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Abstract Disaster response and recovery are crucial phases
of disaster management. Decision-support systems used in
disaster management must cope with the complexity and
uncertainty involved with the scheduling and assignment of
differentially-skilled personnel and assets to specific tasks.
Operational constraints—such as workload and labor require-
ments, precedence constraints, resource availability, and
critical deadlines among others—make timely and appropriate
task assignment and sequencing difficult. Failure to assign
personnel in an efficient and effective manner may result in
unnecessary fatalities and significant additional loss of
property as well as damaging the reputation of the disaster
management organizations. Therefore, this paper proposes a
decision-support system for disaster response and recovery
using hybrid meta-heuristics.

Keywords Disaster management . Meta-heuristics . Project
management . Scheduling . Decision support systems

1 Introduction

The ability of governmental agencies and relief organizations
to respond quickly and appropriately to a natural or man-made
disaster is crucial in saving lives and/or preventing additional
loss of property. In the case of Hurricane Katrina’s strike on
the southern US coastline in 2005, the US Congressional
investigation into the aftermath of the disaster found that the
governmental hierarchy (federal, state, and local) failed to act
decisively. Many of the elements of the nation’s disaster
management plan were either poorly implemented or never
attempted resulting in an increased fatality rate and the
preventable suffering of many of the survivors (U.S. House
of Representatives 2006).

The failure to allocate needed resources in a timely manner
is not uncommon and may exacerbate the disaster situation.
As noted by Quarantelli (1988), inter-organizational commu-
nication and collaboration problems in disaster situations
often heighten stress levels for the response team managers.
To assist in the possible prevention or amelioration of poor
plan implementation in the face of a disaster, we propose the
use of a meta-heuristic decision-support system tool to solve
scheduling problems in near real-time. These scheduling
problems are specifically addressed in the response and
recovery phases of disaster management. By utilizing the
appropriate decision support system, disaster management
officials can mitigate resource allocation problems in a
timely manner (Thompson et al. 2006).

2 Purpose

Altay and Green (2006) outline four phases of disaster
operations management: mitigation, preparedness, response
and recovery. Their disaster response phase involves
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activities such as implementing plans, establishing com-
mand posts and shelters, and provisioning of all necessary
emergency services. In this phase time-critical activities
must be scheduled and sequenced, and appropriate person-
nel must be assigned in a timely manner, otherwise severe
late-penalties might accrue. Although the recovery phase
(including cleanup, infrastructure repair and replacement,
and continued provision to the displaced—Altay and Green
2006) may be slower paced, the need for efficiency and
effectiveness is equally important.

Detailed preparation for potential disaster situations is a
necessity, but once the actual disaster occurs, managers on
the scene must often develop complex responses in a
compressed time-frame without support from higher-level
managers. The more overwhelming the disaster, the more
likely the need for managers to adapt as the situation
evolves. As Quarantelli (2006) pointed out, planning from
the ground up by local response personnel is often more
useful than a ‘top–down’ plan developed by senior
managers that are removed from the scene. Thus, this paper
will address the resource-constrained scheduling aspect of
disaster response and recovery using a ground-up approach.

From an academic point of view, the resource allocation
issues noted above may be conceptualized as a resource-
constrained scheduling problem, and will be referred to in this
paper as the disaster response (and recovery) scheduling
problem, or DRSP. The DRSP can be classified as a complex
variation of the multiple resource-constrained project sched-
uling problem (or MRCPSP), simultaneously addressing both
scheduling and assignment issues (see Section 4 for a detailed
discussion). This paper proposes an efficient algorithm to
solve the DRSP within the imposing deadlines that disaster
management requires—indeed, a major contribution of this
paper is the introduction of modeling and solution methods
that enable near-real time solutions. This ability to deal
simultaneously with scheduling and assignment in near-real
time allows managers to re-solve a particular response or
recovery problem as conditions at the scene change.

In the next section we examine the related literature in
disaster management. In Section 4 we discuss how the
DRSP maps as a MRCPSP and the unique characteristics of
that class of problems. We present a solution technique for
the DRSP in Section 5, and computational results are
discussed in Section 6. We conclude the paper with a
discussion of practical application, conceptual limitations,
and ideas for future research in the final section.

