by using a clustering algorithm or
other methods [54].

2.2. ELM

Due to the outstanding advantages of the extreme learning machine (ELM), such
as fewer training parameters, fast learning speed, and strong generalization ability, its
theory and application have been extensively studied in the past decade [55,56]. In simple
terms, the ELM model is divided into two main stages: random feature mapping and linear
parameter solving.

According to the literature [57,58], the specific principle is summarized as follows.
The network structure of ELM mainly consists of three parts: the input layer, the

hidden layer, and the output layer.
Assume a given training set X= {xi, ti

∣∣xi ∈ RN , ti ∈ RL , i = 1, 2, 3, . . . , N}, where xi
represents the ith input sample, ti represents the ith label corresponding to each sample,
and the set refers to all the training data.

The hidden layer, which is the middle layer, is fully connected to the input layer. The
output of the hidden layer is H(x) = [h1(x), h2(x), . . . , hK(x)], where hk(x) is the output of
the kth rule layer. K is the number of nodes in the hidden layer hk(x) = g(wk, bk, x), where
g(wk, bk, x) is the activation function, wk and bk are the hidden layer node parameters. The
solution of the weight value w and the deviation b is complete.

The output of the single hidden layer feedforward neural network ELM is fK(x) =
K
∑

k=1
βkhk(x) = H(x)β, where β = [β1, β2, . . . , βK]

T is the output weight of the hidden layer

(K nodes) and the output layer (L nodes, L ≥ 1). We can evaluate the training error with
Hβ and sample label T by minimizing their square difference. The objective function
is min‖Hβ− T‖2,β ∈ RK∗L, that is, the weight (β) connecting the hidden layer and the
output layer is solved by minimizing the approximate square difference. The solution
that minimizes the objective function is the optimal solution. When the training error is
minimized, the output weight β is solved.
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The network structure of the ELM is shown in Figure 1.
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3. Our Model

In this study, we constructed an individual thermal comfort model that considers
the effects of two different materials on human comfort and combines information from
the different environments. With the constructed model, the mechanism of the impact of
different environmental factors on human thermal comfort was investigated. First, in this
study, the original dataset from environments with two different materials (a wooden envi-
ronment and a brick-concrete environment) was obtained under real laboratory conditions,
their information was then preprocessed, and the features were determined. Second, this
model was constructed by not only retaining the classification advantage of the training
samples from a single view, but also considering the impact of the characteristics of different
materials on an individual’s thermal comfort. The entire training model was optimized
based on this, which was a difficulty of this study.

3.1. Construction of the Membership Function under the Joint View

It may be impossible to accurately predict the impact of a certain environment on the
comfort of a human body from a certain view for the following reasons: the number of
sample features under a single material view for constructing a thermal comfort model is
small, and its importance is difficult to predict and express. Moreover, there is uncertainty
in the selection of features, and predictions are often one-sided and subjective. In this study,
information compensation from different views is used in the training feature preprocessing
stage to avoid the subjective influence of characteristics on individual thermal comfort
from a single material view; the model’s interpretability at the source training sample
level is also addressed. The fuzzy membership function can represent the decision-making
degree of the training features for different materials on the training results. However,
the degree of independent decision making can only reflect the feeling of comfort from a
single material view, and the impact of the feature information from two different views
on human comfort often cannot be fully considered. Therefore, it is necessary to jointly
consider two views and integrate the decision-making levels of different materials from
multiple views to construct a more reasonable individual comfort model.

