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Many companies with consumer direct service models, especially grocery delivery services, have found that
home delivery poses an enormous logistical challenge due to the unpredictability of demand coupled

with strict delivery windows and low profit margin products. These systems have proven difficult to manage
effectively and could benefit from new technology, particularly to manage the interaction between order capture
and order delivery. In this article, we define routing and scheduling problems that incorporate important features
of this emerging business model and propose algorithms, based on insertion heuristics, for their solution. In the
proposed home delivery problem, the company decides which deliveries to accept or reject as well as the
time slot for the accepted deliveries so as to maximize expected profits. Computational experiments reveal
the importance of an approach that integrates order capture with order delivery and demonstrates the quality
and value of the proposed algorithms.
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1. Introduction
Business-to-consumer e-commerce has not only
increased the demand for package delivery services,
such as those offered by Federal Express and United
Parcel Service (UPS), but has also led to the devel-
opment of new consumer direct (CD) service models
and activities such as grocery delivery services. By
bringing goods “the last mile” to the customer’s front
door, home delivery is seen by many as the ultimate
value-added service for consumers. It is expected that
in the future we will see a proliferation of new deliv-
ery services and options. Forrester Research expects
online purchases by U.S. consumers to grow to $184
billion by 2004, or seven percent of total retail spend-
ing that year (Jardine Logistics Report 2001). Many
of the companies that have started to provide home
delivery services have found, however, that direct
delivery poses an enormous logistical challenge and
are struggling to create direct delivery strategies that
are profitable and can satisfy customer expectations.
For example, the difficult challenge of matching gro-
cery store prices while incurring high distribution
costs led to closing of the San Francisco-based oper-
ations for Peapod (Cox 2001) and the declaration of
bankruptcy by Webvan (Farmer and Sandoval 2001).
CD is obviously not limited to online grocery ser-

vices. In many other industries, CD is considered an

improved service model. For example, it is becom-
ing more and more common for drug companies
to offer home delivery services, e.g., CVS ProCare
(www.stadtlander.com) and CIGNA Tel-Drug (www.
teldrug.healthcare.cigna.com). Industries with estab-
lished service practices have also adapted to using
the Internet. For example, in the telecommunica-
tion industry, AT&T allows customers to set up
appointments for cable and phone service installa-
tions through www.att.com. Other examples of com-
panies providing CD delivery services include Staples
(www.staples.com), which delivers office supplies to
business consumers. In fact, Staples in Canada part-
nered with a grocery delivery service, since office sup-
plies and groceries have different peak demand times.
The fulfillment process for most consumer direct

businesses can be divided into three phases: (1) order
capture and promise, (2) order sourcing and assem-
bly, and (3) order delivery. Efficient order sourcing
and assembly can be rather difficult, with most orders
involving roughly 50 individual stock keeping units
(SKUs) with multiple temperature requirements, but
this research effort focuses primarily on the interac-
tions between order promise (deciding on a deliv-
ery time) and order delivery (devising efficient deliv-
ery schedules). Better integration of order promise
and order delivery decisions has the potential to sub-
stantially improve profitability, especially for those
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CD businesses offering “attended” deliveries. Atten-
ded deliveries are those where the consumers must
be present and may be necessary for security rea-
sons (e.g., expensive computer equipment), because
goods are perishable (e.g., milk or flowers) or because
goods are being picked up or exchanged with the con-
sumer (e.g., dry cleaning, videos/DVDs) and are a
vital feature of many CD service models. To avoid
delivery failures as much as possible, it is custom-
ary in attended home delivery services (HDS) for the
company and customer to mutually agree on a nar-
row delivery window or time slot.
These stringent time restrictions, combined with

unpredictable demand and the pressure to control
costs, create quite a challenge. Companies are quickly
learning that unless they can set up an effective and
efficient HDS, the cost savings promised by e-com-
merce will continue to be eaten up by high delivery
costs, leaving them struggling for profitability. With
hindsight, for example, it is easy to observe that
the prices consumers initially paid for home grocery
delivery services were not in line with the costs asso-
ciated with order processing and distribution. Com-
panies offered free delivery, equivalent prices to those
found in supermarkets, and sometimes even free gifts,
in hopes that the resulting high quantity of deliveries
would be enough to make them profitable. Given the
less-than-expected demand, the complex and multi-
faceted distribution problem created by home deliv-
ery (especially with the 30-minute time windows
promised initially by Webvan), and the low-margin
consumer goods associated with grocery delivery, this
has not proved to be a successful strategy.
In this article, we propose and analyze various rout-

ing and scheduling problems and algorithms that will
lead to more effective decision technology to sup-
port HDS, especially for CD full-line grocery services.
Home delivery is a fairly new phenomenon, and thus
few models and algorithms have been proposed and
studied that help create an understanding of the com-
plexities and intricacies of these distribution prob-
lems. Our goal is to change that situation. One of
the contributions of this article is the introduction of
the home delivery problem, a new problem that cap-
tures many of the core features of HDS and allows the
research community to focus on a common problem.
In this problem, the vendor decides which deliveries
to accept or reject and the time slot for the delivery, if
it is accepted, to maximize expected profits. We pro-
pose an algorithm, based on insertion techniques, to
help make these decisions. Another contribution of
this work is that it provides a demonstration of the
importance of considering opportunity costs associ-
ated with accepting a delivery request in a certain
time slot. The final contribution of the article is that it
sets the stage for the integration of profit optimization

into the developed models and techniques by defin-
ing the home delivery problem with incentives.
The article is organized as follows. Section 2 pro-

vides a short discussion of current practice in home
grocery delivery services. In §3, the relevant literature
is summarized, and in §4, the home delivery prob-
lem is introduced and defined. We develop insertion-
based heuristics for the solution of instances of the
home delivery problem in §5. In §6, the results of a set
of computational experiments are presented. Finally,
in §7, we comment on the presented research and dis-
cuss future plans.

2. Current Practice
It is current practice in home grocery delivery models
for the retailer and consumer to agree on a delivery
time slot and for these time slots to be available on a
first-come, first-served basis. Often the retailer accepts
a fixed number of requests per time slot, where this
number is typically based on a combination of fac-
tors, including fleet size and historic delivery times.
If the maximum number of deliveries accepted per
time slot is three, for example, then, after a particular
time slot is selected for the third time, it is no longer
presented to the consumer as a viable delivery time
slot. In the computational experiments, this approach
will be referred to as SLOT.
Some observations are in order. First, the closer the

delivery locations are for orders in a given time slot
(or consecutive time slots), the easier it will be to
schedule the deliveries and the cheaper it will be to
carry them out. Second, the closer the deliveries are in
a given time slot, the more deliveries can be accepted
and effectively handled, which reduces average deliv-
ery costs and increases profitability.
These observations set the stage for improving the

profitability of home delivery operations. The next
generation of decision support technology should
• dynamically determine whether a delivery re-

quest can still be accommodated based on a set of
tentative routes for already accepted customers and
the location of the customer in question, and
• consider the opportunity cost associated with ac-

cepting the customer in question in a given time
slot, in view of the fact that more profitable delivery
requests may still arrive.
After reviewing the relevant literature, we formally

propose the home delivery problem (HDP), which
will allow us to study these desirable algorithmic
properties.

3. Literature
Research is emerging that analyzes routing strate-
gies for unattended home deliveries where time slots
are not of concern. In Punakivi (2000), the routing
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options studied include the use of fixed routes and
the optimal sequencing of the deliveries on routes as
soon as all deliveries are known. The results demon-
strate the importance of optimization in CD with
savings from optimal routing versus fixed routing
of 54% for sparse areas. For dense areas, the cost
savings averaged 18%. Yrjölä (2001) concludes that
attended deliveries can often cost more than double
that of unattended deliveries. Saranen and Småros
(2001) simulated the delivery costs for two specific
models—Streamline.com’s unattended delivery pol-
icy and Webvan’s attended half-hour delivery win-
dow policy—and found the more restrictive Webvan
model to cost five times more.
The key decision in the HDP to be defined in

the next section, where all deliveries are attended, is
whether to accept or reject a delivery request as it
arrives and, if accepted, the choice of the delivery
time slot. There are obvious similarities with airline
revenue management. Airline revenue management
focuses on how to evaluate whether accepting a reser-
vation for a seat in a certain fare class displaces capac-
ity that could be used for reservations in higher fare
classes. However, there are also important differences
with airline revenue management. The costs asso-
ciated with an airline seat do not depend on who
occupies the seat or on who purchases the remain-
ing tickets in the same fare class. On the other hand,
the costs associated with accepting an order in a cer-
tain time slot depend on the delivery address, the
time slot, and the delivery locations and time slots of
the other accepted orders. Therefore, computing the
expected profitability of accepting a delivery request
in a certain time slot has to involve the solution of
vehicle routing problems with time windows. Given
that decisions have to be made in real time, the routes
must be created quickly and must properly discount
revenue and costs for anticipated orders. Some of
these concepts are addressed in the stochastic and
dynamic routing literature.
In stochastic routing, there are two research

streams. The first stream focuses on the vehicle
routing problem with stochastic demands (VRPSD)
(Bertsimas, Jaillet, and Odoni 1990; Bertsimas 1992;
Bertsimas and Simchi-Levi 1996; Gendreau, Laporte,
and Seguin 1995, 1996). The second stream focuses on
the vehicle routing problem with stochastic customers
(VRPSC) (Gendreau, Laporte, and Seguin 1996). The
VRPSD focuses on situations in which the size of cus-
tomer demand is unknown (usually modeled as nor-
mally distributed with known mean and variance).
The VRPSC focuses on situations where the size of
customers demand is not the issue, but whether the
demand occurs (usually modeled as a fixed probabil-
ity). Both the VRPSD and the VRPSC are solved by
creating a set of routes that minimizes expected costs

before the demands are realized. As demands are
realized, they are automatically assigned to a route
and a position on the route according to the a priori
schedule. The expected costs include the travel costs
between the customers on the routes as well as the
penalty costs created if additional routes are needed
when more demand is realized than can be served by
the assigned vehicle.
In dynamic routing, there are also two research

