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a b s t r a c t

Combinatorial auctions have become popular for shippers to secure transportation ser-
vices. It is, however, very difficult for truck carriers to solve bid generation and evaluation
problems in combinatorial auctions. The objective of this paper is to develop a bidding
advisor to help truckload (TL) carriers overcome such challenging problems in one-shot
combinatorial auctions. The proposed advisor integrates the load information in e-market-
places with carriers’ current fleet management plans, and then chooses the desirable load
bundles. In this paper, a TL carrier’s bid generation and evaluation problems in one-shot
combinatorial auctions are formulated as a synergetic minimum cost flow problem by esti-
mating the average synergy values between loads through the proposed approximation.
The conventional solution approaches for solving the minimum cost flow problems cannot
be applied to the synergetic network flow problem. Thus, we propose a column generation
approach to solve this specific network flow problem. The main contribution of this paper
is that a TL carrier adopting the proposed advisor can easily determine the desirable bid
packages without evaluating all 2n � 1 possible bundles of loads, where n is the number
of loads.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There are two major types of motor carriers: truckload (TL) carriers and less-than-truckload (LTL) carriers. Of particular
interest in this paper are the TL carriers which operate over irregular routes and perform direct line-hauls from origins to
destinations. As mentioned by Forkenbrock (1999), ‘‘The TL market is quite easy to enter because all that is needed is a dri-
ver, rolling stock, and a freight broker with whom to work.” Because of very low fixed cost and sensitivity to the balance of
the loads (empty repositioning is one of the major sources of cost for TL carriers), TL carriers tend to have slight diseconomies
of scale and exhibit significant economies of scope (see e.g., Caplice, 1996, p. 27). Economies of scope means, in this paper,
the total cost of a single carrier serving a set of loads is lower than that of multiple carriers serving the same set of loads.
Since TL carriers show significant economies of scope, combinatorial auctions are effective auction mechanisms for shippers
to procure TL transportation services.

Combinatorial auctions, where bidders are allowed to submit bids on combinations of products or services, can lead to
more economical allocations of products or services when there exist complementarities over goods or services, and the
source of the synergies varies for different bidders (see e.g., Pekeč and Rothkopf, 2003). Combinatorial auctions empowered
by the exponential growth of online procurement have recently received much attention in transportation and logistics
industries. For instance, Sears Logistics Services, Home Depot, Walmart Stores, Compaq Computer, and Limited Logistics Ser-
vices are using combinatorial auctions to procure logistics services (Elmaghraby and Keskinocak, 2003). Sears Logistics
. All rights reserved.
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Services in the early 1990s saved more than $84 million by running six combinatorial auctions over a 3-year period (Ledyard
et al., 2002). Limited Logistics Services saved $1.24 million in 2001 compared to the previous year (Elmaghraby and Kesk-
inocak, 2003). It is noted that the TL trucking companies in the above-mentioned practical applications bid for fixed-term
contracts instead of spot-market loads. So far, we have not found spot-market combinatorial auctions in action. However,
we strongly believe that they should be and will be adopted and prevail in TL procurement auctions in the future.

In spite of the above-mentioned attractive characteristics, it is known that determining the winners and constructing de-
sired bids in combinatorial auctions pose a big burden on the auctioneers and bidders. For instance, if n products or services
are posted, each bidder may submit bids for up to the theoretical 2n � 1 different combinations of goods or services. That is,
both the auctioneer’s winner determination problem, and the bidder’s bid construction and valuation problems are NP-hard
(Song and Regan, 2005). To solve the winner determination problem, some researchers have tried to develop efficient heu-
ristic algorithms (see e.g., Sandholm et al., 2005), while others have designed alternative auction mechanisms that restrict
bidders to bid on the set of permitted combinatorial bids (see e.g., Rothkopf et al., 1998). These restricted approaches,
although making the winner determination problem computationally manageable, might reduce the value of combinatorial
auctions because the bidders cannot perfectly express their synergetic values. Compared to the winner determination prob-
lem, the bid generation and valuation problems deserve much attention, and are the focus of this paper. Since, in practice, it
is not always worthwhile to prepare all possible packages in many settings (e.g., truckload transportation procurement), a
bidder needs only to submit ‘‘necessary” packages. Therefore, the techniques to extract desirable ones from a potentially
huge number of possible bid packages are required.