3 Disaster management and resource constrained
project scheduling

The early disaster management research utilizingmanagement
science tools focused on the location of emergency service

facilities and equipment (Toregas et al. 1971; Kolesar and
Blum 1973; Carter and Ignall 1970; Kolesar and Walker
1974). For example, Kolesar and Walker (1974) proposed a
mathematical programming model and an associated heuris-
tic algorithm to address the location of fire trucks in New
York City. Going a step further, Brown and Vassiliou (1993)
developed a decision support system that addressed methods
for assigning tasks in a post-disaster relief effort. However, a
critical element in disaster response and recovery is the need
for appropriate sequencing (e.g. the need for a hazardous
materials team to neutralize a chemical spill before allowing
emergency medical teams to assist the injured), as well as
recognizing the constraint of scarce resources. In this paper,
we add the consideration of time-periodic scheduling of
assignments, rather than just assigning people to tasks, which
recognizes precedence as well as scarcity.

Realizing the need for emergency response planning as
opposed to a reactionary response, Mendonca et al. (2001)
proposed the use of group decision support systems.
Bryson et al. (2002) extended this thinking by formulating
a subplan selection problem (a limited part of the disaster
recovery planning process) utilizing mathematical program-
ming and discussed phases (or objectives) of this system
that could be applied under various conditions or timings of
a disaster. In this paper we are not concerned with a priori
planning. Instead, this paper primarily addresses operation-
al disaster response while recognizing that much of our
work also applies to the disaster recovery phase.

In more recent works, disaster management has again been
examined from the facility location perspective. Liu and Zhao
(2007) discussed a logistic relief network consisting of relief
suppliers, relief distribution centers, and relief demand areas.
They proposed a multi-objective model for quick response to
relief demands. In a more specific case, Özdamar and Yi
(2008) discussed vehicle dispatch for disaster relief planning.
They proposed a mathematical model, a solution procedure,
and then demonstrated these on randomly generated problems
on grid networks. Balcik and Beamon (2008) proposed a
mixed integer programming formulation for facility location
and stock pre-processing for disaster relief. Their model
allows organizations to understand their response capacity,
and make adjustments to their operations. While this
approach examines an important aspect of disaster manage-
ment, in this paper we are not explicitly concerned with
facility location as we view locations as being tied to tasks.

4 Classifying and understanding the DRSP

As seen by previous work done in this area, disaster
management is complex in that managers must assign
specific personnel and resources to multiple locations and
tasks. For instance, although ambulance crews, fire crews,
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police, SWAT teams, and the bomb squad all have basic
first responder skills, each has specific specialty skills and
specialized equipment that are most useful (or required) at a
certain point in the disaster management effort. This type of
complexity suggests the DRSP is a form of the multiple
resource-constrained project scheduling set of problems,
and occurs when personnel can perform the various tasks of
assorted projects with differing time and cost requirements
(Brucker et al. 1999). MRCPSP problems are subject to a
multitude of operational constraints, such as workload and
labor requirements, safety issues, logistics and equipment
availability, which are subject to precedence constraints and
ultimately will be associated with specific time-periods
(Drexl 1991). As was seen in the response to Hurricane
Katrina, in real-world situations task/personnel assignments
are often made in an unstructured manner, usually without
the aid of sophisticated software. The end result is a
disjointed response that often results in increased delays
and higher casualties. Thus, we see a need for using
MRCPSP-related models in disaster management.

The MRCPSP is conceptually and computationally
complex since it involves both an assignment of resources
to tasks, as well as a schedule for executing the tasks. It is
known to be NP-complete in the strong sense (see Garey
and Johnson 1979). In fact, even generating a test problem
instance for the MRCPSP problem is complex, and several
papers have proposed problem generators to address this
need (Kolisch et al. 1995; Drexl et al. 2000). Despite the
large amount of research on the MRCPSP (Boctor 1996;
Böttcher et al. 1999; Drexl and Gruenewald 1993;
Hartmann 2001; Hartmann and Drexl 1998; Jozefowska et
al. 2001; Kolisch and Drexl 1997; Mori and Tseng 1997;
Özdamar and Alanya 2001; Özdamar 1999; Serafini and
Speranza 1994), researchers may become confused over the
details of this problem given that its literature is alive with
variations of the problem and that the problem is
structurally related to a class of machine scheduling
problems. In response to this confusion, and as a tool for
keeping track of new and relevant developments, several
taxonomies of the problem domain have been proposed
(Brucker et al. 1999; Herroelen et al. 2001).