streams. The first stream focuses on building tenta-
tive schedules to minimize costs based solely on the
orders that have already been accepted, e.g., the tech-
niques described in Bagchi and Nag (1991), Prosser,
Kilby, and Shaw (1998), Psaraftis (1988, 1995), Rego
and Roucairol (1995), Savelsbergh and Sol (1998), and
Zhu and Ong (2000). The second stream focuses on
minimizing the costs, considering not only the orders
that have already been accepted but also the expected
future demand, as in Cheung and Powell (1996),
Frantzekakis and Powell (1990), Powell (1996), and
Regan, Mahmassani, and Jaillet (1998a, b). The latter
papers are concerned with trucking companies and
focus on whether to accept or reject a demand request,
which consists of both a pickup and delivery point,
and on how to assign each accepted task to a vehi-
cle to maximize profit for the long term. Since the
primary decision is where to send the vehicles next,
stochastic information is used to evaluate the proba-
bility that new orders are available at or near the des-
tination of the task being executed by the time of its
arrival at the destination. Usually the models assume
that the origin and destination of a task are cities (or
other aggregated areas) large enough to approximate
the number of forecasted demand request by an inte-
ger greater than one.
As indicated above, revenue management is widely

used in the airline industry to control overbooking
and allocation of seats among different price classes.
The choice of how many seats on each flight should
be sold at which fares is based on minimizing lost
opportunities to sell full-fare seats and maximizing
revenue. Decision models use the estimated proba-
bility of receiving the full fare for the seat to com-
pare expected full-fare revenue with the return from
discounted fares (Littlewood 1972). These probabil-
ity calculations incorporate future expected demand,
information about the accuracy of demand forecasts,
and estimates of the so-called sell-up probability.
More recent trends involve the dynamic computation
of bid prices to determine cutoffs in making deci-
sions whether to accept or reject current bids on ticket
prices (Talluri and Ryzin 1998, 1999). The obvious and
crucial difference with home delivery is the absence
of a varying cost structure. In airline revenue manage-
ment, all plane itineraries are known and fixed, so the
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major issue is how to price the seats, given predic-
tions of future demand, in order to maximize revenue.
In the home delivery context, accepting an order not
only changes the delivery route and thus the delivery
costs, but it may also change the costs associated with
any anticipated orders.

4. The HDP
We will now define the dynamic routing and schedul-
ing problem studied in this article, which we refer to
as the HDP.
A set of delivery routes is constructed for a spe-

cific day in the not-too-distant future. Requests from a
known set of customers for a delivery on that partic-
ular day arrive in real time and are considered up to
a certain cutoff time, which precedes the actual exe-
cution of the planned delivery routes. Each delivery
request has to be accepted or rejected when it arrives.
If accepted, a request from customer i consumes di
of vehicle capacity and results in a revenue of ri.
There is a homogeneous set of m vehicles with capac-
ity Q to serve the accepted orders. At each point in
time t, customer i will place a request for delivery
between t and the cutoff time with probability pi�t	.
The requests are equally likely to occur at any point
in time, so there is no information on the order in
which the requests may be realized. The objective is to
maximize the total profit resulting from executing the
set of delivery routes, i.e., total revenues minus total
costs (assumed to depend linearly on the total dis-
tance traveled). To increase the level of service, each
delivery is guaranteed to take place during a one-
hour time slot on the day of delivery. The one-hour
delivery time slots are nonoverlapping and cover the
entire day, e.g., 8:00–9:00
9:00–10:00
 � � � 
19:00–20:00.
For each customer, a time slot profile identifies which
time slots are acceptable for delivery. At the time a
request is accepted, a commitment to delivery during
a specific acceptable time slot is also made.
Note that this problem can also be viewed as

follows. When a delivery request arrives, the HDS
provider determines all viable time slots for delivery
and displays only those to the customer. The customer
then chooses one or decides to withdraw the delivery
request. This view is more closely related to the HDS
found in practice.
A “customer” in this context can represent one

address, such as a regular customer, or the aggregated
demand from a compact space such as a city block.
As indicated in the problem definition, all orders
are received prior to the execution of any delivery.
That is, we will not consider “same-day delivery” ser-
vices where orders arrive during the execution of a
delivery schedule and have to be incorporated imme-
diately. We feel this is justified, because in many

consumer home delivery environments the vehicles
will be loaded with customer-specific orders, so once
a vehicle has started its route it cannot be rerouted to
a new customer since the correct inventory will likely
not be on board.

5. Solving the HDP
As a first step toward developing a solution approach
for the HDP, we start by developing technology to
dynamically determine whether a delivery request—
characterized by a size, a delivery address, and a
set of acceptable time slots—can still be accommo-
dated based on the set of already accepted customers.
Doing this should increase the number of delivery
requests that can be accepted and feasibly delivered.
To dynamically determine whether a delivery request
can be accommodated, we have to determine if there
exists a set of routes visiting all previously accepted
deliveries as well as the delivery request under con-
sideration, and we have to do so quickly. If such a set
of delivery routes exists, then the new request can be
accepted; if no feasible set of delivery routes exists,
then the new request has to be rejected.
It is well known that deciding whether a feasi-

ble solution to the vehicle routing problem with time
windows exists is NP-complete (Savelsbergh 1986),
so it is natural to consider employing heuristics to
answer the question quickly. We have chosen to use
an insertion heuristic to solve the resulting vehicle
routing problem with time windows. Our insertion
heuristic consists of two phases. In the first phase,
all accepted delivery requests are inserted using the
following insertion criterion (assuming customer j is
being inserted between two consecutive customers
i− 1 and i in an existing route)

rj − �ci−1
 j + cj
 i − ci−1
 i	


where, because we are trying to maximize profit, the
customer with the largest criterion value is always
selected as the one to be inserted next. In the sec-
ond phase, we evaluate whether the delivery request
under consideration can be inserted in one of these
partially constructed routes during one of the time
slots acceptable for the associated customer. This
order of insertions is important to ensure that the
delivery request under consideration does not prevent
any of the previously accepted deliveries from being
completed during its committed time slot.
To further improve the chances that the delivery

request under consideration can be inserted, ran-
domization is used during construction in the form
of a greedy randomized adaptive search procedure
(GRASP) (Kontoravdis and Bard 1995). We choose
randomly from the top k most profitable insertions
at each decision point in Phase 1. This enables us
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to create several different sets of delivery routes for
the already accepted deliveries and use each of these
to see if there is a feasible insertion for the deliv-
ery request under consideration. In case there are
multiple sets of delivery routes in which the deliv-
ery request under consideration can be inserted, we
select the set of delivery routes with the highest profit
and commit to the time slot that the delivery request
under consideration occupies. In the computational
experiments, this approach will be referred to as DYN.
The approach discussed above for determining

whether an incoming delivery request can be accom-
modated completely ignores the fact that additional,
more profitable requests may still arrive, i.e., requests
that have a higher revenue or that can be incorporated
more cost effectively because of their location.
When a delivery request materializes, one has to

decide whether to accept it or not and, if it is accepted,
which of the time slots in the customer’s time slot
profile to assign to it. To consider the future in the
decision technology, we need to compute the expected
total profit if the request is rejected, as well as the
expected total profit if the request is accepted in each
of the time slots in the customer’s profile.
Conceptually, this can be done by computing for

every possible realization of future delivery requests
the following values:
• the probability that this realization of future

delivery requests occurs,
• the optimal solution value for the resulting vehi-

cle routing with time windows (VRPTW) solution
without the request under consideration (but with
all already accepted requests and all future realized
requests), and
• for each time slot in the time slot profile associ-

ated with the request under consideration, the value
of the optimal VRPTW solution with the request
served during the specified time slot (along with all of
the already accepted requests and all future realized
requests).
With this information we can compute the expected

total profit if the request is rejected or accepted in
each of the time slots in the customer’s profile. If
the expected total profit without the request is larger
than the expected total profit with the request for all
time slots, then the request will be rejected. Other-
wise, the request will be accepted and the time slot
that resulted in the largest expected total profit will
be assigned to it.
Unfortunately, this approach is computationally

intractable because the number of possible future
realizations is too large and because the VRPTW is
an NP-hard problem. To develop a computationally
tractable approach, we try to approximate the above
conceptual solution approach through an insertion
heuristic that solves a single instance of a modified

VRPTW each time a request materializes. The cre-
ated instance of the VRPTW includes all already
accepted requests, the request currently under con-
sideration, and all requests that may or may not
materialize in the future. The objective is to maxi-
mize profit where we accept that it may not be pos-
sible to satisfy all requests due to limited capacity
or time. (Note that this is different from traditional
vehicle routing problems, in which it is implicitly
assumed that all requests can be delivered.) If the
request under consideration is part of the constructed
set of delivery routes, it is more valuable to include
this request rather than to wait for future requests,
so it is accepted; if the request under consideration
is not part of the constructed set of delivery routes,
it is rejected. To account for the differences in cus-
tomer status—i.e., some requests have already been
accepted and others have not yet materialized—we
adjust the revenue and the capacity requirements of
the requests that have not materialized yet based on
the probability that a delivery request will be received
before the cutoff time.
The insertion heuristic consists of two phases. In the

first phase, all accepted delivery requests are inserted
using the criterion (assuming customer j is being
inserted between two consecutive customers i − 1
and i in an existing route)

rj − �ci−1
 j + cj
 i − ci−1
 i	


where, because we are trying to maximize profit, the
customer with the largest criterion value is always
selected as the one to be inserted next. In the sec-
ond phase, the remaining customers are inserted until
there are no more feasible insertions because of lim-
ited capacity. As mentioned above, the size of each
delivery request in the second phase is adjusted
downward by its probability of being realized; i.e., the
size is set to pi�t	di for request i if we are currently at
time t. Note that the request currently under consid-
eration is inserted in the second phase.
We have experimented with four different insertion

criteria to evaluate the potential profitability associ-
ated with an insertion in the second phase.
• DSR: To account for the fact that we may be deal-

ing with a yet-unrealized delivery request, we use the
expected revenue associated with a request, i.e.,

pj�t	rj − �ci−1
 j + cj
 i − ci−1
 i	�

This criterion simply biases the insertion heuristic
toward delivery requests with a higher probability of
being realized.
• PATH: In computing the cost of an insertion,

the above criterion ignores the fact that the neigh-
boring customers i − 1 and i may or may not be
present in the final set of delivery routes. It may be
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better to compute the cost of an insertion relative
to two already accepted requests, say u and v. The
expected length of the path between u and v, assum-
ing route �1
 � � � 
u
 � � � 
 v
 � � � 
n+1	, can be computed
as follows:

v−1∑

i=u

v∑

k=u+1
dipi�t	pk�t	

k−1∏

l=i+1
�1− pl�t		�

We now calculate the expected length with and with-
out request j as part of the path between u and v
and take the difference between these two values as
the cost for inserting j . The expected revenue pj�t	rj
minus this cost yields the value of the insertion. This
calculation is similar to what has been used to esti-
mate the cost of a section of an a priori route in the
stochastic vehicle routing problem (Bertsimas, Jaillet,
and Odoni 1990; Bertsimas 1992). The only real differ-
ence is the penalty portion in the cost of the a priori
route, representing the cost of extra trips if the sum of
realized demands on the a priori route exceeds vehi-
cle capacity. Because we accept only delivery requests
that can be served feasibly, no such penalty term is
required.
• DIFF: This criterion can be viewed as an esti-

mate and/or simplification of the preceding criterion,
which can be computed more efficiently. Both an opti-
mistic and a pessimistic cost of the insertion are con-
sidered, represented by values v1 and v2, respectively.
The first value is based on the current set of delivery
routes

v1 = ci−1
 j + cj
 i − ci−1
 i


where we evaluate inserting customer j between two
consecutive customers i− 1 and i in a route. The sec-
ond value is based on the set of delivery routes for
accepted customers only, i.e., the set of routes at the
end of Phase 1

v2 = ck−1
 j + cj
k − ck−1
 k


where we evaluate inserting customer j between two
consecutive customers k − 1 and k in a route. The
value v1 represents an optimistic view on the inser-
tion cost, because it assumes that at least some of the
as-yet-unrealized delivery requests on the route will
materialize, and v2 represents a pessimistic view on
the insertion cost, because it assumes that none of the
as-yet-unrealized delivery requests on the route will
materialize. The value of the insertion for request j is
set to

pj�t	rj − �v2− pi−1�t	pi�t	�v2− v1		�

• REG: The first three insertion criteria ignore any
synergetic effects that may occur due to close proxim-
ity of several requests that have not yet materialized.
The following insertion criterion, which extends the

first criterion, tries to capture that aspect,
∑

k∈R�j	
pk�t	rk − �ci−1
 j + cj
 i − ci−1
 i	


where R�j	 is some region around request j . Note that
only unrealized requests in the region are considered.
In the discussion above, we have implicitly as-

sumed that it is always profitable to serve a deliv-
ery request, e.g., pj�t	rj − �ci−1
 j + cj
 i − ci−1
 i	 ≥ 0.
Of course, this will not always be true. To be able
to handle such situations, we have adopted the fol-
lowing approach. Always insert the most profitable
(and feasible) delivery request even if at that time
the associated profit is negative. Note that once other
(possibly nearby) unrealized delivery requests have
been incorporated in the route, the profitability of a
delivery request often will increase because the added
delivery cost is reduced (as it is shared among the
other deliveries on the route). However, to ensure
that the final set of delivery routes does not include
unprofitable requests, we examine the request under
consideration after all unrealized deliveries have been
inserted to see if its removal increases the expected
total profit; if so, it is removed and the delivery is
rejected.

6. Computational Experiments
Our primary goal in this section is to conduct com-
putational experiments to determine the impact on
total profit of using more sophisticated techniques to
decide whether to accept or reject a delivery request.
Furthermore, we want to study and compare the pro-
posed insertion criteria to see if one of them outper-
forms and dominates the others. Finally, we want to
analyze the impact of instance characteristics on the
performance of our proposed technology.

6.1. Experimental Design
Such analysis can only be performed by means of sim-
ulation. Simulation is used to generate a stream of
delivery requests at different points in time between 0
and the cutoff time T . Given this stream of arrivals of
delivery requests, we can evaluate the behavior of the
different methods by using them to decide whether to
accept a request. Recall that if a delivery is rejected,
it is lost forever. Also note that once the stream of
delivery requests is generated, we can compute the
total profit that would have resulted if the set of real-
ized requests had been known in advance, and we can
use this value to gauge the quality of our solutions.
Generation of the stream of requests is guided by the
probability pi�t	 that customer i will place a request
for delivery between t and T . For our computational
experiments, a simple linearly declining probability is
used, given by pi�T − t	/T , where 0< pi ≤ 1 is speci-
fied as part of the instance.
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In all our experiments, we evaluate the results over
both a sparse and dense grid. For the dense grid,
100 customers are distributed over an area of 30 min-
utes by 30 minutes in travel time. For the sparse grid,
100 customers are distributed over an area of 60 min-
utes by 60 minutes in travel time. It is assumed that
a vehicle travels one unit of distance per minute, and
distance between customers is based on Euclidean
distance calculations. We expect that the distribution
costs are impacted significantly by the density of the
customer locations, and these different grids allow us
to analyze this impact empirically.

6.2. Computational Results
In this section, we present several tables of results.
In each results table, statistics are provided for each
grid, based on 10 randomly generated instances for
the 30× 30 grid and 10 instances for the 60× 60 grid
and for different demand probabilities, as indicated.
We present the following information and statistics.
• DEC type: This specifies what method was used

to decide whether to accept or reject an incoming
delivery request, i.e., DYN, DSR, PATH, DIFF, or
REG. For comparison purposes, we also include the
results obtained when simulating current practice,
denoted by SLOT, and when running the insertion
heuristic with “perfect information,” i.e., with the
set of realized requests known in advance, denoted
by BEST. (Note that BEST is not implementable in
practice, as decisions have to be made immediately
when requests arrive.) Recall that current practice is
to accept a maximum number of deliveries per time
slot. In our experiments this maximum has been set
to 2 to encourage feasible sets of delivery routes.
• MAX TIME: This is the average maximum time

to make an “accept” or “reject” decision over the
requests in an arrival stream.
• STOPS: This is the average number of accepted

deliveries among the requests in an arrival stream.
• FAIL: FAIL is the average number of accepted

deliveries not visited on the final set of delivery
routes. Note that not visiting an accepted delivery
request can only happen when we consider current
practice, i.e., SLOT.
• REV: This is the average revenue collected from

the accepted requests.
• COST: COST is the average delivery costs for ser-

vicing the accepted requests.
• PROFIT: This is the average profit, i.e., the rev-

enue collected from deliveries minus the delivery
costs.
In all methods except SLOT, the decisions are based

on delivery routes produced by the insertion heuris-
tics. For all insertion heuristics, the GRASP imple-
mentation randomly chooses from among the two
most profitable insertions. Given the randomization,

each set of routes is built four times, and the final
accept/reject decision is based on the most profitable
of these runs.
For the method using an insertion criterion that

tries to capture synergies between requests (REG), we
use a circle surrounding the location of the request
under consideration with a radius equal to five per-
cent of the grid dimension.
In the first experiment, we use identical capacity

requirements of requests (one unit), identical revenues
per request ($40), and delivery costs related to dis-
tance at $1 per unit. Furthermore, we consider a single
vehicle with capacity 24. We assume that each cus-
tomer initially has a 24% probability of generating a
delivery request. (Therefore, the expected number of
realized delivery requests is 24, which equals vehicle
capacity.) Each customer that requests a delivery has
a time slot profile with two acceptable time slots. The
first acceptable time slot is chosen randomly. The sec-
ond is the one immediately following the first, unless
the first acceptable time slot is the last one of the day,
in which case the second acceptable time slot will be
the first one of the next day. The results can be found
in Table 1 for the 30× 30 grid and in Table 2 for the
60× 60 grid.
For the 30×30 grid, we see that dynamically testing

the feasibility of an insertion, as opposed to accept-
ing only a fixed number of requests per time slot,
results in a significantly higher profit due to the
increased number of deliveries now possible. Some
of the profitability-based methods perform even bet-
ter, but not all. However, we have to realize that with
the expected demand being equal to vehicle capacity,
there is little opportunity for profitability-based meth-
ods to excel. Observe too that the profitability-based
methods produce profits that are fairly close to those
produced with perfect information (BEST). This is
due, in part, to the fact that the region is small enough
so that the variation in costs between different deliv-
ery routes is relatively small. The situation changes
for the 60×60 grid. As the delivery costs increase rela-
tive to the revenues, it is no longer desirable to satisfy
all demand (the average number of stops is substan-
tially less), so some profitability-based methods, par-
ticularly REG, can now do better than DYN. Note that

Table 1 Base Results for 30× 30 Grid

DEC MAX
PROB TYPE TIME STOPS REV COST FAIL PROFIT

0.24 BEST 0.00 23.90 956.00 273.01 0.00 682.99
0.24 SLOT 0.01 20.40 816.00 305.76 0.00 510.24
0.24 DYN 0.02 23.90 956.00 296.72 0.00 659.27
0.24 DSR 0.43 23.90 956.00 285.07 0.00 670.93
0.24 PATH 9.25 23.70 948.00 281.33 0.00 666.67
0.24 REG 0.88 23.90 956.00 287.08 0.00 668.92
0.24 DIFF 0.51 22.70 908.00 265.74 0.00 642.26



Campbell and Savelsbergh: Decision Support for Consumer Direct Grocery Initiatives
320 Transportation Science 39(3), pp. 313–327, © 2005 INFORMS

Table 2 Base Results for 60× 60 Grid

DEC MAX
PROB TYPE TIME STOPS REV COST FAIL PROFIT

0.24 BEST 0.00 21.20 848.00 431.92 0.00 416.08
0.24 SLOT 0.01 19.80 792.00 568.86 0.60 223.14
0.24 DYN 0.02 23.10 924.00 588.64 0.00 335.36
0.24 DSR 0.31 18.10 724.00 380.77 0.00 343.23
0.24 PATH 1.63 16.20 648.00 323.20 0.00 324.80
0.24 REG 0.36 19.30 772.00 395.65 0.00 376.35
0.24 DIFF 0.36 14.00 560.00 269.04 0.00 290.96

a small percentage of deliveries accepted by the SLOT
method end up not being visited on the final deliv-
ery route. Finally, we observe that the computation
time for the method based on computing the expected
path length between two accepted requests (PATH) is
the most computationally intensive. This is especially
true for the 30×30 grid, since more delivery requests
can be feasibly inserted on the tentative routes.