So far, there are only a few studies that focus on bid generation and evaluation problems. An et al. (2005) propose a model
to assess bundle values given pairwise synergies and develop bundle creation algorithms for selecting profitable bundle bids
based on the model. Their algorithms add as many profitable items as possible to a bundle given that the value of a bundle
increases, on average, linearly in the bundle size. Song and Regan (2005) propose a two-phase strategy to solve a TL vehicle
routing problem to generate bids. The first phase enumerates all routes satisfying routing constraints to generate candidate
bid packages. The second phase associates a binary variable with each candidate bid package, and solves a set partitioning
problem (bid construction problem) to determine desirable bids. Their bid construction problem assumes that all auctioned
lanes must be served, and the objective is to minimize total operation empty movement cost. As pointed out by Lee et al.
(2007), minimizing the total empty repositioning cost may not generate the right set of bid packages. They develop a TL vehi-
cle routing model to maximize the profit in order to simultaneously, instead of sequentially such as that in Song and Regan
(2005), solve the route (package) generation and selection problems. In addition, their model allows auctioned lanes to be
uncovered. Wang and Xia (2005) define first-order synergy as the complementarity between a set of auctioned lanes and a
set of booked lanes, and second-order synergy as the complementarity between a pair of sets of auctioned lanes and booked
lanes. They then demonstrate that the synergy of a bid package may depend on other packages that will be won. In addition,
they define the profit-based optimality criterion for a combinatorial bid, and based on some specific assumptions, change the
criterion into the cost-based optimality criterion. Based on the cost-based optimality criterion, they take the winning prob-
ability into account and show that the optimal solution to a vehicle routing problem may lead to inferior bid packages. Even
though they make so much effort to define different synergies and demonstrate the drawback of employing vehicle routing
models to generate bids, they eventually model their bid generation problem as a generic vehicle routing problem with time
windows. The routing problem assumes that all auctioned lanes must be served, and the objective is to minimize the total
transportation cost. Their elaborate definitions of different synergies are, however, not implemented in their bid generation
problem.

As noted earlier, only one of the above papers explicitly shows how to calculate the synergy of their suggested load bun-
dles. Besides, the future demands with high probability of being materialized (based on historical data) are also neglected in
the above literature, which may result in generating undesirable bids. Furthermore, for those who model their bid generation
problems as vehicle routing problems, only one allows auctioned items to be uncovered. The assumption that all auctioned
items must be covered may generate inferior bids due to neglecting the TL carrier’s current fleet management plan. Note that
although the aforementioned facts are neglected in the combinatorial TL auction literature, they have been considered in
some single-item TL auction studies (a special case of the combinatorial TL auction; see e.g., Figliozzi et al., 2006, 2007).
Moreover, all of the above studies consider only closed loop packages. Plummer (2003), after examining some real bids, how-
ever, points out that there are four common package patterns: (1) round trip/closed loop packages; (2) destination/inbound
packages; (3) origin/outbound packages; and (4) disparate packages. Therefore, in truckload procurement, the bid generation
problem is better formulated as time–space network based fleet management problems (see e.g., Powell et al., 1995) instead
of vehicle routing problems. It is worth noting that dynamic vehicle routing problems under auction settings have gained
growing attention in recent years. Figliozzi et al. (2006, 2007) model the auction problems considering optimal pricing, dy-
namic synergies, physical locations of loads and vehicles (current and future), and stochastic future demands. Figliozzi et al.
(2007) study carrier pricing decisions for the Vehicle Routing Problem in a Competitive Environment (VRPCE) that is an
extension of the Traveling Salesman Problem with Profits to a dynamic competitive auction environment. In the VRPCE,
the carrier must estimate the incremental cost of servicing new service requests as they arrive dynamically. Figliozzi
et al. (2006) quantify the opportunity costs in sequential transportation auctions focusing on a marketplace with time-sen-
sitive truckload pickup-and-delivery requests.