Recent events such as Hurricane Katrina, the tsunami in
Southeast Asia in 2004, the Chinese earthquake in 2008,
and the Myanmar cyclone in 2008 demonstrate that time is
becoming an increasingly critical factor for many of the
real-world applications of this problem. Reducing the
amount of time required to appropriately allocate needed
resources to disaster sites can result in large amounts of
precious resources being saved. The generalized MRCPSP
is a case where the make-span objective (minimizing the
project duration) is replaced by any other objective
(Sprecher and Drexl 1998), i.e. a time/cost tradeoff. The
time/cost tradeoffs allow “processing times to vary accord-

ing to how much the planner is willing to pay for it”
(Brucker et al. 1999).

In disaster management, this “willingness to pay”may be a
direct function of available resources, and the objective may
be to save lives rather than minimize cost. Since assigning a
monetary value to a life is controversial, costs can be
interpreted as an efficiency measure such as the increased
probability of loss of life or other resources due to time delay.
While managing the disaster response, the finding of
scheduling efficiencies and the understanding of time/cost
tradeoffs, especially during multiple disaster periods, are
clearly critical issues for both the relief organizations and
their response teams. The mapping between the elements of
the MRCPSP and the DRSP are presented in Table 1.

The previous research literature in this area includes a
wide range of papers (Summers 1972; Bolenz and Frank
1977; Balachandran and Zoltner 1981; Chan and Dodin
1986; Drexl 1990, 1991; Dodin and Chan 1991; Knechl
and Benson 1991; Salewski and Bartsch 1994; Salewski
1995; Dodin and Elimam 1997; Salewski et al. 1997; Dodin
et al. 1998). Using the mapping presented in Table 1, we
interpret the formulation as presented in Dodin et al. (1998)
and utilize it to represent the DRSP (see online
Appendix A). The mixed linear-integer programming
problem formulation seeks to assign disaster response (or
recovery) teams to tasks to minimize total costs subject to a
variety of constraints. The objective function included the
cost of where response teams are performing each assigned
task—typically including a high mismatch cost when the
response teams are assigned improperly. The mismatch cost
may include training costs or the risk associated with errors
due to the lack of familiarity with the task in question. The
objective function also includes a cost for transferring
response teams and equipment to another disaster location
(engagement); this is known as the setup cost. The setup
cost is designed to capture the trade-off resulting from a
response team switching from one location to another and
the match-up between the response team and the tasks. The
third cost component is a significant penalty for completing
the project (or the last task of a project) after its due date, in
this case a loss of life.

Constraints include precedence relations and response
team availability and preferences. Constraints also include
the fact that a response/recovery team cannot process more
than one task at a time, and account for delays and team
transitions. These cost components and constraints make
DRSP structurally similar to MRCPSPs used in managing
certain services, such as consulting, audit, and law firms
discussed in the literature review, as it simultaneously
incorporates both the budget problem (a fixed upper bound
on the non-renewable resource) and the deadline problem (a
bound on the project duration) as defined by Brucker et al.
(1999).
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Dodin et al. (1998) found that even modest instances of
the MRCPSP become computationally intractable, and
presented a solution technique based on the Tabu Search
(TS) meta-heuristic. Their TS implementation utilized
memory to direct or constrain the search process to find
local neighborhood improvements given a starting point
solution, but still experienced frequent and large optimality
gaps. Thus, part of the focus of this paper is to develop a
new solution procedure that addresses this weakness, and is
appropriate to the time-sensitive requirements of the
disaster management domain.

5 Using adaptive reasoning technique to provide
periodic redirection to solve the DRSP

To overcome some of the weaknesses of neighborhood
search heuristics, Patterson et al. (1999) and Patterson and
Rolland (2002) proposed the Adaptive Reasoning Technique
(ART). ART is a constructive, iterative, and memory-based
meta-heuristic, and is illustrated in Fig. 1. A domain-specific
solver generates a complete solution for the problem at each
iteration of the ART algorithm. The term “solver” refers to a
problem-class specific solution method, such as a greedy
heuristic. If a solution found by the solver is sufficiently
promising, a local search is executed to find a local optimum.
ART is based on memory concepts such as learning,
remembering, and forgetting which are used to adjust the
behavior of the solver during subsequent iterations. In
essence, the memory captures facets of the solver’s perfor-
mance from prior iterations, and this drives the modification
and future behavior of the solver.