First, we divide C equally spaced fuzzy partitions. Cluster center ar falls within one
of the determined partitions. In this study, a Gaussian membership function is used to
obtain the degree of membership. Set C = 7, ar ∈ ( r−1

7 , r
7 ), (r = 1, 2, . . . , 7), i.e., seven fuzzy

partitions, GMF1, GMF2, GMF3, GMF4, GMF5, GMF6, GMF7, to be equally spaced. The
linguistic definitions are ‘extremely low’, ‘very low’, ‘low’, ‘medium’, ‘high’, ‘very high’, and
‘extremely high’, respectively.
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Second, according to (2), the membership function of two independent views is solved
separately as uv1(xij) and uv2(x

′
ij
).

uv1(xij) = exp(−(xij − ar1)
2/2σ2

r ) (5)

uv2(x
′

ij
) = exp(−(x

′

ij
− a

′
r2
)

2
/2σ

′2
r ) (6)

where i= 1, 2, . . . , n; j= 1, 2, . . . , d; ar ∈ ( r−1
7 , r

7 ), r = 1, 2, . . . , 7.
Third, the membership functions of two separate views are fused in this study, and the

semantic partitions that best match the characteristics of each sample under two separate
views are selected. In other words, the values of the Gaussian membership function
under two separate views uv1−max(xij, r1) and uv2−max(xij, r2) and a maximum Gaussian
membership function value matrix for each feature µv1

.µv2
are selected. The membership

function value matrix under the joint view µv1 v2 is constructed, and its expression is

µv1
(i, j) =

C1

∏
r1=1

uv1−max
jr1

(xij) (7)

µv2
(i, j) =

C2

∏
r2=1

uv2−max
jr2

(x
′
ij) (8)

µv1 v2(i, j) =

√√√√ C1

∏
r1=1

uv1−max
jr1

(xij)·
C2

∏
r2=1

uv2−max
jr2

(x′ij) (9)

where i= 1, 2, . . . , N and j= 1, 2, . . . , D; C1 is the number of equally spaced fuzzy partitions
under the first view r1 = 1, 2, · · · , C1; and C2 is the number of equally spaced fuzzy
partitions under the second view r2 = 1, 2, · · · , C2.

3.2. Construction of the Decision Coefficient Matrix

The decision coefficient matrix is an important component for feature selection. To fully
consider the impact of information from two different material views on individual thermal
comfort, a method to construct a decision coefficient matrix under the joint view ϕv1v2 is
proposed in this study by comparing the important feature options under the two views.

When calculating the membership function using the joint view, the maximum mem-
bership function value matrix of each feature of the training sample under each independent
view µv1

and µv2
is obtained. In the feature domain, the effective feature that contributes

the most to information decision-making in each sample under two single views is obtained.
We consider the corresponding relationship between the effective training features under
two views; that is, when a certain feature is an effective feature for the two different materi-
als, we believe that the feature is effective in improving the classification performance of
the model. Then, we choose to retain this feature; otherwise, we discard this feature. For
example, from the view of two materials, the most effective feature of the same i sample
is the j-dimensional feature, which means that the maximum membership function value
of the j-dimensional feature (µv1

(i, j), µv2
(i, j)) is greater than other characteristics of the

sample. Then, we can indicate that the j-dimensional feature is the most important feature
in information decision-making under the two views, and we select this feature to construct
the decision coefficient matrix. As a result, we not only retain the characteristic information
of each sample under each single view but also integrate different characteristics of the two
materials, thereby optimizing the final decision-making effect.

As shown in Figure 2, the decision coefficient matrix under the first material view isϕv1 ,
andϕv1 is the matrix based on µv1

. The values of the obtained matrix are 0 or 1. The feature
with the maximum membership function value of each sample is marked as 1. The decision
coefficient matrixϕv2 of the second material view is constructed in a similar manner.
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Therefore, we combine the feature selection matrix under the joint view ϕv1v2 , which
is expressed as:

ϕv1v2 =

 ϕv1(1, 1)⊗ϕv2(1, 1) . . . ϕv1(1, K)⊗ϕv2(1, K)
...

. . .
...