The purpose of this paper is to design a bidding advisor to help TL carriers (bidders) make bidding decisions in one-shot
combinatorial auctions for spot-market loads. The considered setting is as follows. Once learning some e-marketplace will
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conduct a one-shot combinatorial auction, the TL carrier will apply the bidding advisor to generate desirable bids and their
associated prices (or price ranges) by solving the embedded bid generation and evaluation problems based on the currently
known and estimated information within the planning horizon (1 week in this paper). The known and estimated information
includes the number of vehicles (assume that all vehicles are available for the first time at the beginning of the planning
horizon), the current locations of all vehicles, and the booked, forecasted and auctioned loads. The known and estimated
information corresponding to each (booked, forecasted, or auctioned) load consists of its pickup time and location, delivery
time and location, and revenue. In this paper, the revenue of pulling a load is defined as follows: each booked load has a
known revenue. The revenue of a forecasted load is calculated by its estimated value multiplied by its occurrence probability
assuming that both estimated value and occurrence probability can be obtained from historical data. The revenue of an auc-
tioned load is set to be its historically estimated value. Hence, the revenue of every type of load is treated as a deterministic
and static number. We emphasize and will show later that it is important to take both booked and forecasted (never con-
sidered in the related literature) loads into account when constructing the bid generation and evaluation problems. The rea-
sons are that when TL carriers are making bidding decisions, they might already have some loads contracted, and have some
future demands with high probability of being materialized (based on the historical data). Thus, TL carriers’ fleet manage-
ment plans must incorporate both booked and forecasted loads. Consequently, new (auctioned) loads will be considered only
if they can fit as seamlessly as possible into such fleet management plans. In short, our proposed bidding advisor tightly inte-
grates the load information in e-marketplaces with TL carriers’ current fleet management plans. Therefore, it can help TL car-
riers make effective bidding decisions.

From the above description, it is clear that the core components of the bidding advisor are the embedded bid generation
and evaluation problems. The problems should consist of the following major distinct characteristics as described from other
studies in the literature: (1) they do not pre-specify any aforementioned package patterns; (2) they take into account three
types of loads: booked, auctioned, and forecasted loads; and (3) they explicitly consider physical locations of different types
of loads, and thus different kinds of synergies between loads. In this paper, a TL carrier’s bid generation and evaluation prob-
lems in one-shot combinatorial auctions are formulated as a synergetic minimum cost flow problem instead of a vehicle
routing problem popular in the literature. The network flow problem takes into account all the above-mentioned crucial
characteristics of the bid evaluation and generation problems. The conventional solution approaches for solving minimum
cost flow problems, however, cannot be applied to the synergetic network flow problem. We therefore propose a column
generation approach equipped with a synergetic shortest path algorithm to solve the specific network flow problem. The
main contribution of this paper is that the TL carriers adopting the proposed advisor can easily and promptly determine their
desired bid packages without evaluating all 2n � 1 possible bid packages, where n is the number of loads.

The remainder of this paper is organized as follows: Section 2 describes how to transform the bid generation and eval-
uation problems in the one-shot combinatorial auction into a minimum cost network flow problem. Section 3 evaluates
the profit contributed by the activity on each link in the network. Section 4 models the synergetic minimum cost network
flow problem and proposes the solution algorithm to the problem. Section 5 first demonstrates the bidding advisor for bid-
ding in one-shot combinatorial auctions and then presents hypothetical numerical examples to test the performance of the
proposed advisor. Section 6 summarizes the major contributions and suggests extensions to this research.
2. Bid generation and evaluation problems

Naturally, TL carriers would only bid on the loads that are profitable under their current fleet management plans. It fol-
lows that the bid generation and evaluation problems can be considered as a fleet management optimization problem incor-
porating the load information in e-markets and the synergy effect among loads. The fleet management optimization problem
can be further approached using time–space networks. Therefore, this section shows how to formulate a TL carrier’s bid gen-
eration and evaluation problems in one-shot combinatorial auctions as a time–space-based network flow problem through a
fleet management optimization problem.

Each day, a TL carrier must assign vehicles to booked loads; move them empty to other locations to pick up booked or
expected loads; or hold them in the same locations until the next day. Obviously, a TL carrier’s operation plan is an infinite
horizon problem that is difficult to tackle. The most common method to approximate an infinite horizon problem is to solve
a finite horizon problem. This, however, brings up the problem of selecting an approximate planning horizon (Powell et al.,
1995). Several methods have been developed to cope with this problem. One popular approach proposed by Grinold and
Hopkins (1973) is to use salvage values. Based on this approach, TL carriers’ fleet management problems are solved using
finite horizon dynamic (time–space) networks (Powell, 1991). Here, we first summarize and briefly describe the procedures
as proposed in Powell (1991) for constructing a time–space network (called standard time–space network hereafter) to mod-
el a TL carrier’s fleet management problem. We then show how to build a new type of time–space network in order to solve
our proposed bid generation and evaluation problems based on the standard network.