6.2.1. Varying the Probability of Requests Being
Generated. Next we investigate the impact of
increasing the probability of a request being generated
before the cutoff time. Since all other instance char-
acteristics are the same, specifically the vehicle capac-
ity, the ratio of expected demand to vehicle capacity
increases. Intuitively, if this ratio is less than one, most
delivery requests should be accepted; if this ratio is
greater than one, only a subset of the requests can
be accepted, and selecting those requests has to be
done carefully. Consequently, when the probability
increases, the value of using profitability-based meth-
ods should become more pronounced. The results can
be found in Table 3 for the 30×30 grid and in Table 4
for the 60× 60 grid.
For the 60 × 60 grid, we see that the number

of stops as well as the profit steadily increases as
the probability of generating a request increases for
the profitability-based methods, as they are all able
to select a set of delivery requests with “compati-
ble” locations and time slot profiles. On the other
hand, there is little or no improvement in profit for
the method that dynamically tests the feasibility of
inserting an incoming request. This is not surpris-
ing because the number of accepted requests (and
thus the revenue) hardly increases and no effort is
made to select a set of delivery requests that can be
served with low-cost delivery routes. Overall, PATH
seems to have an edge over the other methods on the
60× 60 grid, particularly for the higher probabilities.
For the 30 × 30 grid, only with perfect information
(BEST) is there a steady increase in profit, as deliv-
ery requests are carefully selected to minimize deliv-
ery costs. The other methods do not have the luxury
of being that careful, and as the variations in deliv-
ery costs are smaller for this grid, these methods play

Table 3 Results for 30× 30 Grid for Different Request Probabilities

DEC MAX
PROB TYPE TIME STOPS REV DIST FAIL PROFIT

0.24 BEST 0.00 23.90 956.00 273.01 0.00 682.99
0.24 SLOT 0.01 20.40 816.00 305.76 0.00 510.24
0.24 DYN 0.02 23.90 956.00 296.72 0.00 659.27
0.24 DSR 0.43 23.90 956.00 285.07 0.00 670.93
0.24 PATH 9.25 23.70 948.00 281.33 0.00 666.67
0.24 REG 0.88 23.90 956.00 287.08 0.00 668.92
0.24 DIFF 0.51 22.70 908.00 265.74 0.00 642.26

0.32 BEST 0.00 24.00 960.00 211.33 0.00 748.67
0.32 SLOT 0.01 22.50 900.00 342.02 0.00 557.98
0.32 DYN 0.02 24.00 960.00 310.54 0.00 649.46
0.32 DSR 0.41 24.00 960.00 291.71 0.00 668.29
0.32 PATH 9.11 24.00 960.00 285.79 0.00 674.22
0.32 REG 0.74 24.00 960.00 295.17 0.00 664.83
0.32 DIFF 0.50 23.60 944.00 285.70 0.00 658.30

0.40 BEST 0.00 24.00 960.00 180.81 0.00 779.19
0.40 SLOT 0.01 23.80 952.00 351.49 0.00 600.51
0.40 DYN 0.02 24.00 960.00 306.18 0.00 653.82
0.40 DSR 0.33 24.00 960.00 296.17 0.00 663.83
0.40 PATH 7.32 24.00 960.00 279.62 0.00 680.38
0.40 REG 0.44 24.00 960.00 268.13 0.00 691.87
0.40 DIFF 0.39 24.00 960.00 289.84 0.00 670.16

0.48 BEST 0.00 24.00 960.00 167.36 0.00 792.64
0.48 SLOT 0.01 24.00 960.00 362.10 0.00 597.90
0.48 DYN 0.02 24.00 960.00 302.24 0.00 657.76
0.48 DSR 0.24 24.00 960.00 291.02 0.00 668.98
0.48 PATH 5.23 24.00 960.00 271.86 0.00 688.14
0.48 REG 0.35 24.00 960.00 272.31 0.00 687.69
0.48 DIFF 0.36 24.00 960.00 288.53 0.00 671.47

it safe and accept any reasonably profitable request.
Again, we can observe that PATH has higher compu-
tational requirements, but PATH and REG both per-
form well on this denser grid.

6.2.2. Varying the Number of Acceptable Time
Slots. Next we examine the impact of changing the
number of acceptable time slots in the time slot pro-
file. Note that when a request is accepted, we still
have to assign a single feasible time slot and guar-
antee that the delivery will take place during that
time slot. When the number of acceptable time slots
in the time slot profile increases, the number of possi-
ble feasible insertions at each iteration of the insertion
heuristics is likely to increase too, and thus profits
should go up. The results can be found in Table 5 for
the 30× 30 grid and in Table 6 for the 60× 60 grid.
For the 30× 30 grid, all methods except SLOT are

able to exploit the extra flexibility to reduce deliv-
ery costs and thus increase profits. The number of
stops on the delivery routes remains the same, but
the delivery costs are reduced. Note the significant
increase in computation times for PATH when the
ratio of expected demand to vehicle capacity is 1
(from 4.77 seconds to 9.24 seconds to 20.77 seconds)
when the number of acceptable time slots increases.
This is due to the fact that more requests can fea-
sibly be inserted on the tentative routes. For the
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Table 4 Results for 60× 60 Grid for Different Request Probabilities

DEC MAX
PROB TYPE TIME STOPS REV DIST FAIL PROFIT

0.24 BEST 0.00 21.20 848.00 431.92 0.00 416.08
0.24 SLOT 0.01 19.80 792.00 568.86 0.60 223.14
0.24 DYN 0.02 23.10 924.00 588.64 0.00 335.36
0.24 DSR 0.31 18.10 724.00 380.77 0.00 343.23
0.24 PATH 1.63 16.20 648.00 323.20 0.00 324.80
0.24 REG 0.36 19.30 772.00 395.65 0.00 376.35
0.24 DIFF 0.36 14.00 560.00 269.04 0.00 290.96

0.32 BEST 0.00 23.30 932.00 418.89 0.00 513.11
0.32 SLOT 0.02 21.60 864.00 622.69 0.90 241.31
0.32 DYN 0.02 24.00 960.00 605.35 0.00 354.65
0.32 DSR 0.28 23.00 920.00 476.17 0.00 443.83
0.32 PATH 1.85 21.50 860.00 421.40 0.00 438.60
0.32 REG 0.43 22.30 892.00 464.19 0.00 427.81
0.32 DIFF 0.32 18.90 756.00 361.86 0.00 394.14

0.40 BEST 0.01 24.00 960.00 373.61 0.00 586.39
0.40 SLOT 0.05 22.70 908.00 645.62 1.10 262.38
0.40 DYN 0.05 24.00 960.00 609.58 0.00 350.42
0.40 DSR 0.46 24.00 960.00 483.79 0.00 476.21
0.40 PATH 2.20 23.20 928.00 432.79 0.00 495.21
0.40 REG 0.45 23.90 956.00 494.06 0.00 461.94
0.40 DIFF 0.30 22.00 880.00 403.39 0.00 476.61

0.48 BEST 0.00 23.90 956.00 341.26 0.00 614.74
0.48 SLOT 0.01 22.50 900.00 627.46 1.50 272.54
0.48 DYN 0.02 24.00 960.00 634.94 0.00 325.06
0.48 DSR 0.31 24.00 960.00 466.32 0.00 493.68
0.48 PATH 1.73 23.20 928.00 410.55 0.00 517.45
0.48 REG 0.41 24.00 960.00 486.41 0.00 473.59
0.48 DIFF 0.30 23.40 936.00 443.49 0.00 492.51

60× 60 grid and a ratio of expected demand to vehi-
cle capacity equal to 1, all methods exploit the extra
flexibility to increase the number of accepted deliver-
ies (e.g., PATH goes from 14.7 to 16.2 to 18.4). Since
this can be done with a relatively small increase in
delivery cost, the profit goes up. When the ratio of
expected demand to vehicle capacity equals 2, all
methods except SLOT exploit the extra flexibility to
reduce the delivery costs (e.g., PATH goes from 436.07
to 410.55 to 375.71).

6.2.3. Varying the Number of Vehicles. Next we
study the impact of distributing capacity over one,
two, and three vehicles. The results can be found in
Table 7 for the 30 × 30 grid and in Table 8 for the
60× 60 grid.
It is interesting to see that keeping the capacity the

same but spreading it over multiple vehicles allows
for an increase in the total revenue. At first, this
may seem counterintuitive, because it is cheaper (dis-
tance wise) to visit k customers on a single route
than it is to visit the same k customers on two or
more routes. However, there are two reasons for the
observed behavior. First, the number of stops may
increase when the capacity is distributed over mul-
tiple vehicles, because it may have been time that
was constraining the number of stops with a sin-
gle vehicle and not the vehicle capacity. Second, the

Table 5 Results for 30× 30 Grid for Different Numbers of Acceptable
Time Slots

DEC MAX
# SLOTS PROB TYPE TIME STOPS REV DIST FAIL PROFIT

1 0.24 BEST 0�00 23.70 948.00 299.53 0.00 648.47
1 0.24 SLOT 0�01 18.20 728.00 282.12 0.00 445.88
1 0.24 DYN 0�02 23.90 956.00 326.99 0.00 629.01
1 0.24 DSR 0�22 23.90 956.00 323.28 0.00 632.72
1 0.24 PATH 4�77 23.50 940.00 307.01 0.00 632.99
1 0.24 REG 0�32 23.90 956.00 324.20 0.00 631.80
1 0.24 DIFF 0�26 22.30 892.00 290.39 0.00 601.62

2 0.24 BEST 0�00 23.90 956.00 273.01 0.00 682.99
2 0.24 SLOT 0�01 20.40 816.00 305.76 0.00 510.24
2 0.24 DYN 0�01 23.90 956.00 296.72 0.00 659.27
2 0.24 DSR 0�45 23.90 956.00 285.07 0.00 670.93
2 0.24 PATH 9�24 23.70 948.00 281.33 0.00 666.67
2 0.24 REG 0�58 23.90 956.00 287.08 0.00 668.92
2 0.24 DIFF 0�49 22.70 908.00 265.74 0.00 642.26

4 0.24 BEST 0�00 23.90 956.00 218.79 0.00 737.21
4 0.24 SLOT 0�01 22.00 880.00 332.51 0.00 547.49
4 0.24 DYN 0�02 23.90 956.00 252.76 0.00 703.24
4 0.24 DSR 0�84 23.90 956.00 249.63 0.00 706.37
4 0.24 PATH 20�77 23.70 948.00 229.11 0.00 718.89
4 0.24 REG 1�17 23.80 952.00 242.12 0.00 709.88
4 0.24 DIFF 1�00 22.60 904.00 228.34 0.00 675.66