ϕv1(D, 1)⊗ϕv2(D, 1) · · · ϕv1(D, K)⊗ϕv2(D, K)


D×K

(10)

where j= 1, 2, . . . , D, k= 1, 2, . . . , K, K is the number of rules, and ϕv1v2 is based on two
single view decision coefficient matricesϕv1 , ϕv2 . In other words, if the maximum value of
the membership function is the same feature to form the corresponding matrix, then it is
set to 1; otherwise, it is set to 0.

In [59], the decision coefficient matrix ϕ is a matrix for feature selection through
random partitioning and random combination, ensuring the interpretability of the fuzzy
rules in the hidden layer. In [60], information entropy is determined by the method of
information gain from 0 to 1 for each matrix, each element is assigned as a random initial
value, and then features are selected according to a certain ratio. These methods are
all effective methods for a single dataset. This study fully considers the advantages of
information supplementation and important features between the two views for the dual-
view classification task. Therefore, the two-view decision coefficient matrix constructed in
this study contains the characteristics of the source training samples from two views. This
is also one of the innovations of this study.

3.3. Output Rules

The expression of output rule W is:

W(i, k) =
D

∏
j=1
µ(i, j)·ϕ(j, k) (11)

where i= 1, 2, . . . , N; j= 1, 2, . . . , D; k= 1, 2, . . . , K.
The selection of features is very important when outputting rules. Different features

have different effects on the final classification performance. Therefore, the selection of
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important eigenvalues is critical. For each feature, the performance of the maximum
membership function value under two single views µv1

(i, j) and µv2
(i, j) and the maximum

membership function value under the joint view µv1 v2(i, j) is considered and compared.
The more advantageous maximum membership function value is selected for the fuzzy
rule calculation. This includes the following situations:

Situation 1: µv1
(i, j)>µv1 v2(i, j)>µv2

(i, j)
The maximum membership function value under the first view is chosen when using

the fuzzy rule calculation. For a certain feature, the value of the maximum membership
function under the first view is greater than the value of the membership function under the
joint view, and the value of the membership function under the joint view is greater than
the value of the maximum membership function under the second view. Therefore, this
feature can better reflect the comfort level of the individual from the first view, indicating
that the contribution of this feature to the final decision is relatively large under the first
view. The expression of output rules is as follows:

Wik =
D

∏
j=1
µv1

(i, j)·ϕv1v2(j, k) (12)

where i= 1, 2, . . . , N; j= 1, 2, . . . , D; k= 1, 2, . . . , K.
Situation 2: µv2

(i, j)>µv1 v2(i, j)>µv1
(i, j)

Similar to situation 1, if the maximum membership function value of a certain feature
from the second view is the largest and the feature performance is the best, then the maximum
membership function value of situation 2 is chosen. The expression of output rule is as follows:

Wik =
D

∏
j=1
µv2

(i, j)·ϕv1v2(j, k) (13)

where i= 1, 2, . . . , N; j= 1, 2, . . . , D; k= 1, 2, . . . , K.
Situation 3: µv1

(i, j)>µv1 v2(i, j) AND µv2
(i, j)>µv1 v2(i, j)

If the value of the maximum membership function of a certain feature from two
separate views is greater than the value of the membership function under the joint view,
the feature can better reflect the degree of comfort of the individual under the two separate
views. This indicates that for this feature, the two independent views have a relatively
large impact on the final decision. In this case, the average value of the two views is used
to calculate the fuzzy rule. The expression is described as follows:

Wik =
D

∏
j=1

µv1
(i, j) + µv2

(i, j)
2

×ϕv1v2(j, k) (14)

where i= 1, 2, . . . , N; j= 1, 2, . . . , D; k= 1, 2, . . . , K.
Situation 4: µv1

(i, j)<µv1 v2(i, j) AND µv2
(i, j)<µv1 v2(i, j)

If for a certain feature, the value of the membership function of the joint view is
greater than the value of the maximum membership function of two separate views, the
degree of comfort of the individual can be better determined through the joint view, since
the joint view is integrated after considering the factors of the two views. With superior
performance, the output rule can be expressed as:

Wik =
D

∏
j=1
µv1 v2(i, j)·ϕv1v2(j, k) (15)

where i= 1, 2, . . . , N; j= 1, 2, . . . , D; k= 1, 2, . . . , K.
Thus, for output rule W, we ensure the attributes of important features by selecting

the value corresponding to the most advantageous view, which is chosen through the
comparison of each membership function value. Effective information is also retained
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by the decision coefficient matrix ϕv1v2 under the joint view. Figure 3 shows the method
of decision coefficient matrix under the joint view. This method integrates the feature
information from two views, resulting in universal applicability for dual views, which is
one of the important innovations in this paper.
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3.4. The Algorithm

The algorithm adopted in the proposed model is shown in Algorithm 1, and Figure 4
shows the working flowchart of the TMV-TSK-FC model.
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Algorithm 1: Training Algorithm Of TMV-TSK-FC

Input: The training set Xv1 = [x1, x2, . . . , xN ]T , Xv2 = [x
′
1, x

′
2, . . . , x

′
N ]

T
;

The corresponding class label set T = (t1, t2, . . . , tN)T

Step 1: Compute the values of Gaussian membership functions
Step 1(a): Compute the values of Gaussian membership functions for each view

u = exp(−(xij − ak)
2/2σ2

k )
Step 1(b): Compute the maximum Gaussian membership functions for each view and the mix view

µv1
(i, j) =

C1

∏
r1=1

uv1−max
jr1

(xij)

µv2
(i, j) =

C2

∏
r2=1

uv2−max
jr2

(x
′

ij)

µv1 v2 (i, j) =

√
C1

∏
r1=1

uv1−max
jr1

(xij)·
C2

∏
r2=1

uv2−max
jr2

(x′ij)

Step2: Compute the projection matrix

ϕv1v2 =


ϕv1 (1, 1)⊗ϕv2 (1, 1) . . . ϕv1 (1, K)⊗ϕv2 (1, K)

...
. . .

...

ϕv1 (D, 1)⊗ϕv2 (D, 1) · · · ϕv1 (D, K)⊗ϕv2 (D, K)


D×K

Step 3:
For i← 1 to n
Choose optimized membership functions to compute the following value of the premise of each fuzzy rule

Wik =
D
∏
j=1
µv1 v2 (i, j)·ϕv1v2 (j, k)

Step 3(a): If µv1
(i, j)>µv1 v2 (i, j)>µv2

(i, j), Then Wik =
D
∏
j=1
µv1

(i, j)·ϕv1v2 (j, k)

Step 3(b): If µv2
(i, j)>µv1 v2 (i, j)>µv1

(i, j), Then Wik =
D
∏
j=1
µv2

(i, j)·ϕv1v2 (j, k)

Step 3(c): If µv1
(i, j)>µv1 v2 (i, j),µv2

(i, j)>µv1 v2 (i, j), Then Wik =
D
∏
j=1

µv1
(i,j)+µv2

(i,j)
2 ·ϕv1v2 (j, k)

Step 3(d): If µv1
(i, j)<µv1 v2 (i, j),µv2

(i, j)<µv1 v2 (i, j), Then Wik =
D
∏
j=1
µv1 v2 (i, j)·ϕv1v2 (j, k)

End For

Step 4: Construct a rule layer output matrix H
H = [w1, w2, . . . , wK ]

T
N×K

Output:
The prediction function of TMV-TSK-FC: Y = H·β

3.5. Time Complexity Analysis

The time complexity of the algorithm includes six parts: the construction of the
membership function under the joint view, the construction of the decision coefficient
matrix under the joint view, the output of the selection rule, the construction of the decision
coefficient matrix H under the joint view, the construction of matrix β and the result
output. The corresponding time complexities are O(7DK), O(DK), O(DK), O(7ND2K),
O(K3 + NK + NL), and O(NKL), respectively. According to the order of magnitude, the
final time complexity is O(7DK + 7ND2K + K3 + NKL). For the thermal comfort model,
the number of features and the number of rules are relatively small. When the test sample
N is large, the time complexity of the model can be simplified as follows: O(7ND2K). It
indicates a linear relationship with sample N and is part of a reasonable range.
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4. Experiment and Discussion
4.1. Experimental Setup