A TL carrier’s operation area is divided into a set of regions, and the planning horizon H is divided into discrete intervals.
Note that the planning horizon must allow the TL carrier to take into account forecasted events for a reasonable period of
time into the future. Each time interval is generally set to 1 day. However, it is noted that, as mentioned in Frantzeskakis
and Powell (1990), such a setting can be easily relaxed, and is made only to simplify the presentation of the problem. Then,
to form a time–space network, let a node represent a particular region at a point in time, and a link connect one node to
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another accessible node. Different types of links, characterized by costs and flow upper bounds, represent different activities.
Since a load is characterized by its pickup location and time and its delivery location and time, it can be naturally represented
as a link in the time–space network. In addition, the locations of a vehicle at different points in time can be depicted by the
nodes in the time–space network. All vehicles depart from the network over the salvage links and out of the supersink. The
supersink acts as a convergent point since we do not know a priori where the vehicles will end up. The salvage links perform
the function of moving all the flows out of the supersink, and provide an opportunity to place costs and bounds on the flows
that end in each region.

Based on the above-described standard time–space network, we construct a new type of time–space network to solve the
bid generation and evaluation problems. Let R be the set of regions with cardinality |R|, and si and ŝi represent, respectively,
the supply of vehicles initially at region i and the forecasted supply of vehicles at region i at the end of planning horizon H.
Assume that all vehicles are available at the beginning of the first time period (we refer to the beginning of the time period
when a time period is mentioned); thus,

PjRj
i¼1si ¼

PjRj
i¼1ŝi. Obviously, a link cannot represent more than one activity. For in-

stance, once a link represents a load serviced by a vehicle, it cannot simultaneously represent empty movements used by
other vehicles. Thus, it is necessary to create multiple links for different purposes; from here, our proposed time–space net-
work significantly deviates from the standard one. Here, each link is characterized by triplet parameters (flow lower bound,
flow upper bound, and unit net cost (negative profit)) and represents one of the seven different activities: booked load, fore-
casted load, auctioned load, empty movement, holding, salvage, and dummy.

To handle the problem of multiple activities on the same link, we let the loads across the link with the same type and the
same profit be represented by the same link. For example, if there are three types of loads (auctioned, booked, and forecasted
loads) across link i, j, and the loads belonging to the same type have the same profit, then we duplicate three nodes, say j1, j2

and j3, and six links (i, j1), (j1, j), (i, j2), (j2, j), (i, j3), and (j3, j). Let link (i, j1) represent the activity of pulling the auctioned loads,
and set the triplet parameters to ð0; aij;�ua

ijÞ, where aij represents the number of auctioned loads, and ua
ij represents the profit

of pulling an auctioned load across link (i, j). The lower bound is set to 0 and upper bound is set to aij because some auctioned
loads may be unprofitable under current fleet deployment. Likewise, let link (i, j2) represent the activity of pulling the booked
loads, and set the triplet parameters to ðbij; bij;�ub

ijÞ where bij denotes the number of booked loads, and ub
ij represents the

profit of pulling a booked load across link (i, j). Since all booked loads must be served, both the lower and upper bounds
are set to bij. Finally, let link (i, j3) represent the activity of pulling the forecasted loads, and set the triplet parameters to
ðfij; fij;�uf

ijÞ where fij denotes the number of forecasted loads, and uf
ij represents the profit of pulling a forecasted load across

link (i, j). All forecasted loads (implying future booked loads) must be served; thus, both the lower and upper bounds are set
to fij. The function of links (j1, j), (j2, j), and (j3, j) is simply to connect nodes j1, j2, and j3 to node j. Thus, we call those links
dummy links and set the triplet parameters (0,1, 0) to all dummy links. Clearly, if the load of a certain type has a different
profit from other loads sharing the same link and the same type, we can simply perform the above duplication procedures to
handle it. The original link (i, j) is used to represent repositioning movements, and the triplet parameters are set to
ð0;1;�ue