1 0.48 BEST 0�00 24.00 960.00 185.57 0.00 774.43
1 0.48 SLOT 0�01 22.30 892.00 329.77 0.00 562.23
1 0.48 DYN 0�02 24.00 960.00 344.72 0.00 615.29
1 0.48 DSR 0�13 24.00 960.00 310.35 0.00 649.65
1 0.48 PATH 2�94 24.00 960.00 305.19 0.00 654.81
1 0.48 REG 0�19 24.00 960.00 310.09 0.00 649.91
1 0.48 DIFF 0�16 24.00 960.00 311.39 0.00 648.61

2 0.48 BEST 0�00 24.00 960.00 167.36 0.00 792.64
2 0.48 SLOT 0�01 24.00 960.00 362.10 0.00 597.90
2 0.48 DYN 0�02 24.00 960.00 302.24 0.00 657.76
2 0.48 DSR 0�23 24.00 960.00 291.02 0.00 668.98
2 0.48 PATH 5�21 24.00 960.00 271.86 0.00 688.14
2 0.48 REG 0�36 24.00 960.00 272.31 0.00 687.69
2 0.48 DIFF 0�29 24.00 960.00 288.53 0.00 671.47

4 0.48 BEST 0�00 24.00 960.00 127.75 0.00 832.25
4 0.48 SLOT 0�01 24.00 960.00 363.02 0.00 596.98
4 0.48 DYN 0�02 24.00 960.00 263.30 0.00 696.70
4 0.48 DSR 0�44 24.00 960.00 240.25 0.00 719.75
4 0.48 PATH 8�83 24.00 960.00 233.53 0.00 726.47
4 0.48 REG 0�63 24.00 960.00 233.58 0.00 726.42
4 0.48 DIFF 0�53 24.00 960.00 242.34 0.00 717.67

delivery costs may decrease because more customers
may be visited during more convenient time slots.
With multiple vehicles there are more opportunities
to visit customers in a given time slot. The improve-
ment can only be seen by BEST on the 30×30 grid but
is realized by the probability based methods on the
60× 60 grid.
6.2.4. Varying the Revenue per Delivery Request.

In all the experiments discussed up to now, each real-
ized and accepted delivery request produced $40 in
revenue. To see what happens when revenues per
delivery vary, we conducted an experiment in which
the customers are divided into two sets. For half of
the customers, a realized delivery request results in
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Table 6 Results for 60× 60 Grid for Different Numbers of Acceptable
Time Slots

DEC MAX
# SLOTS PROB TYPE TIME STOPS REV DIST FAIL PROFIT

1 0.24 BEST 0.00 19.40 776.00 423.28 0.00 352.72
1 0.24 SLOT 0.01 17.90 716.00 549.58 0.30 166.42
1 0.24 DYN 0.01 21.10 844.00 585.79 0.00 258.21
1 0.24 DSR 0.11 17.10 684.00 388.28 0.00 295.72
1 0.24 PATH 0.77 14.70 588.00 303.67 0.00 284.33
1 0.24 REG 0.15 17.60 704.00 399.88 0.00 304.12
1 0.24 DIFF 0.12 13.00 520.00 265.80 0.00 254.20

2 0.24 BEST 0.00 21.20 848.00 431.92 0.00 416.08
2 0.24 SLOT 0.01 19.80 792.00 568.86 0.60 223.14
2 0.24 DYN 0.01 23.10 924.00 588.64 0.00 335.36
2 0.24 DSR 0.25 18.10 724.00 380.77 0.00 343.23
2 0.24 PATH 1.50 16.20 648.00 323.20 0.00 324.80
2 0.24 REG 0.32 19.30 772.00 395.65 0.00 376.35
2 0.24 DIFF 0.24 14.00 560.00 269.04 0.00 290.96

4 0.24 BEST 0.00 22.60 904.00 410.50 0.00 493.50
4 0.24 SLOT 0.01 20.90 836.00 598.22 1.10 237.78
4 0.24 DYN 0.01 23.80 952.00 528.25 0.00 423.75
4 0.24 DSR 0.61 21.30 852.00 405.99 0.00 446.01
4 0.24 PATH 4.06 18.40 736.00 336.75 0.00 399.25
4 0.24 REG 0.73 21.70 868.00 419.80 0.00 448.20
4 0.24 DIFF 0.55 14.60 584.00 248.64 0.00 335.36

1 0.48 BEST 0.00 23.80 952.00 386.03 0.00 565.97
1 0.48 SLOT 0.01 21.50 860.00 615.23 0.80 244.77
1 0.48 DYN 0.02 24.00 960.00 642.04 0.00 317.96
1 0.48 DSR 0.11 24.00 960.00 502.37 0.00 457.63
1 0.48 PATH 0.80 23.10 924.00 436.07 0.00 487.93
1 0.48 REG 0.14 24.00 960.00 512.00 0.00 448.00
1 0.48 DIFF 0.12 22.90 916.00 436.55 0.00 479.45

2 0.48 BEST 0.00 23.90 956.00 341.26 0.00 614.74
2 0.48 SLOT 0.01 22.50 900.00 627.46 1.50 272.54
2 0.48 DYN 0.02 24.00 960.00 634.94 0.00 325.06
2 0.48 DSR 0.22 24.00 960.00 466.32 0.00 493.68
2 0.48 PATH 1.67 23.20 928.00 410.55 0.00 517.45
2 0.48 REG 0.28 24.00 960.00 486.41 0.00 473.59
2 0.48 DIFF 0.23 23.40 936.00 443.49 0.00 492.51

4 0.48 BEST 0.00 24.00 960.00 266.78 0.00 693.22
4 0.48 SLOT 0.01 22.80 912.00 654.39 1.20 257.61
4 0.48 DYN 0.02 24.00 960.00 563.90 0.00 396.10
4 0.48 DSR 0.42 24.00 960.00 418.11 0.00 541.89
4 0.48 PATH 3.80 24.00 960.00 375.71 0.00 584.29
4 0.48 REG 0.55 24.00 960.00 393.57 0.00 566.43
4 0.48 DIFF 0.47 23.60 944.00 380.66 0.00 563.34

a low revenue, and for the other half, a realized deliv-
ery request results in a high revenue. The results can
be found in Table 9 for the 30×30 grid and in Table 10
for the 60× 60 grid.
It is clear that when requests have different rev-

enues and the objective is to maximize profit, it is
important to select and accept high-revenue requests.
However, when the ratio of expected demand to
vehicle capacity is equal to 1 and almost all deliv-
ery requests can and should be accepted, there is
little room for improvement. This can be seen in
the results for the 30 × 30 grid, where there is little
difference in performance between the profitability-
based methods and DYN. The situation changes when

Table 7 Results for 30× 30 Grid for Different Numbers of Vehicles

DEC MAX
TRKS PROB TYPE TIME STOPS REV DIST FAIL PROFIT

1 0.24 BEST 0.00 23.90 956.00 273.01 0.00 682.99
1 0.24 SLOT 0.01 20.40 816.00 305.76 0.00 510.24
1 0.24 DYN 0.01 23.90 956.00 296.72 0.00 659.27
1 0.24 DSR 0.42 23.90 956.00 285.07 0.00 670.93
1 0.24 PATH 9.23 23.70 948.00 281.33 0.00 666.67
1 0.24 REG 0.57 23.90 956.00 287.08 0.00 668.92
1 0.24 DIFF 0.49 22.70 908.00 265.74 0.00 642.26

2 0.24 BEST 0.00 23.90 956.00 255.57 0.00 700.43
2 0.24 SLOT 0.01 20.40 816.00 264.39 0.00 551.61
2 0.24 DYN 0.02 23.90 956.00 280.81 0.00 675.19
2 0.24 DSR 0.46 23.90 956.00 283.86 0.00 672.14
2 0.24 PATH 7.39 23.60 944.00 272.11 0.00 671.89
2 0.24 REG 0.71 23.70 948.00 279.56 0.00 668.44
2 0.24 DIFF 0.54 22.10 884.00 252.82 0.00 631.17

3 0.24 BEST 0.00 23.90 956.00 250.02 0.00 705.98
3 0.24 SLOT 0.01 20.40 816.00 269.33 0.00 546.67
3 0.24 DYN 0.02 23.90 956.00 287.78 0.00 668.22
3 0.24 DSR 0.46 23.90 956.00 290.59 0.00 665.41
3 0.24 PATH 5.44 23.50 940.00 275.29 0.00 664.71
3 0.24 REG 0.75 23.80 952.00 285.96 0.00 666.04
3 0.24 DIFF 0.53 22.00 880.00 259.04 0.00 620.96

1 0.48 BEST 0.00 24.00 960.00 167.36 0.00 792.64
1 0.48 SLOT 0.01 24.00 960.00 362.10 0.00 597.90
1 0.48 DYN 0.02 24.00 960.00 302.24 0.00 657.76
1 0.48 DSR 0.23 24.00 960.00 291.02 0.00 668.98
1 0.48 PATH 5.24 24.00 960.00 271.86 0.00 688.14
1 0.48 REG 0.34 24.00 960.00 272.31 0.00 687.69
1 0.48 DIFF 0.28 24.00 960.00 288.53 0.00 671.47

2 0.48 BEST 0.00 24.00 960.00 151.13 0.00 808.88
2 0.48 SLOT 0.01 24.00 960.00 313.04 0.00 646.96
2 0.48 DYN 0.02 24.00 960.00 289.64 0.00 670.36
2 0.48 DSR 0.24 24.00 960.00 273.11 0.00 686.89
2 0.48 PATH 2.16 24.00 960.00 273.77 0.00 686.23
2 0.48 REG 0.40 24.00 960.00 267.69 0.00 692.31
2 0.48 DIFF 0.27 24.00 960.00 264.65 0.00 695.35