The dataset in this study was obtained by field research in the laboratory. The sampling
location was in Zhangjiagang City, which is located between latitudes 31◦43′12′′–32◦02′

and longitudes 120◦21′57′′–120◦52′, and the southern part has a tropical wet climate. All
subjects lived in Zhangjiagang City for one year or more and were fully adapted to the
local climatic conditions. The subjects were divided into two groups for data collection
in April 2020 and April 2021. The basic information of the subjects, including sampling
conditions, physical environment, physiological parameters, subjective perception, and
self-assessment were measured and analyzed statistically. The numbers of subjects in the
two groups were 48 and 109.

a. Experimental procedure

The subjects received 30 min of training before participating in the experiment to en-
sure that they were aware of how to perform physiological measurements. They were also
required to complete an experiment for approximately 160 min (30 min in the preparation
room, 60 min of sampling time in the first stage, 10 min of rest, and 60 min of sampling
time in the second stage). The experimental process was as follows. First, each subject
received the sampling information form in the preparation room; the basic information was
completed, and sampling conditions were collected. After sitting still for approximately
30 min, the subject entered experimental chamber 1 (stage 1). To adapt to this indoor
environment, the physiological parameters of the subjects and the physical parameters
of the indoor environment were simultaneously recorded by the staff; then, the subjects
completed the subjective perception and self-assessment evaluation forms. The staff re-
viewed this information to ensure correctness. Next, subjects left experimental chamber 1
for 10 min, during which time the staff thoroughly ventilated and cleaned this chamber.
Then, the subject entered experimental chamber 2 (stage 2). For minutes 100–130, reading
or online status was resumed; after minutes 130–160, the staff again recorded physiological
parameters, physical environment parameters, subjective perception, and self-assessment
evaluation forms. Once the tests in the two stages were completed and the inspection was
correct, the staff left the sampling room. To exclude the effect of the experimental sequence
on the feeling of comfort, the experimental cabins using material 1 and material 2 were
divided into Groups A and B for simultaneous experiments, respectively. Figure 5 shows
the experimental process.
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b. Characteristics and labels

According to [23–36], individual thermal comfort models constructed in the past
mostly collected information from indoor and outdoor physical environments and human
body responses as features information. The number of subjects surveyed was usually
limited, ranging from one to a few in these models because of the difficulties in recruiting
subjects, the long sampling period, etc. The limitation related to an insufficient number
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of surveyed subjects in previous models was overcome in this study by surveying a
larger number of subjects, and a comprehensive classification of the characteristics that
affect individual thermal comfort was conducted to obtain a more comprehensive data
sample. The selected features included six categories (i.e., basic information, sampling
conditions, physiological parameters, physical environment, environmental perception,
and self-assessment), which are summarized in Table 1.

Table 1. Selected features for the development of TMV-TSK-FC personal thermal comfort models.

Category Characteristics

Basic information Information such as gender, height, age, new city metabolism, clothing
thermal resistance, and BMI

Sampling conditions The weather of the day, the materials of the sampling chamber, the
opening and closing of the windows, etc.

Physiological parameters High pressure, low pressure, pulse, perspiration rate, and multipart
body surface temperature

Physical environment Indoor and outdoor air temperature, relative humidity, indoor surface
temperature, and black bulb temperature

Environmental awareness Subjective feelings such as environmental coldness and heat, comfort,
and expectation

Self-assessment Health, mood, performance, fatigue, etc.