ART’s memory is comprised of three components: 1) a
short-term memory consisting of a list of prohibited
solution choices; 2) a long-term memory containing the

best solutions found; and 3) an operational memory of how
to learn, including counters, memory length, and the
parameters of memory manipulation and how to manipulate
these learning parameters throughout the algorithm. ART
learns about the behavior of the solver, and then imposes
changes to prevent the solver from making seemingly
myopic, or otherwise poor, choices. As shown in Fig. 1,
ART is not static in the way it learns: the learning
parameters are modified throughout the execution of the
ART meta-heuristic algorithm. While the local search found
in ART does manipulate the solutions found by the solver,
ART manipulates the solver. We next discuss the elements
of ART in more detail.

5.1 The solver

The solver used in ART can be any algorithm that constructs
a solution for the problem. We utilize the Forward Loading
(FL) heuristic, a simplistic and well-known procedure for
solving MRCPSPs (Dodin et al. 1998) as our solver. FL
uses a dispatching rule that assigns tasks to available
responder/response teams from the beginning to the end of
the available time horizon, giving preference to the
responder/response team with the least mismatching cost
subject to capacity, precedence, and any potential additional
constraints.

5.2 Local search

Local search is performed using two moves: within-
responder/response team (horizontal) moves; and between-
responder/response team (vertical) moves. Both moves are
performed on the basis of maximum cost savings, subject to
memory restrictions and feasibility. The within-responder/
response team move is an attempt to find a better time slot

Table 1 Mapping between MRCPSP and the DRSP

MRCPSP Disaster Response Scheduling Problem (DRSP)

Project/engagements Disaster locations

Assignment of personnel to task Sufficient man-power

Mismatching issues Skill sets for specialized jobs are assigned correctly

Sequencing of tasks (precedence) Some tasks can only be started after other tasks have completed

Task overlap Some tasks can overlap in time

Late costs Loss of life

Setup costs When moving personnel between tasks, a setup cost is incurred. This includes things like
removal of expert personnel and their equipment, and re-insertion into other (geographic) areas.

Teams Response/recovery teams (or rescue crews)

Planning horizon The time horizon for the response/recovery project

Deadlines Deadlines for certain aspect of the response/recovery efforts (such as finding survivors, supplying food, …)

Multiple jobs A response/recovery effort could have multiple unique goals (survivor extraction,
contamination minimization, housing provisioning)
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for a task already assigned to the responder/response team.
The between-responder/response team move is an attempt
to find a new responder/response team for a task currently
assigned to somebody else. For additional details, see
Dodin et al. (1998). Because local optimization is very time
consuming, ART only performs this local optimization
when the solution produced by the solver is better than
any of the previously found 10 best post-local optimization
solutions.

5.3 Updating memory and learning parameters

ART consists of three (3) loops to modify the memory that
imposes restrictions on the operation of the solver (see
Fig. 1): iteration loops (repeat until 35 consecutive
iterations of the solver have been performed without an
improvement in the best solution); 7 cycle loops; and 4
phase loops. Memory is adjusted after each iteration by
prohibiting selected decision variables. With a random

probability larger than a threshold T, a response team i
selected to process task j in period h will be prohibited from
being selected for a certain number of iterations as follows:

Length of ART Prohibition ¼ rand 0; 1½ �» Ij
�� ��»d» lj � qj

� �
» cij

max ckj
� �
k

0
B@

1
CA

where:

& rand [0,1] = a random number in the range [0, 1]
& Ij
�� �� = the number of response teams who can perform task j

& d = the depth-of-learning multiplier. The depth-of-
learning is a multiplier used for determining how long
a prohibition will be maintained.

& (lj-θj) = latest minus earliest completion time for task j

& cij
max ckjf g

k

 !
= the mismatching cost of response team i

performing task j divided by the maximum mismatching
cost for any response team k performing task j
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Local Search
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Term Memory:
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Memory:
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Fig. 1 The principles of ART
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The learning parameters are adjusted after each cycle.
The threshold T is initially set to 3% at the beginning of
each phase, and is increased by 5% at the end of each cycle
within a phase. Threshold modification is done to vary the
difficulty of prohibiting a choice as the algorithm proceeds.
Thus, T is reset to 3% at the end of each phase. Varying T
up and down is analogous to the “heating and cooling”
typically performed in simulated annealing.

Memory and learning parameters are adjusted after each
phase. In addition to resetting T to 3%, the ART memory is
reset to the ART memory that produced the best solution,
with a 20% probability, the length in iterations of the best
ART memory will be “forgotten” by a random proportion in
the range [0, 1]. Resetting the ART memory allows the
algorithm to go back and begin the search anew from the
seemingly most fruitful location. Reducing the length of
prohibition is akin to memory loss, or at least to reducing
the intensity of the memory, and allows the algorithm to
more rapidly search new areas.