ijÞ, where ue
ij denotes the profit of repositioning an empty vehicle across link (i, j). Each holding link (i, j) is associated

with triplet ð0;1;�uh
ijÞ where uh

ij represents the negative overnight cost. Finally, let v represent the supersink, and us
t denote

the salvage value of a vehicle at region t at the end of planning horizon H. Then, each salvage link (t, v) is associated with
triplet ðŝt; ŝt ;�us

tÞwhere both the lower and upper bounds are set to be equal to ŝt , the forecasted supply of vehicles in region
t at the end of planning horizon. The salvage link records the expected profit incurred by a vehicle once in region t at the end
of planning horizon H; such a setting implies a constant marginal profit of a vehicle, and also no gain for excess vehicles. Yet
to be defined is the profit of performing the activity on each type of link; that is, the values of ua

ij;u
b
ij;u

f
ij;u

e
ij;u

h
ij, and us

t . We will
elaborate how to evaluate the profits corresponding to different types of links in the next section. An example of the above-
defined time–space network is shown in Fig. 1.

From the network shown in Fig. 1, it is easy to see that the bid generation and evaluation problems can be embedded into
the fleet management problem solved using the constructed time–space network. That is, the TL carriers will only bid for the
auctioned loads that optimize their fleet management plans. The process also demonstrates the possibility of using the con-
structed network to model the fleet management problem as a network flow problem. To do so, however, we must first de-
velop the techniques to calculate the synergy values between loads over the network. Hence, in the next section, we will
introduce an approach of applying the ‘‘average synergy” concept to determine the synergy values. Then, we show how
to model the fleet management problem as a network flow problem by way of the ‘‘average synergy” concept and describe
the corresponding solution algorithm in Section 4.
3. Evaluation of the profit contributed by the activity on each link

As we know, the connection to follow-on loads is one of the major sources of cost for TL carriers, and there may exist
synergy between consecutive loads. Therefore, to evaluate the profit (net cost) contributed by the activity on a link, we must
take the potential synergy effect between the current activity and its follow-on activity into account; the synergy effect is
ignored in most, if not all, fleet management literature. It is, however, not trivial to estimate the synergy value of a load bun-
dle with arbitrary combination of auctioned loads. Theoretically, the value should be a function of all ‘‘environmental vari-
ables” (other loads (inside and outside the bundle), all vehicles, and so on). Obviously, it is very difficult, if not impossible, for
a TL carrier to know the functional form. Therefore, we solve the problem from another angle. The underlying ideas are that
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the TL carrier’s optimal fleet management plan will only choose the profitable auctioned loads, and will lead to the desirable
load bundles by grouping the auctioned loads assigned to the same vehicle; that is, the selected load bundles are mutually
exclusively embedded in different vehicle tours. Thus, it is clear that if we can find a way to compute the synergy values
between loads during the course of solving the TL carrier’s fleet management problem, we can avoid evaluating the entire
2n � 1 potential bundles with arbitrary load combinations to generate desirable load bundles.

An et al. (2005) propose a generic synergy model to generate bundle values. Their model actually calculates the average
pairwise synergy and assumes that the synergy of a bundle increases linearly in the bundle size. The model is as follows:
VB ¼ jBj � ACB
where VB represents the value of bundle B, |B| is the size of B, and ACB is the average unit contribution of B (i.e., the average
item value in B plus the average pairwise synergy value in B). They admit that they do not test and validate the model, since
real data from combinatorial auctions are generally not publicly available. The average pairwise synergy concept and the
linear assumption may oversimplify the estimation of synergy values, but they make it possible to model the fleet manage-
ment problem (thus, also the bid generation and evaluation problems) as a minimum cost flow problem. The solution algo-
rithm to the network flow problem can easily identify the desirable bid packages without evaluating the entire 2n � 1
potential bundles with arbitrary load combinations. This argument will be clearly shown in the next section. By applying
the idea of average pairwise synergy, the pairwise synergy between two graphically consecutive loads is defined as S, the
one between an empty move and a follow-on load is defined by bS(0 < b < 1), the one between a load and a follow-on empty
move is set to zero, and the one between two consecutive empty moves is also set to zero. The rationale behind the defini-
tions of the pairwise synergy under different scenarios is elaborated as follows. Due to the economies of scope, there exists
synergy represented by S between two consecutive loads. In addition, a follow-on load can avoid a deadhead trip and thus
create some degree of synergy for a vehicle currently moving empty. The value of the synergy is obviously less than S; we use
parameter b to restrict the magnitude of the value that is specified by carriers. The value of bS is called partial pairwise syn-
ergy hereafter. Moreover, a follow-on empty move creates no synergy whether the vehicle is currently loaded or empty
moved. In the rest of this section, we describe the formulas to estimate transportation costs and discuss the estimates of
transportation revenues. Finally, based on the estimated costs and revenues, we demonstrate the transportation profits (rev-
enue minus cost) with respect to different activities.