Since the thermal sensation vote (TSV) is currently the most widely accepted stan-
dard in comfort studies, the thermal sensation of an individual is evaluated based on the
ASHRAE scale. The sample labels with individual thermal sensation vote values of −1, 0, 1
are defined as comfortable, and the sample labels with values less than −1 or greater than
1 are defined as uncomfortable, thereby achieving a binary classification task, as shown in
Figure 6.
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Figure 6. Schematic diagram of Thermal Sensation classification.

To obtain more valuable training samples during sample preprocessing, we tracked
the comfort feeling of the same subject in both experimental cabins. When the same subject
felt the same in both experimental cabins, we selected the sample. Otherwise, the training
sample was discarded. The processed datasets were grouped to obtain a sample on the
feeling of indoor environment comfort. Table 2 provides a detailed description of the two
experimental datasets. Seventy-five percent of the samples in each dataset were used for
training, and the remainder were used for testing.

Table 2. Dataset descriptions.

Groups Visual Angle No. of Selected Samples No. of Total Samples No. of Features No. of Classes

Data 1 *
Timber 27 48 23 2

Concrete 27 48 23 2

Data 2 *
Timber 76 109 34 2

Concrete 76 109 34 2

* Data 1 is the dataset collected in April 2020, and data 2 is the dataset collected in April 2021.

c. Parameter settings
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The main parameters of this experiment include the number of fuzzy rules K, number
of clustering centers C, and coefficient λ, which can be set manually in advance. The
detailed settings are shown in Table 3.

Table 3. Experimental parameter settings.

Parameter Value

Number of fuzzy rules K 55~60
Number of cluster centers C1C2 7

λ (0, 0.1)
η (0, 0.1)

4.2. Description of the Comparison Algorithm

In this study, we used the four classical optimization algorithms with DBN [61],
QI-TSK [60], and the KEEL software (KEEL can be downloaded from http:www.keel.
es/download.php (accessed on 30 March 2022)), as comparison algorithms to evaluate
and verify the rationality and superiority of the proposed model. Knowledge extraction
based on evolutionary learning (KEEL) is a machine learning software based on Java that
integrates a variety of classical algorithms and their corresponding optimization algorithms.
It mainly includes classification algorithms, regression algorithms, and semi-supervised
learning algorithms. The four classical optimization algorithms adopted are JADE-C, SADE-
C, GFS-ADABOOST-C, and GFS-MAXLOGITBOOST-C. Among the above algorithms, DBN
is the classic nonfuzzy machine learning algorithm, QI-TSK is the optimized TSK algorithm,
JADE-C and SADE-C are the classic nonfuzzy algorithms in the KEEL software, and GFS-
ADABOOST-C and GFS-MAXLOGITBOOST are the classic nonfuzzy algorithms in the
KEEL software. Therefore, the performance of the proposed model, TMV-TSK-FC, can be
comprehensively observed by comparison with the classical DBN algorithm, the optimized
TSK algorithm, and the classical fuzzy and nonfuzzy algorithms in the KEEL software.
The detailed algorithm descriptions are presented in Table 4. In addition, comparative
experiments were conducted in this study to investigate the rationality of optimization
measures such as the construction of membership functions and the construction of the
decision coefficient matrix from the fusion view.

Table 4. Algorithm descriptions.

Algorithms Main Descriptions of Compared Algorithms Main Descriptions of
TMV-TSK-FC

DBN
(1) Hierarchical structure with multiple hidden layers; only the
nodes of adjacent layers are connected.
(2) The process of feature learning has better feature expression.

(1) Dataset input: bi-view
information input.
(2) Feature selection and rule
output: By constructing a
membership function from a joint
view, comparing the size of its
membership value, select the
membership function value that
contributes the most to decision
making, so that the feature
information of the two views can be
effectively processed. Fusion, and
by constructing a decision
coefficient matrix, select the features
that are closely related to
information decision making for
rule output.
(3) Fuzzy rules: TMV-TSK-FC has
high usability and interpretability.