The depth-of-learning multiplier is set initially to 1 and it
is increased by 15% at the end of each phase. The depth-of-
learning multiplier determines how many iterations a
prohibition will be maintained; increasing the multiplier
serves to increase the length of prohibition. In essence,
memory becomes more intense, or longer, as the algorithm
proceeds.

6 Experimental results

For consistency and comparability, the experiments are
conducted using the same experimental data used by Dodin
et al. (1998). Five (5) different types of data sets are used,
with seven (7) problem instances in each data set for a total
of 35 problems. For each of the 35 problems, the algorithm
was run 50 times using ART with FL and 10 times using
ART with TS. All experiments were coded using Delphi
Studio Architect 7.0, and run on a dual core processor (Intel
6400 @ 2.13 GHz) Dell XPS computer with 4 Gb of RAM,
under Windows XP Professional. Tables 2, 3, and 4 contain
data describing the 5 problem sets and the 7 problem
instances within each set as reported in Dodin et al. (1998).

Table 5 displays the percentage gap comparison using
the best ART solution values and the best reported solution

values in Dodin et al. (1998). The choice of solver does
have a significant impact on the performance of ART. The
ART procedure in Table 5 uses FL as the solver for problem
sets 1, 2, 4, and 5, and TS as the solver for problem set 3.
We found that for data sets 1, 2, 4, and 5, ART performed
best using the Forward Loading (FL) solver. For data set 3,
ART performed best using TS as the solver. The reason for
this interesting dichotomy is due to the extreme nature of
problem set 3. Problem set 3 consists of small, randomly
generated problems with a large amount of flexibility due to
the minimal precedence relations. As a result of the lack of
precedence relations, FL performs very poorly on problem
set 3. TS, however, serves as a good solver on problem set 3
for ART.

As shown in Table 5, ART found the best-known upper
bound (best feasible solution) in 83% of the cases. The
average percentage gap from the best upper bounds for each
problem set is also extremely small for ART, ranging from 0%
to 2.2%. This is in comparison to an average percentage gap
ranging from 3.9% to 52.0% for TS. These computational
results clearly demonstrate that the ART procedure is able to
make dramatic improvements in solution quality. The
computational times reported in Table 5 indicate that these
dramatic results can be achieved in a reasonable amount of
time. On average, problem set 1 took 1.6 seconds per
iteration, set 2 took 12.31 seconds, set 3 took 7.96 seconds,
set 4 took 7.44 seconds, and the largest problem set (set 5)
took 59.39 seconds of CPU time per iteration on average.

7 Conclusions

This paper proposed the use of resource-constrained project
scheduling models for disaster response and recovery. We
discussed the disaster response scheduling problem, and
proposed an efficient algorithm to solve the DRSP within
the reasonable time limits consistent with the requirements
of disaster management efforts. Our research advances
operations management theory in several ways. First, we
present a theoretical link, showing that the DRSP is a multi-
mode case of the resource-constrained project-scheduling
problem. Second, we propose a method by which this
complex version of the MRCPSP problem, the DRSP, can
be solved in near-real time, enabling the generally complex

Problem Number Instances (G) Engagements (I) Respondents/Teams (J) Tasks (H) Horizon

1 7 2 4 19 12

2 7 2 4 35 35

3 7 2 4 20 15

4 7 4 6 32 20

5 7 5 6 75 45

Table 2 Experimental problem
profile
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multiple resource-constrained models to be utilized in disaster
response and recovery. The ability to deal simultaneously with
the combination of scheduling and assignment in near-real
time also translates to an ability to re-solve the problem as
conditions on the ground change.

For practitioners, this proposed model and solution method
constitute a decision-support system that can be readily used
by managers dealing with the various aspects of disaster
response and recovery. Given sufficient experience in the
field, these managers will be able to provide the necessary
data (types of teams, resources, and rule of thumb guidelines
for the necessary time to complete certain tasks) to develop a
complex schedule for assignment of resources and personnel.
This schedule can be re-solved as data and parameters evolve
due to changing conditions. The model allows these solutions
to be generated in real time and will likely serve to prevent
some of the untimely responses that have characterized many
recent disaster management efforts.