3 0.48 BEST 0.00 24.00 960.00 155.41 0.00 804.59
3 0.48 SLOT 0.02 24.00 960.00 290.07 0.00 669.93
3 0.48 DYN 0.02 24.00 960.00 288.32 0.00 671.68
3 0.48 DSR 0.24 24.00 960.00 277.07 0.00 682.92
3 0.48 PATH 1.29 24.00 960.00 267.45 0.00 692.55
3 0.48 REG 0.41 24.00 960.00 264.46 0.00 695.54
3 0.48 DIFF 0.27 24.00 960.00 272.95 0.00 687.05

the ratio of expected demand to vehicle capacity
is equal to 2. Especially for the 30 × 30 grid, we
see that with perfect information significantly higher
revenues and thus profits can be realized (revenues
increase from 960 to 1,334 to 1,840). Even though
profit-based methods do a little better than SLOT and
DYN in recognizing these opportunities, they do not
get close to what can be done with perfect informa-
tion. This is due to the fact that as we get closer to
the cutoff time and the probabilities of requests still
being realized get smaller (recall that the probabil-
ity of a request being realized decreases linearly over
time), the profitability-based methods are not taking
any chances and are accepting low-revenue requests
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Table 8 Results for 60× 60 Grid for Different Numbers of Vehicles

DEC MAX
TRKS PROB TYPE TIME STOPS REV DIST FAIL PROFIT

1 0.24 BEST 0.00 21.20 848.00 431.92 0.00 416.08
1 0.24 SLOT 0.01 19.80 792.00 568.86 0.60 223.14
1 0.24 DYN 0.02 23.10 924.00 588.64 0.00 335.36
1 0.24 DSR 0.25 18.10 724.00 380.77 0.00 343.23
1 0.24 PATH 1.50 16.20 648.00 323.20 0.00 324.80
1 0.24 REG 0.32 19.30 772.00 395.65 0.00 376.35
1 0.24 DIFF 0.24 14.00 560.00 269.04 0.00 290.96

2 0.24 BEST 0.00 22.20 888.00 427.16 0.00 460.84
2 0.24 SLOT 0.01 20.40 816.00 530.07 0.00 285.93
2 0.24 DYN 0.02 23.90 956.00 561.74 0.00 394.26
2 0.24 DSR 0.42 21.50 860.00 493.24 0.00 366.76
2 0.24 PATH 2.75 21.30 852.00 456.76 0.00 395.24
2 0.24 REG 0.57 21.20 848.00 437.03 0.00 410.97
2 0.24 DIFF 0.43 14.20 568.00 281.20 0.00 286.80

3 0.24 BEST 0.00 22.90 916.00 448.94 0.00 467.06
3 0.24 SLOT 0.01 20.30 812.00 535.66 0.10 276.34
3 0.24 DYN 0.02 23.90 956.00 567.64 0.00 388.36
3 0.24 DSR 0.44 22.00 880.00 502.50 0.00 377.50
3 0.24 PATH 2.43 21.60 864.00 499.21 0.00 364.79
3 0.24 REG 0.67 20.80 832.00 485.67 0.00 346.33
3 0.24 DIFF 0.49 14.00 560.00 273.41 0.00 286.59

1 0.48 BEST 0.00 23.90 956.00 341.26 0.00 614.74
1 0.48 SLOT 0.01 22.50 900.00 627.46 1.50 272.54
1 0.48 DYN 0.02 24.00 960.00 634.94 0.00 325.06
1 0.48 DSR 0.22 24.00 960.00 466.32 0.00 493.68
1 0.48 PATH 1.67 23.20 928.00 410.55 0.00 517.45
1 0.48 REG 0.28 24.00 960.00 486.41 0.00 473.59
1 0.48 DIFF 0.23 23.40 936.00 443.49 0.00 492.51

2 0.48 BEST 0.00 24.00 960.00 306.90 0.00 653.10
2 0.48 SLOT 0.01 23.90 956.00 632.79 0.10 323.21
2 0.48 DYN 0.02 24.00 960.00 604.98 0.00 355.02
2 0.48 DSR 0.24 24.00 960.00 501.47 0.00 458.53
2 0.48 PATH 1.43 24.00 960.00 468.21 0.00 491.79
2 0.48 REG 0.36 24.00 960.00 475.17 0.00 484.83
2 0.48 DIFF 0.27 22.10 884.00 383.70 0.00 500.30

3 0.48 BEST 0.00 24.00 960.00 312.56 0.00 647.44
3 0.48 SLOT 0.01 24.00 960.00 580.14 0.00 379.86
3 0.48 DYN 0.02 24.00 960.00 590.04 0.00 369.96
3 0.48 DSR 0.24 24.00 960.00 496.57 0.00 463.43
3 0.48 PATH 1.01 24.00 960.00 450.80 0.00 509.20
3 0.48 REG 0.39 24.00 960.00 468.34 0.00 491.66
3 0.48 DIFF 0.28 23.30 932.00 432.55 0.00 499.45

that have materialized rather than waiting for high-
revenue requests that have a small chance of occur-
ring (thus low expected revenue) with similar dis-
tances. For the 60× 60 grid, where the costs between
customers are more varied, the profitability-based
methods do better with higher probabilities (higher
expected revenue), in the sense that they clearly out-
perform SLOT and DYN and get closer to what can
be achieved with perfect information.

6.2.5. Varying the Time Slot Width. Finally, we
experiment with different widths of the time slots.
In our definition of the HDP, we stated that there are
nonoverlapping time slots of one hour, and in the
computational experiments so far, we have used

Table 9 Results for 30× 30 Grid with Different Revenues per Request

LOW UPPER DEC MAX
REV REV PROB TYPE TIME STOPS REV DIST FAIL PROFIT

40.00 40.00 0.24 BEST 0.00 23.90 956�00 273.01 0.00 682�99
40.00 40.00 0.24 SLOT 0.01 20.40 816�00 305.76 0.00 510�24
40.00 40.00 0.24 DYN 0.01 23.90 956�00 296.72 0.00 659�27
40.00 40.00 0.24 DSR 0.42 23.90 956�00 285.07 0.00 670�93
40.00 40.00 0.24 PATH 9.23 23.70 948�00 281.33 0.00 666�67
40.00 40.00 0.24 REG 0.58 23.90 956�00 287.08 0.00 668�92
40.00 40.00 0.24 DIFF 0.49 22.70 908�00 265.74 0.00 642�26

40.00 60.00 0.24 BEST 0.00 23.80 1�192�00 264.06 0.00 927�94
40.00 60.00 0.24 SLOT 0.01 20.40 1�024�00 313.37 0.00 710�63
40.00 60.00 0.24 DYN 0.02 23.90 1�188�00 292.55 0.00 895�45
40.00 60.00 0.24 DSR 0.42 23.90 1�190�00 291.21 0.00 898�79
40.00 60.00 0.24 PATH 7.96 23.80 1�186�00 281.21 0.00 904�79
40.00 60.00 0.24 REG 0.57 23.90 1�192�00 288.89 0.00 903�11
40.00 60.00 0.24 DIFF 0.49 23.40 1�172�00 286.33 0.00 885�67

40.00 80.00 0.24 BEST 0.00 23.80 1�432�00 268.14 0.00 1�163�86
40.00 80.00 0.24 SLOT 0.01 20.40 1�232�00 310.53 0.00 921�47
40.00 80.00 0.24 DYN 0.02 23.90 1�420�00 291.80 0.00 1�128�20
40.00 80.00 0.24 DSR 0.42 23.90 1�420�00 289.98 0.00 1�130�02
40.00 80.00 0.24 PATH 7.70 23.80 1�420�00 281.11 0.00 1�138�90
40.00 80.00 0.24 REG 0.58 23.90 1�424�00 284.14 0.00 1�139�86
40.00 80.00 0.24 DIFF 0.49 23.40 1�408�00 272.08 0.00 1�135�92

40.00 40.00 0.48 BEST 0.00 24.00 960�00 167.36 0.00 792�64
40.00 40.00 0.48 SLOT 0.01 24.00 960�00 362.10 0.00 597�90
40.00 40.00 0.48 DYN 0.01 24.00 960�00 302.24 0.00 657�76
40.00 40.00 0.48 DSR 0.23 24.00 960�00 291.02 0.00 668�98
40.00 40.00 0.48 PATH 5.25 24.00 960�00 271.86 0.00 688�14
40.00 40.00 0.48 REG 0.34 24.00 960�00 272.31 0.00 687�69
40.00 40.00 0.48 DIFF 0.28 24.00 960�00 288.53 0.00 671�47

40.00 60.00 0.48 BEST 0.00 24.00 1�334�00 202.93 0.00 1�131�07
40.00 60.00 0.48 SLOT 0.01 24.00 1�202�00 348.33 0.00 853�67
40.00 60.00 0.48 DYN 0.02 24.00 1�188�00 302.84 0.00 885�16
40.00 60.00 0.48 DSR 0.23 24.00 1�208�00 295.13 0.00 912�88
40.00 60.00 0.48 PATH 4.61 24.00 1�204�00 293.40 0.00 910�60
40.00 60.00 0.48 REG 0.35 24.00 1�218�00 276.26 0.00 941�74
40.00 60.00 0.48 DIFF 0.28 24.00 1�206�00 291.94 0.00 914�06

40.00 80.00 0.48 BEST 0.00 24.00 1�840�00 276.02 0.00 1�563�98
40.00 80.00 0.48 SLOT 0.01 24.00 1�444�00 351.35 0.00 1�092�65
40.00 80.00 0.48 DYN 0.02 24.00 1�416�00 298.26 0.00 1�117�74
40.00 80.00 0.48 DSR 0.23 24.00 1�468�00 277.07 0.00 1�190�93
40.00 80.00 0.48 PATH 4.33 24.00 1�488�00 278.09 0.00 1�209�91
40.00 80.00 0.48 REG 0.35 24.00 1�516�00 281.17 0.00 1�234�83
40.00 80.00 0.48 DIFF 0.28 24.00 1�472�00 279.16 0.00 1�192�84

12 time slots of one hour. However, the width of these
time slots is a strategic decision in the design of a
HDS, and it is interesting to study the impact the time
slot width has on the profitability of the home deliv-
ery operation. Note that in practice the marketing
department is highly involved in choosing the time
slot width to gain market share from the competition,
so this decision is often based on how time slot width
will affect demand as well as the resulting costs. As
before, each customer has two acceptable time slots
in his or her time slot profile. We adjust the number
of requests allowed per time slot in the SLOT method
so as to allow two requests per hour. Thus, if the time
slot width is two hours, four delivery requests can
be accepted in each slot. We have experimented with
widths of 30, 60, 120, and 180 minutes. The results
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Table 10 Results for 60×60 Grid with Different Revenues per Request