QI-TSK

(1) The basic building blocks of QI-TSK-fc (td > 1) are all composed
of optimized zero-order TSK fuzzy classifiers. Each base building
unit is aligned with the adjacent base building unit.
(2) Fuzzy rules and features have high interpretability.
(3) The algorithm does not need to iterate.

JADE-C (1) The optimal mutation strategy is randomly selected.
(2) Self-adaptive parameter control and control parameters.

SADE-C
For a single training set, there is no feature selection ability.
Influence the mutation strategy of the next generation according to
the success rate of the recorded mutation strategy.

GFS-ADABOOST-C
(1) Use a single training set to train different fuzzy classifiers.
(2) High classification performance, no feature filtering, but long
training time.

GFS-
MAXLOGITBOOST-C

(1) The loss function is derived by maximizing the log-likelihood
function.
(2) Optimize in a way similar to Newton iteration.

www.keel.es/download.php
www.keel.es/download.php
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4.3. Performance Evaluation

The learning algorithm proposed in this study is compared with the classical optimiza-
tion algorithms (JADE-C, SADE-C, GFS-ADABOOST-C, and GFS-MAXLOGITBOOST-C)
in the software. The membership function and the research method of constructing the
decision coefficient matrix from the view of fusion were compared and verified.

(1) Classification performance and generalization performance

According to Figure 7, the classification and generalization performance of TMV-TSK-
FC on the above two datasets are observed. Based on the training structure of the first
dataset, QI-TSK and GFS-ADABOOST-C have good training accuracies, and TMV-TSK-FC
is able to perform classification as well as the other algorithms. Based on the training
structure of the second dataset, which has a larger number of samples in the dataset, the
use of TMV-TSK-FC with the fusion of the two material views improves the classification
accuracy compared with the other algorithms. In addition, Figure 7 also shows that TMV-
TSK-FC has good generalization performance. Since TMV-TSK-FC effectively integrates
the feature information of two views and selects features relating closely to the information
decision for output rule, it has better generalization performance. It is worth noting that
the output of the TMV-TSK-FC training intermediate layer, the output of each fuzzy rule,
and the output of the final fuzzy classifier are all interpretable.
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(2) Optimization method for feature selection

Figure 8 shows the effect of TMV-TSK-FC on the classification and generalization
performance before and after feature selection optimization. First, the membership function
value of each feature under the optimized joint view is solved. The method used to obtain
the solution takes the arithmetic mean of the membership function value of the feature
from the two views based on the fuzzy center. From the view of classification accuracy, the
optimized method indeed provides TMV-TSK-FC with a better classification ability. This
advantage may be due to the selection of dominant features that have a large contribution
to decision-making under both views, which improves the performance of classification
and generalization.
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Figure 8. Comparison between TMV-TSK-FC and different feature optimization methods.

(3) The optimization method of the decision coefficient matrix

To further verify the rationality of the proposed method with respect to the construc-
tion of the decision coefficient matrix, a method of calculating the arithmetic mean of
the decision coefficient matrix under two single views is used in this study as a compari-
son method. The information gain method determines the information entropy, assigns
a random initial value from 0 to 1 to each element, and then randomly selects features
according to a ratio of 70%. The purpose of this study is to observe the impact of the
above two optimization methods on the classification and generalization performance.
According to Figure 9, the classification and generalization performance of TMV-TSK-FC
by constructing the decision coefficient matrix optimized in this paper is generally higher
than that of the average decision coefficient matrix. The experimental results show that the
method of optimizing the decision coefficient matrix proposed in this paper is reasonable.
Therefore, the decision coefficient matrix can be applied to retain the feature information
that contributes significantly to the decision under two views, by which means the inherent
information of the two independent views can be fully considered by the final decision. In
addition, the learning efficiency, classification, and generalization performance of the fuzzy
classifier can be improved.
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ture are randomly located in seven partitions, the center point of feature 1 is 0.1032, and 

65 65

57 60

56 61

61 63

Traditional feature fusion TMV-TSK-FC

Training

Testing

Training

Testing

}Data１

50.00 53.00 56.00 59.00 62.00 65.00

Training/Testing Accuracies(%)

Data２}

Figure 9. Comparison between TMV-TSK-FC and different decision coefficient matrix algorithms.