The results presented in this paper also suggest significant
time and cost savings may accrue and improved operational
effectiveness between multiple disaster management organ-
izations may be obtained. Assuming that the teams and
resources are scattered throughout multiple organizations, our

method facilitates inter-organizational collaboration and
reduces uncertainty and the noise resulting from this uncer-
tainty in the communication channels. Our proposal involves
a modeling and solution tool that would allow for coordinated
planning, by a single agency or command center, to achieve a
desirable inter-organizational result. Based on recent efforts
by Congress to improve disaster management in the wake of
the Katrina disaster, the creation of a unified Joint Field Office
(as a part of the Incident Command System) providing this
coordination is a near-term possibility (National Response
Framework 2008).

For future researchers in this area, the paper demon-
strates the use of simple heuristics (Forward Loading) and
meta-heuristics (Tabu Search) as the solvers for the
Adaptive Reasoning Technique in order to solve the DRSP.
The ART algorithm is unique in that it modifies the decision
tree of the solver. This insight will be useful to researchers
in the meta-heuristics area, as it provides a unique way of
thinking regarding meta-heuristic design. A promising area
of future research is to design meta-heuristics that manip-
ulate the decision tree process of a problem-class-specific
solution method. Also, additional explorations of ART’s
learning and memory functions are expected to be fruitful

Table 3 Description of problem set characteristics

Problem Characteristics

Problem Number Problem Size Precedence Relations Planning Horizon [ej,lj] Intervals Source of Problem

1 Small Rigid Short Narrow ∼ 6 periods Real life

Notes: Real life case studies presented in Dodin and Elimam (1997)

2 Larger than #1 Similar to #1 Longer than #1 Wider than #1 ∼ 20 periods Pseudo real life

Notes: Wider intervals provide more feasible schedules to choose from

3* Small, similar to #1 Minimal Short, similar to #1 In between #1 and #2 Randomly generated

Notes: Tasks can be processed in parallel and more flexibility in problem due to minimal precedence
relations

4* Larger than #1, similar to #2 More than #3 Longer than #3 In between #1 and #2 Randomly generated

Notes: More respondents makes #4 less restrictive than #2

5* Very large, ∼ 22 times Similar to #4 Longer than #4 In between #1 and #2 Randomly generated

Notes: Similar to #4, only much larger

*While problem sets #3–#5 are randomly generated, the problem parameters are similar to, and based on, real-life problem instances

Table 4 Description of characteristics for all problem sets

Problem Instance Instance Characteristics

0 The base problem

1 As in #0 except the parameters H −
i = 0, and H +

i = H (The respondent/team utilization constraints are ignored)

2 Lateness penalty is zero, otherwise same as #0

3 Lateness penalty is set high (∼10 times that of #0)

4 Higher mismatching costs (c ij ), such that c ij >0 for all (i,j )

5 High setup costs as respondent/teams move between engagements

6 Low setup costs as respondent/teams move between engagements
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avenues for future research. We note that the ART heuristic
improved substantially on most of the solution values for
known problems presented in previous research.

This paper also provides a strong argument for researchers
desiring to use advanced meta-heuristic algorithms in disaster

management research. The computational results suggest that
there is room for future research, and further improvements, in
the solution procedures for this very important real-life
problem. Specifically, sinceART is a relatively new technique,
it could benefit from additional examination and utilization

Table 5 Computational results

Problem Name Best Upper Bound Percentage gap from best upper bound Average ART CPU Time in seconds