To construct the cost models, let ca
ij; cb

ij and cf
ij denote the costs of pulling an auctioned, a booked, and a forecasted load,

respectively, across link (i, j); let ce
ij represent the cost of empty repositioning a vehicle across link (i, j); and let ch

ij denote the
overnight holding cost. In addition, to record the synergy effect between the activities on two consecutive links performed by
the same vehicle, we let link (j, k) indicate the next link traversed after link (i, j), and use an indicator variable aj to track the
activity on link (j, k). That is, aj (the subscript j denotes the head node of link (i, j) and also the tail node of link (j, k)) takes the
value of 1 if link (j, k) is associated with a loaded movement, and 0 if link (j, k) is associated with an empty movement or if
node j is the eventual destination of the vehicle at the end of planning horizon H. This variable plays an important role in the
synergetic shortest path algorithm detailed in Section 4. The formulas for estimating the costs of different activities on link
(i, j), considering the synergy effect, are shown as follows:
ce
ij ¼ dijCD � ajbS ð1Þ

ca
ij ¼ cb

ij ¼ cf
ij ¼ dijCD þ 2TCT � ajS ð2Þ
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Where dij is the travel time from node i to node j, CD the operation cost per unit time, CT the loading/unloading cost per unit

time, T the time needed to load/unload a load, aj
1 if link ðj; kÞ is associated with a loaded movement
0 otherwise; or node j is the destination of the vehicle

�
, S the pairwise

synergy, and b is a TL carrier specified constant (0 < b < 1).
The estimation of transportation costs is definitely not trivial (see, e.g., Higginson, 1993). Since accurately estimating the

costs is not the major concern of this paper, the goal of formulas (1) and (2) is to capture the main structures of the costs and
to show the different cost structures between pulling a load and empty repositioning a vehicle. Accordingly, ca

ij, cb
ij; cf

ij, and ce
ij

are considered as generalized costs. For expression convenience, we assume that loading time is equal to unloading time, and
that both are independent of load size. Here, ce

ij in Eq. (1) is defined as the hauling cost (without loading/unloading cost)
minus the potential partial pairwise synergy of connecting to a follow-on load. The term ‘‘potential” reflects the unknown
status of the follow-on demand that is controlled by the indicator variable aj. In addition, aj is paired with partial synergy
bS in Eq. (1) since link (i, j) denotes an empty movement. On the other hand, ca

ijð¼ cb
ij ¼ cf

ijÞ is defined as the hauling cost plus
the loading and unloading costs minus the potential pairwise synergy of connecting to a follow-on load. Likewise, aj is paired
with S in Eq. (2) since link (i, j) denotes a loaded movement. As for ch

ij, the cost of holding a vehicle overnight in the same
location, we treat the drivers’ salaries of the TL carrier as a sunk cost and set the holding cost to zero, which is also the treat-
ment in most of the TL carrier operation literature (see, e.g., Frantzeskakis and Powell, 1990). By combining the parameter b
and the indicator variable aj with the pairwise synergy S, the two cost formulas (1) and (2) can explicitly demonstrate the
effect of economies of scope. Eqs. (1) and (2) also reflect that the values of ca

ij; cb
ij; cf

ij, and ce
ij cannot be individually identified,

but depend on the activity on its follow-on link, say link (j, k); a transportation network with this characteristic is called a
synergetic network in this paper. Thus, we call the minimum cost flow problem constructed in the preceding section the syn-
ergetic minimum cost flow problem.