LOW UPPER DEC MAX
REV REV PROB TYPE TIME STOPS REV DIST FAIL PROFIT

40.00 40.00 0.24 BEST 0.00 21.20 848�00 431.92 0.00 416�08
40.00 40.00 0.24 SLOT 0.01 19.80 792�00 568.86 0.60 223�14
40.00 40.00 0.24 DYN 0.02 23.10 924�00 588.64 0.00 335�36
40.00 40.00 0.24 DSR 0.25 18.10 724�00 380.77 0.00 343�23
40.00 40.00 0.24 PATH 1.50 16.20 648�00 323.20 0.00 324�80
40.00 40.00 0.24 REG 0.31 19.30 772�00 395.65 0.00 376�35
40.00 40.00 0.24 DIFF 0.24 14.00 560�00 269.04 0.00 290�96

40.00 60.00 0.24 BEST 0.00 21.90 1�102�00 455.49 0.00 646�51
40.00 60.00 0.24 SLOT 0.01 19.50 984�00 572.25 0.90 411�75
40.00 60.00 0.24 DYN 0.01 22.90 1�144�00 576.75 0.00 567�25
40.00 60.00 0.24 DSR 0.25 20.10 1�018�00 436.45 0.00 581�55
40.00 60.00 0.24 PATH 1.48 19.10 966�00 415.19 0.00 550�81
40.00 60.00 0.24 REG 0.32 20.50 1�038�00 466.24 0.00 571�76
40.00 60.00 0.24 DIFF 0.24 15.80 814�00 309.88 0.00 504�12

40.00 80.00 0.24 BEST 0.00 21.60 1�336�00 467.48 0.00 868�52
40.00 80.00 0.24 SLOT 0.01 19.50 1�196�00 576.95 0.90 619�05
40.00 80.00 0.24 DYN 0.02 23.30 1�392�00 589.71 0.00 802�29
40.00 80.00 0.24 DSR 0.25 20.80 1�288�00 498.81 0.00 789�19
40.00 80.00 0.24 PATH 1.15 19.30 1�212�00 443.22 0.00 768�78
40.00 80.00 0.24 REG 0.32 21.20 1�308�00 486.81 0.00 821�20
40.00 80.00 0.24 DIFF 0.25 18.30 1�152�00 402.42 0.00 749�58

40.00 40.00 0.48 BEST 0.00 23.90 956�00 341.26 0.00 614�74
40.00 40.00 0.48 SLOT 0.01 22.50 900�00 627.46 1.50 272�54
40.00 40.00 0.48 DYN 0.02 24.00 960�00 634.94 0.00 325�06
40.00 40.00 0.48 DSR 0.22 24.00 960�00 466.32 0.00 493�68
40.00 40.00 0.48 PATH 1.66 23.20 928�00 410.55 0.00 517�45
40.00 40.00 0.48 REG 0.28 24.00 960�00 486.41 0.00 473�59
40.00 40.00 0.48 DIFF 0.23 23.40 936�00 443.49 0.00 492�51

40.00 60.00 0.48 BEST 0.00 24.00 1�256�00 342.79 0.00 913�21
40.00 60.00 0.48 SLOT 0.01 22.50 1�130�00 628.73 1.50 501�27
40.00 60.00 0.48 DYN 0.02 24.00 1�184�00 627.33 0.00 556�67
40.00 60.00 0.48 DSR 0.22 24.00 1�222�00 489.77 0.00 732�23
40.00 60.00 0.48 PATH 1.59 24.00 1�230�00 434.72 0.00 795�28
40.00 60.00 0.48 REG 0.28 24.00 1�216�00 474.42 0.00 741�58
40.00 60.00 0.48 DIFF 0.23 23.40 1�180�00 456.28 0.00 723�72

40.00 80.00 0.48 BEST 0.00 24.00 1�688�00 407.39 0.00 1�280�61
40.00 80.00 0.48 SLOT 0.01 22.80 1�376�00 631.45 1.20 744�55
40.00 80.00 0.48 DYN 0.02 24.00 1�400�00 640.09 0.00 759�91
40.00 80.00 0.48 DSR 0.22 24.00 1�520�00 535.26 0.00 984�74
40.00 80.00 0.48 PATH 1.37 24.00 1�532�00 485.25 0.00 1�046�75
40.00 80.00 0.48 REG 0.28 24.00 1�528�00 497.04 0.00 1�030�96
40.00 80.00 0.48 DIFF 0.24 23.90 1�512�00 507.38 0.00 1�004�62

can be found in Table 11 for the 30× 30 grid and in
Table 12 for the 60× 60 grid.
We see that increasing window widths translates

in steadily increasing profits. Consider, for exam-
ple, method REG for the 30× 30 grid with expected
demand to capacity ratio of 1. The number of
accepted requests is roughly the same for each time
slot width, but the delivery costs go down dra-
matically, from 326.63 to 287.08 to 244.20 to 201.17.
This clearly demonstrates that even in a region with
a relatively high customer density, which is the
case for the 30 × 30 grid, the profit is significantly
affected by committing to a tight time slot for actual
deliveries. Note also that with increasing window
width, the number of feasible insertions becomes
larger so the required computation time substan-
tially increases, most notably for the PATH method

Table 11 Results for 30× 30 Grid for Different Time Slot Widths

DEC MAX
WIDTH PROB TYPE TIME STOPS REV DIST FAIL PROFIT

30�00 0.24 BEST 0�00 23.60 944.00 308.03 0.00 635.97
30�00 0.24 SLOT 0�01 18.60 744.00 308.68 0.00 435.32
30�00 0.24 DYN 0�02 23.90 956.00 336.99 0.00 619.01
30�00 0.24 DSR 0�36 23.70 948.00 333.97 0.00 614.03
30�00 0.24 PATH 3�26 23.50 940.00 329.52 0.00 610.48
30�00 0.24 REG 0�44 23.50 940.00 326.63 0.00 613.37
30�00 0.24 DIFF 0�38 22.40 896.00 302.40 0.00 593.60

60�00 0.24 BEST 0�00 23.90 956.00 273.01 0.00 682.99
60�00 0.24 SLOT 0�01 20.40 816.00 305.76 0.00 510.24
60�00 0.24 DYN 0�02 23.90 956.00 296.72 0.00 659.27
60�00 0.24 DSR 0�44 23.90 956.00 285.07 0.00 670.93
60�00 0.24 PATH 9�18 23.70 948.00 281.33 0.00 666.67
60�00 0.24 REG 0�60 23.90 956.00 287.08 0.00 668.92
60�00 0.24 DIFF 0�51 22.70 908.00 265.74 0.00 642.26

120�00 0.24 BEST 0�00 23.90 956.00 227.64 0.00 728.36
120�00 0.24 SLOT 0�01 22.10 884.00 277.30 0.00 606.70
120�00 0.24 DYN 0�02 23.90 956.00 244.28 0.00 711.72
120�00 0.24 DSR 0�49 23.90 956.00 239.68 0.00 716.32
120�00 0.24 PATH 29�76 23.80 952.00 246.82 0.00 705.18
120�00 0.24 REG 0�96 23.90 956.00 244.20 0.00 711.80
120�00 0.24 DIFF 0�77 22.90 916.00 237.33 0.00 678.67

180�00 0.24 BEST 0�00 23.90 956.00 189.35 0.00 766.65
180�00 0.24 SLOT 0�01 21.90 876.00 253.51 0.00 622.49
180�00 0.24 DYN 0�02 23.90 956.00 202.98 0.00 753.02
180�00 0.24 DSR 0�56 23.70 948.00 194.89 0.00 753.11
180�00 0.24 PATH 50�70 23.80 952.00 196.92 0.00 755.08
180�00 0.24 REG 1�24 23.80 952.00 201.17 0.00 750.83
180�00 0.24 DIFF 1�01 22.90 916.00 193.55 0.00 722.45

30�00 0.48 BEST 0�00 24.00 960.00 195.50 0.00 764.50
30�00 0.48 SLOT 0�01 23.00 920.00 370.28 0.00 549.72
30�00 0.48 DYN 0�02 24.00 960.00 352.61 0.00 607.39
30�00 0.48 DSR 0�25 24.00 960.00 322.21 0.00 637.79
30�00 0.48 PATH 2�51 24.00 960.00 307.10 0.00 652.90
30�00 0.48 REG 0�30 24.00 960.00 302.08 0.00 657.92
30�00 0.48 DIFF 0�26 24.00 960.00 336.12 0.00 623.88

60�00 0.48 BEST 0�00 24.00 960.00 167.36 0.00 792.64
60�00 0.48 SLOT 0�01 24.00 960.00 362.10 0.00 597.90
60�00 0.48 DYN 0�02 24.00 960.00 302.24 0.00 657.76
60�00 0.48 DSR 0�24 24.00 960.00 291.02 0.00 668.98
60�00 0.48 PATH 5�24 24.00 960.00 271.86 0.00 688.14
60�00 0.48 REG 0�36 24.00 960.00 272.31 0.00 687.69
60�00 0.48 DIFF 0�30 24.00 960.00 288.53 0.00 671.47

120�00 0.48 BEST 0�00 24.00 960.00 128.79 0.00 831.21
120�00 0.48 SLOT 0�02 24.00 960.00 299.00 0.00 661.00
120�00 0.48 DYN 0�02 24.00 960.00 237.52 0.00 722.48
120�00 0.48 DSR 0�28 24.00 960.00 235.99 0.00 724.01
120�00 0.48 PATH 10�28 24.00 960.00 231.52 0.00 728.48
120�00 0.48 REG 0�54 24.00 960.00 223.18 0.00 736.82
120�00 0.48 DIFF 0�39 24.00 960.00 240.18 0.00 719.82

180�00 0.48 BEST 0�00 24.00 960.00 106.68 0.00 853.32
180�00 0.48 SLOT 0�01 24.00 960.00 263.95 0.00 696.05
180�00 0.48 DYN 0�02 24.00 960.00 205.17 0.00 754.83
180�00 0.48 DSR 0�28 24.00 960.00 203.77 0.00 756.23
180�00 0.48 PATH 17�61 24.00 960.00 200.96 0.00 759.04
180�00 0.48 REG 0�66 24.00 960.00 185.57 0.00 774.43
180�00 0.48 DIFF 0�44 24.00 960.00 199.08 0.00 760.92
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Table 12 Results for 60× 60 Grid for Different Time Slot Widths