TS 1998 Dodin et al. Best ART

1.0 6,300 25.4% 0.0% 1.56

1.1 6,000 21.7% 0.0% 1.59

1.2 2,900 24.1% 0.0% 1.62

1.3 20,300 6.4% 0.0% 1.65

1.4 14,800 0.0% 0.7% 1.62

1.5 13,200 58.3% 0.0% 1.67

1.6 4,280 6.5% 0.0% 1.55

Average 20.4% 0.1% 1.61

2.0 11,800 33.9% 0.0% 12.18

2.1 10,600 49.1% 0.0% 12.71

2.2 11,600 41.4% 0.0% 12.62

2.3 11,600 41.4% 0.0% 12.15

2.4 14,600 52.1% 0.0% 12.86

2.5 22,600 40.7% 0.0% 12.17

2.6 9,340 43.5% 0.0% 11.45

Average 43.1% 0.0% 12.31

3.0 83 0.0% 2.4% 8.05a

3.1 78 6.4% 0.0% 7.76a

3.2 83 0.0% 2.4% 8.03a

3.3 85 232.9% 0.0% 8.04a

3.4 144 0.0% 0.0% 7.85a

3.5 85 57.6% 0.0% 8.06a

3.6 85 67.1% 0.0% 7.95a

Average 52.0% 0.7% 7.96

4.0 139 0.0% 2.9% 8.36

4.1 139 0.0% 5.0% 6.37

4.2 138 0.7% 0.0% 8.58

4.3 137 1.5% 0.0% 7.77

4.4 180 12.2% 0.0% 7.59

4.5 369 13.0% 0.0% 4.75

4.6 111 0.0% 7.2% 8.69

Average 3.9% 2.2% 7.44

5.0 49,700 29.8% 0.0% 59.55

5.1 46,400 7.1% 0.0% 57.55

5.2 48,000 29.4% 0.0% 59.74

5.3 55,000 2.9% 0.0% 60.07

5.4 78,200 7.4% 0.0% 60.07

5.5 136,000 10.3% 0.0% 58.65

5.6 36,000 34.7% 0.0% 60.14

Average 17.4% 0.0% 59.39

a ART with TS
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across new problem domains as well as other MRCPSP
variants. An example of a very practical variant of the DRSP
is an examination of the tradeoff between the cost of hiring
permanent versus temporary personnel and other needed
resources and the potential penalty for lack of preparedness.
The value of our proposed model and solution procedure is
one of quickly assessing a disaster scenario and adapting to
the dynamic nature of the situation in a timely manner.

A unique challenge to the implementation of the
decision support model in practice exists in that perfect
information is typically not available for disaster manage-
ment planning. All that is known, at best, are estimates. We
would argue that for many issues, the latest completion
times can be estimated. For example, we do have good
measures for life-expectancy for earth-quake survival—
meaning a time beyond which search for survivors does not
make sense. Similarly, there are time measures for
supplying drinking water, corpse removal, and other
necessary assistance provision activities. The minimum
time between tasks could be spelled out by the need for
moving equipment between locations, which is an issue due
to resource constraints. As such, there are estimates and
experiences to aid in this regard. Earliest completion times
are estimates as to when a task will end given assumptions
regarding the situation on the ground. The strength of our
model and solution approach is indeed that the model can
be quickly re-solved by the disaster coordinator at any time
should more accurate information become available, or
should the situation on the ground change significantly—
which is customary for these types of situations.

Limitations in this area of research are twofold. First,
finding good real-life datasets is difficult because of a lack
of a standard formal representation that is easily understood
by managers. This hampers both the documentation of real-
life projects, as well as collection of data from such
projects. Second, the setup of the problem structure in
order to enable the ART heuristic is complex. Indeed, this
shows that there is ample room for integration of decision
support systems that aid the disaster management team in
setting up the problem with the ART method.

Appendix A Problem formulation

Parameters

Aij The set of response tasks, which can be processed by
response team i after they completes task j.

ajk Portion of task j to be completed before the start of
task k, where j precedes k, and 0 < ajk ≤ 1.

Aj The set of tasks that directly succeed task j.
Bj The set of tasks that are connected to task j by a

direct precedence relationship.

cij Themismatching cost between response team i and task j.
dg Due date of engagement g.
ej The earliest completion time of task j:

ej ¼ max
k2Bj

ek � FSkj þmin
i2Ij

tij
� �� 	

.

FSjk The minimum number of time units that must
transpire from the completion of j prior to the start of
k; if FSjk = 0, then we have the usual CPM/PERT.
FS kj = tik - SSkj

g 1, 2,..., |G|, response engagement index, where G is
the set and |G| is the number of engagements.

h 1, 2,..., |H|, time period index where H is the
planning horizon and |H| is the number of periods in
the planning horizon.

H�
i Minimum number of periods response team i is

available within H.
Hþ

i Maximum number of periods response team i is
available within H.

i 1, 2,..., |I|, responder/response team index, where I is
the set and |I| is the number of response teams.

Ij The set of response teams nominated for task j.
j 1, 2,..., |J|, response task index, where J is the set and

|J| is the number of all response tasks in all
engagements.