Eqs. (1) and (2), dealing with the single-link case, can be easily extended to handle multiple consecutive-link scenarios.
Consider that a vehicle sequentially services two demand links associated with loaded or empty movements. Since
ca

ij ¼ cb
ij ¼ cf

ij, for convenience, let cl
ij represent them. If two loads, one from node 1 to node 2 and the other from node 2 to

node 3, are transported sequentially by the same vehicle, then the cost of servicing these two loads is equal to
ðcl

12 þ cl
23Þ ¼ ðd12 þ d23ÞCD þ 4TCT � ð1þ a3ÞS. If the vehicle first services a load across link (1, 2) and moves empty through

link (2, 3), then the cost of servicing these two demand links is equal to ðcl
12 þ ce

23Þ ¼ ðd12 þ d23ÞCD þ 2TCT � a3bS. On the
other hand, if the vehicle moves empty through link (1, 2), and then services a follow-on load across link (2, 3), then the cost
is equal to ðce

12 þ cl
23Þ ¼ ðd12 þ d23ÞCD þ 2TCT � ðbþ a3ÞS. Finally, if the vehicle moves empty through two consecutive links

(1, 2) and (2, 3), then the cost is equal to ðce
12 þ ce

23Þ ¼ ðd12 þ d23ÞCD � a3bS. The calculation of the costs can be easily extended
to the cases where a vehicle continuously serves more than two demand links.

To accurately calculate the revenues of pulling a booked, a forecasted, and an auctioned load is a challenging and com-
plicated task, particularly in a competitive and dynamic environment (Figliozzi et al., 2007). Since it is not the focus of this
paper, we briefly describe the characteristics of the revenues associated with different loads. The revenues of pulling an auc-
tioned, a booked, and a forecasted load from node i to node j are denoted as ca

ij; cb
ij and cf

ij, respectively, and are treated as
deterministic and static numbers; the revenues of an empty move and holding a vehicle are zero. The value of cb

ij is obviously
a known number; the value of cf

ij represents an expected revenue (estimated revenue multiplied by occurrence probability);
and the value of ca

ij represents a historically estimated value. We can obtain a reasonable estimate on the expected revenue of
a forecasted load based on historical data. However, to estimate the revenue of an auctioned load is a major research issue on
its own. For instance, a complete estimation of the value of an auctioned load should take both the economies of scope and
the opportunity cost into consideration. This paper, however, does not explicitly consider the opportunity cost. We refer the
reader to Figliozzi (2004), Yan et al. (1995), and Powell et al. (1988) in which the concept of the opportunity cost is applied to
estimate load values. Therefore, the bid packages and their associated bid prices obtained by applying our proposed bidding
advisor may not provide ‘‘optimal solutions” in complex practical situations.

Based on the above estimations of costs and revenues, we can calculate the profits (revenue minus cost) with respect to
different activities; that is, the values of ua

ij;u
b
ij;u

f
ij;u

e
ij, and uh

ij. The profits of pulling an auctioned, a booked, and a forecasted
load on loaded link (i, j) are equal to ua

ij ¼ ðca
ij � ca

ijÞ;ub
ij ¼ ðcb

ij � cb
ijÞ and uf

ij ¼ ðc
f
ij � cf

ijÞ, respectively. The profit of repositioning a
vehicle across repositioning link (i, j) is equal to ue

ij ¼ ð�ce
ijÞ. In addition, the negative holding cost on holding link (i, j), uh

ij, is set
to zero. How to estimate the value of us

t , the salvage value of a vehicle at region t at the end of planning horizon H, remains to
be explained. There have been a few good approaches for estimating us

t (see e.g., Frantzeskakis and Powell, 1988). It is known
that the major difficulty of managing fleets dynamically is that the demands are uncertain and the level of uncertainty in-
creases further into the future, which makes the estimation of ŝt , and thus us

t , very hard. Eventually, we apply an approach
analogous in spirit to the one proposed in Frantzeskakis and Powell (1988) to calculate the value of us

t , where us
t is set to be a

function of ŝt , the vehicle supply of region t at the end of planning horizon H (i.e., us
t ¼ f ðŝtÞ). The unit profit with respect to

each type of link is summarized and shown in Table 1.
4. The synergetic minimum cost flow problem and its solution algorithm

In this section, we first model the synergetic minimum cost network flow problem (bid generation and evaluation prob-
lems), and then propose a solution algorithm to the problem.