DEC MAX
WIDTH PROB TYPE TIME STOPS REV DIST FAIL PROFIT

30�00 0.24 BEST 0�00 18.00 720.00 393.73 0.00 326.27
30�00 0.24 SLOT 0�01 17.40 696.00 537.83 1.20 158.17
30�00 0.24 DYN 0�03 20.10 804.00 568.28 0.00 235.72
30�00 0.24 DSR 0�18 14.80 592.00 327.23 0.00 264.77
30�00 0.24 PATH 0�69 12.70 508.00 246.42 0.00 261.58
30�00 0.24 REG 0�22 15.20 608.00 320.26 0.00 287.74
30�00 0.24 DIFF 0�18 12.90 516.00 262.49 0.00 253.51

60�00 0.24 BEST 0�00 21.20 848.00 431.92 0.00 416.08
60�00 0.24 SLOT 0�01 19.80 792.00 568.86 0.60 223.14
60�00 0.24 DYN 0�02 23.10 924.00 588.64 0.00 335.36
60�00 0.24 DSR 0�26 18.10 724.00 380.77 0.00 343.23
60�00 0.24 PATH 1�51 16.20 648.00 323.20 0.00 324.80
60�00 0.24 REG 0�32 19.30 772.00 395.65 0.00 376.35
60�00 0.24 DIFF 0�24 14.00 560.00 269.04 0.00 290.96

120�00 0.24 BEST 0�00 22.70 908.00 430.69 0.00 477.31
120�00 0.24 SLOT 0�01 22.10 884.00 554.60 0.00 329.41
120�00 0.24 DYN 0�02 23.80 952.00 512.56 0.00 439.44
120�00 0.24 DSR 0�37 22.80 912.00 436.54 0.00 475.46
120�00 0.24 PATH 5�76 19.70 788.00 374.85 0.00 413.15
120�00 0.24 REG 0�56 23.00 920.00 432.83 0.00 487.17
120�00 0.24 DIFF 0�37 16.00 640.00 296.58 0.00 343.42

180�00 0.24 BEST 0�00 23.40 936.00 364.74 0.00 571.26
180�00 0.24 SLOT 0�01 21.90 876.00 507.02 0.00 368.98
180�00 0.24 DYN 0�02 23.90 956.00 411.99 0.00 544.01
180�00 0.24 DSR 0�47 23.70 948.00 403.52 0.00 544.48
180�00 0.24 PATH 14�66 22.70 908.00 370.40 0.00 537.60
180�00 0.24 REG 0�87 23.90 956.00 408.68 0.00 547.32
180�00 0.24 DIFF 0�55 17.70 708.00 280.06 0.00 427.94

30�00 0.48 BEST 0�00 23.70 948.00 392.25 0.00 555.75
30�00 0.48 SLOT 0�01 20.50 820.00 590.90 2.50 229.10
30�00 0.48 DYN 0�02 24.00 960.00 632.71 0.00 327.29
30�00 0.48 DSR 0�18 22.90 916.00 449.66 0.00 466.34
30�00 0.48 PATH 0�69 22.40 896.00 432.75 0.00 463.25
30�00 0.48 REG 0�22 23.20 928.00 475.27 0.00 452.73
30�00 0.48 DIFF 0�18 21.50 860.00 410.56 0.00 449.44

60�00 0.48 BEST 0�00 23.90 956.00 341.26 0.00 614.74
60�00 0.48 SLOT 0�02 22.50 900.00 627.46 1.50 272.54
60�00 0.48 DYN 0�02 24.00 960.00 634.94 0.00 325.06
60�00 0.48 DSR 0�23 24.00 960.00 466.32 0.00 493.68
60�00 0.48 PATH 1�66 23.20 928.00 410.55 0.00 517.45
60�00 0.48 REG 0�30 24.00 960.00 486.41 0.00 473.59
60�00 0.48 DIFF 0�25 23.40 936.00 443.49 0.00 492.51

120�00 0.48 BEST 0�00 24.00 960.00 265.35 0.00 694.65
120�00 0.48 SLOT 0�01 23.90 956.00 595.36 0.10 360.64
120�00 0.48 DYN 0�02 24.00 960.00 507.35 0.00 452.65
120�00 0.48 DSR 0�25 24.00 960.00 383.54 0.00 576.46
120�00 0.48 PATH 5�18 24.00 960.00 364.73 0.00 595.27
120�00 0.48 REG 0�39 23.90 956.00 360.94 0.00 595.06
120�00 0.48 DIFF 0�32 24.00 960.00 395.38 0.00 564.62

180�00 0.48 BEST 0�00 24.00 960.00 213.35 0.00 746.65
180�00 0.48 SLOT 0�01 24.00 960.00 527.90 0.00 432.10
180�00 0.48 DYN 0�01 24.00 960.00 457.29 0.00 502.71
180�00 0.48 DSR 0�27 24.00 960.00 340.19 0.00 619.81
180�00 0.48 PATH 9�45 24.00 960.00 322.52 0.00 637.48
180�00 0.48 REG 0�56 24.00 960.00 352.10 0.00 607.90
180�00 0.48 DIFF 0�40 24.00 960.00 337.78 0.00 622.22

(going from 3.26 to 9.18 to 29.76 to 50.70 seconds).
For the 60 × 60 grid, there are substantial improve-
ments for the SLOT method, but the profit values are
still not close to those obtained with the feasibility-
and profitability-based insertion criteria due to the
larger customer to customer distances. Note that there
are still some missed guaranteed deliveries with 2-
hour (120 minute) windows for the SLOT method,
which indicates that feasibility-based insertion meth-
ods already provide a significant improvement over
current practice when customers are fairly spread out.
It does not appear that the window width affects the
performance of the profitability-based methods com-
pared to the best possible (BEST), because the ratio of
PATH profit to BEST profit, when expected demand to
capacity ratio is 2, is 0.83, 0.84, 0.85, and 0.85 respec-
tively, which is amazing consistency.

6.3. Insights
Our preliminary computational experience suggests
that the profitability of HDSs can be improved signif-
icantly by the use of more sophisticated approaches
to order capture and promise. More specifically, our
computational experience indicates the following.
• Dynamically evaluating the feasibility of a deliv-

ery in a given time slot (as opposed to limiting the
number of deliveries in a time slot to a fixed num-
ber) can significantly enhance profitability and clearly
reduce the risk of failures.
• The value of more sophisticated approaches in-

creases as the expected demand to capacity ratio
increases.
• The value of more sophisticated approaches in-

creases as customer density decreases.
• The width of the time slots has a significant

impact on the profitability even for dense areas.
• The number of slots in an average customer’s

time slot profile has an impact on profitability.
• It is advantageous to have more, smaller vehicles

rather than fewer, larger vehicles, as that increases the
ability to satisfy desired delivery windows. In prac-
tice, where there are several high-demand time peri-
ods, e.g., early evening, this is extremely important.
• The ability of our proposed profitability-based

methods to capitalize on revenue differences among
customers depends both on probabilities (variability
in expected revenues) and distances between cus-
tomers (variability in delivery costs).
• Our proposed profitability-based methods PATH

and REG perform better in denser areas.
• Our proposed profitability-based method PATH

captures the tradeoff between accepting (and realiz-
ing) a low-profit request and waiting for (and pos-
sibly missing) a high-profit request well but requires
a substantial computational effort in certain situa-
tions. Improved implementations may alleviate this
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somewhat, but the method may prove to be imprac-
tical. Methods DSR and DIFF are not far behind in
terms of quality and display more favorable compu-
tational behavior.

7. Future Directions and Conclusions
Our computational experiments demonstrate that
with a little intelligence the cost effectiveness (and
thus profitability) of HDS can be significantly
enhanced. This in itself is an important result. How-
ever, in our opinion, there is an opportunity for even
greater improvements by incorporating profit- and
revenue-optimization concepts and techniques in the
HDS environment.
Most HDSs offer the customer the ability to select

a time slot for the delivery. It is intuitively clear
that the closer the delivery locations are for orders
in a given time slot (or consecutive time slots), the
easier it will be to schedule the deliveries and the
cheaper it will be to carry them out. However, without
incentives there is little motivation for consumers to
choose time slots that are convenient for the retailer.
Peapod (www.peapod.com) already offers $1 and $2
discounts for allowing larger delivery windows and
has found this to be successful (Fendelman 2001). We
propose to use dynamic incentive schemes. Altering
the consumer choices—e.g., by restricting the num-
ber of delivery options or by pricing the time slots
differently—may help the retailer build better, more
cost-effective schedules.
We expect that the next generation of decision sup-

port systems for HDS will integrate dynamic routing
and scheduling and profit- and revenue-optimization
techniques into time-slot management systems that
will be responsible for dynamically presenting time
slots to customers based on the currently available,
tentative delivery schedule and the customer’s order
and location. To even out the distribution of demand,
time slots may be accompanied by price incentives
(discounts) to encourage customers to choose par-
ticular delivery windows (which are better from a
scheduling perspective) or to accept wider delivery
windows (which give more flexibility in scheduling
the delivery). These incentives will be based on the
opportunity cost calculations that reflect how well a
delivery at the customer’s location in a specific time
slot fits into the tentative schedule.
To be able to study the integration of dynamic

routing and scheduling and profit- and revenue-
optimization techniques for HDS, we propose the
home delivery problem with incentives (HDPI). In-
stead of a time slot profile for each customer identify-
ing which time slots are acceptable for delivery, there
is a time slot revenue profile for each customer. This pro-
file specifies the price a customer is willing to pay for

a delivery in a particular time slot. This price can be
thought of as the price of purchased goods plus the
price the customer is willing to pay for delivery at a
particular time (note that by allowing the “delivery
price” to be negative it is possible to model undesir-
able or even infeasible time slots). When a delivery
request arrives, it must either be rejected or accepted,
and, if accepted, a commitment has to be made to
a specific time slot for delivery. The objective is to
maximize the total profit resulting from executing the
set of delivery routes, i.e., total revenues minus total
costs.
This problem can also be viewed as follows. The

basic price a customer pays for a home delivery is
the price of the purchased goods and a fixed deliv-
ery charge. When a delivery request arrives, the HDS
provider displays the set of viable time slots along
with delivery discounts associated with certain slots.
The customer selects one or decides to withdraw the
delivery request.
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