J The set of response tasks which can be processed by
response team i.

lj The latest completion time of task j:

lj ¼ min
k2Aj

ek �min
i2Ik

tik½ � þ FSjk

� 	
.

pg Cost of having engagement g late (tardy) for one period.
sijk The cost of having response team i process task k

after completing task j.
SSjk The time lag required for the start of task k after the start

of task j. The overlapping relationship between two
related activities, j and k, is given by the ratio ajk. Task
k can start any time after the completion of ajk tij
periods of work on task j. Hence, SSjk = ajk tij

� �
, where

[q] is the smallest integer greater than or equal to q. The
precedence relationship becomes strict when ajk = 1.

tij The time it takes response team i to process response
task j.

Decision variables

xijh ¼ 1 if response team i completes task j at the end of period h;
0 otherwise:

n

zijk ¼ 1 if response team i completes task k after task j;
0 otherwise:

n
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Integer program formulation

min f x; zð Þ ¼
XI
i¼1

X
j2J

Xlj
h¼ej

cijxijh þ
XI
i¼1

X
j2J

X
k2Aij

sijkzijk

þ
XI
i¼1

XG
g¼l

XH
h¼dgþ1

pg h� dg
� �

xiMgh

ð1Þ

where Mg is the last task in engagement g.
The model contains five sets of constraints:
Availability of response teams and the requirement that

each response team must work no less than H�
i periods and

no more than Hþ
i periods within the planning horizon H.

Therefore, for each response team i we have:

X
j2J

Xlj
h¼ej

tijxijh � H�
i ð2Þ

X
j2J

Xlj
h¼ej

tijxijh � Hþ
i ð3Þ

Each response task must be processed by one response
team. Therefore for each task j we have the constraint

X
i2Ij

XIj
h¼ej

xijh ¼ 1 ð4Þ

A response task cannot start before its preceding
requirements are satisfied. Consequently for every task j

Xlk
h¼ek

X
i2Ik

h� FSkj
� �

xikh �
Xlj
h¼ej

X
i2Ij

h� tij
� �

xijh � 0

for all k 2 Bj

ð5Þ

A response team cannot process more than one task at a
time. A task j is processed by response team i in period h if
it is completed in period r where

h � r � hþ tij � 1; and ej � r � lj

Therefore, let uj ¼ max ej; h
� �

and vj ¼ min lj; hþ
�

tij � 1g, then for each response team i:

X
j2JiðhÞ

Xvj
r¼uj

xijr � 1 for all h ¼ 1; 2; . . . ;H ð6Þ

where Ji(h) is the set of tasks response team i can process in
period h.

Setup costs: Whenever a response team changes between
response tasks, a setup cost is incurred. The setup cost

depends on the response team and on the “from” and the
“to” tasks. Therefore, as response team i completes task j,
they might be assigned to a task k2Aij:

zijk �
Xlk
r¼qk

xikr � 0 for all k 2 Aij ð7:aÞ

where qk ¼ max ek ; ej þ tik
� �

X
k2Aij

zijk �
Xlj
r¼ej

xijr ¼ 0 for all i and j ð7:bÞ

The analysis of constraint set (7.b) indicates that the
response team, after completing their assignments, must
exit the project. Consequently, for each response team i we
add a dummy task, ∂i, at the end of the project. This task is
also added to the appropriate sets Aij, but not to the set Ji.
To guarantee that ∂i is the last task response team i is
assigned to, and that this task is scheduled after the
completion of all the engagements, the following con-
straints must be observed for each i2I:
XlMg

eMg

X
i2IMg

hxiMgh � Hxi@iH � 0 for all g 2 G ð7:cÞ

Analyzing constraint sets (7.a) and (7.b) further indicates
the possibility of cycling in the changeover decision
variable z. To eliminate cycling, the following constraint
sets must be enforced:

X
j2Ji

zijk � 1 for all i 2 I ; k 2 J
0
i ð7:dÞ

X
k2Ji

zijk � 1 for all i 2 I ; k 2 Ji ð7:eÞ

Xlk
r¼ek

r xikr �
Xlj
r¼ej

r xijr � t zijk �M 1� zijk
� �

for all k 2 Aij

ð7:fÞ
where, J

0
i ¼ Ji [ @i and M is a large number.

Constraint sets (7.a) and (7.b) are dependent on the set Aij.
Theoretically, the set Aij consists of all the activities in the set
Ji . However, early and late completion times, along with
precedence, can be used to reduce the size of such set. First,
a task k ε Aij only if ej þ tik � lk . Then, the interval for the
completion time of each element k ε Aij is determined. The
earliest completion time of k, denoted by θk, is given by

qk ¼ max ek ; ej þ tik
� �
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The latest completion time of task k ε Aij is lk, which is
determined as stated above.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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