4.4. Semantic Interpretability Analysis

To prove the good semantic interpretation ability of the proposed TMV-TSK-FC classi-
fication model, semantic interpretation is performed on fuzzy rules and the model output
from two views. Taking the first fuzzy rule in each view as an example, the parameters
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before and after each rule and the Gaussian membership function are given. Three sample
points are randomly selected to represent the merging process of the two fuzzy rules. Ta-
ble 5 shows the parameters of the context and the Gaussian membership function. Figure 10
shows the interpretability of the feature selections and outputs of the fuzzy rules.

Table 5. Antecedent and consequent parameters and the Gaussian membership function.

Sample1 Feature 1 Feature 2 Feature 3 ... p1
0

Rule1 in view1 e−
1
2 (

x−0.1032
0.1314 )

2

e−
1
2 (

x−0.1866
0.0589 )

2

e−
1
2 (

x−0.3804
−2.0578 )

2
. . . 0.7236

Rule1 in view2 e−
1
2 (

x−0.0454
−1.4152 )

2

e−
1
2 (

x−0.2045
−0.1759 )

2

e−
1
2 (

x−0.3110
0.2101 )

2
... 0.2489
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Table 5 shows the output of the first rule under the first view. The Gaussian member-
ship function distribution is used for fuzzy division. Taking the first sample as an example,
the cluster center points of the Gaussian fuzzy membership functions of each feature are
randomly located in seven partitions, the center point of feature 1 is 0.1032, and the center
point of feature 2 is 0.1866.... Then, the membership function value is generated, and the
rule output p1

0 is 0.7236.
Figure 10 shows the process of feature selection, decision coefficient matrix generation,

rule generation, and the final output of the three sample points under the first rule. Taking
the 17th sample as an example, its maximum membership function value is 0.9995 under
the second view, so this membership function value is selected. The maximum membership
function value of sample 17 under the first view appears at the position of the 20th feature,
whereas it is the fifth feature under the second view; therefore, they are not the same feature,
and So its decision coefficient matrix output is 0. It was inferred to belong to the first class
since its output value of the first category is much larger than that of the second category.

5. Conclusions

In this study, an individual thermal comfort model, TMV-TSK-FC, was developed and
applied to observe the effects of two materials on an individual’s thermal comfort based on
the TSK fuzzy classification theory and the ELM extreme learning machine theory.

In constructing the model, decision-making levels from two different views were
fused to reflect the inherent characteristic information of each sample in a more reasonable
manner and improve the classification performance of the model. The decision-making
level strategy under construction of the joint view was adopted for feature selection so
that TMV-TSK-FC can not only satisfy the interpretability but also share the feature in-
formation under two views. In this study, we also adopted the method of constructing
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the decision coefficient matrix under the joint view to determine the view with good
decision-making ability, which is based on whether the maximum decision-making de-
gree values of the two views correspond to the same training feature. Compared with
several traditional non-fuzzy classifiers (i.e., DBN, JADE-C, SADE-C, GFS-ADABOOST-C,
and GFS-MAXLOGITBOOST-C), the experimental results indicated that the proposed
TMV-TSK-FC showed good classification performance and generalization performance.
Compared with several related state-of-the-art single view fuzzy classifier (i.e., classical
0-order TSK fuzzy system and QI-TSK-FC), the training accuracies (testing accuracies) of
TMV-TSK-FC are improved by 3–11% (2–9%). In addition, the experiments also proved
good interpretability of TMV-TSK-FC. Facing more practical scenarios, future work should
discuss how to quickly obtain the hyperparameter combination and expand the two views
for multi-view learning or multi-task learning.
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