Table 1
Unit link profit

Type of links Unit profit

Holding link (i, j) uh
ij ¼ 0

Repositioning link (i, j) ue
ij ¼ ð�ce

ijÞ
Loaded (booked) link (i, j) ub

ij ¼ ðcb
ij � cb

ijÞ
Loaded (forecasted) link (i, j) uf

ij ¼ ðc
f
ij � cf

ijÞ
Loaded (auctioned) link (i, j) ua

ij ¼ ðca
ij � ca

ijÞ
Salvage link (t, v) us

t ¼ f ðŝtÞ
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4.1. The path-based formulation of the network flow problem

Let G = (V, E) be a directed synergetic network defined by a set V of nodes and a set E of directed links. Let v e V denote the
supersink. Furthermore, let A, B, C � E be the set of auctioned links, booked and forecasted links, and salvage links, respectively.
Note that since all booked and forecasted loads have the same structure of triplet parameters (flow lower bound, flow upper
bound, and unit net cost (negative profit)), they are considered as a whole in the synergetic network. Each link (i, j) e E has an
associated capacity denoting the maximum amount that can flow on the link, and a lower bound denoting the minimum
amount that must flow on the link. Each node i e V is associated with an integer number b(i) representing its supply/demand
of vehicles. If b(i) > 0, node i is a supply node with a supply of b(i); if b(i) < 0, node i is a demand node with a demand of�b(i); if
b(i) = 0, node i is a transshipment node. Let xij represent the flow on link (i, j) e E, and�uij denote the net cost (negative profit)
per unit flow on link (i, j); that is, depending on the activity corresponding to link (i, j), uij may take the value of ua

ij; ub
ij; uf

ij; ue
ij, uh

ij

or us
i (if j � v; that is, if j is the supersink). The proposed synergetic minimum cost flow problem is formulated as follows:
Minimize
X
ði;jÞ2E

ð�uijÞxij ð3Þ

Subject to
X

fj:ði;jÞ2Eg
xij �

X
fj:ðj;iÞ2Eg

xji ¼ bðiÞ 8i 2 V ð4Þ

0 6 xij 6 aij 8ði; jÞ 2 A ð5Þ
xij ¼ bij 8ði; jÞ 2 B ð6Þ
xiv ¼ ŝi 8ði;vÞ 2 C ð7Þ
0 6 xij 6 U 8ði; jÞ 2 E n ðA [ B [ CÞ ð8Þ
The objective is to minimize net total cost (negative total profit). Constraints (4) are mass balance constraints. Constraints
(5)–(7) are flow bound constraints. Constraints (4) ensure that only the profitable auctioned loads will be picked. Constraints
(6) ensure that all booked and forecasted loads are serviced. Note that for conciseness, bij is used to represent both fij and bij.
Constraints (7) ensure that the expected vehicle supply at the end of planning horizon is met. Note that constraints (8) are
actually redundant because U represents a ‘‘very large” positive number; they are included here for completeness.

The consideration of potential pairwise synergy between two consecutive vehicle operations in network flow problem
(3)–(8) results in that the problem violates both Bellman’s Principle of Optimality (Bellman, 1958) and direction reversibility
of link cost that is the basis to build a residual network (Ahuja et al., 1993). Most, if not all, solution techniques to the link
flow-based minimum cost flow problems build on these two standard assumptions, and thus they cannot be applied to prob-
lem (3)–(8). Therefore, we reformulate the minimum cost flow problem as a path-based network flow problem based on the
flow decomposition theorem (see e.g., Ahuja et al., 1993). That is, each link flow is represented as path and cycle flows; how-
ever, since the synergetic network is acyclic due to the specific properties of time–space networks, each link flow can be sim-
ply represented as path flows.

To construct the path-based minimum cost flow problem, let dij(P) equal 1 if link (i, j) is contained in path P, and be 0
otherwise; let O denote the set of supply nodes; let D denote the set of demand nodes; and let Pmn denote the set of paths
connecting node m e O to node n e D. Obviously, the flow xij on link (i, j) equals the sum of flows f(P) for all paths P that
contain this link. That is,
xij ¼
X
m2O

X
n2D

X
P2Pmn

dijðPÞf ðPÞ
Let cðPÞ ¼
P
ði;jÞ2Eð�uijÞdijðPÞ ¼

P
ði;jÞ2Pð�uijÞ represent the per unit cost of flow on path P, let sm be the supply of vehicles at

node m, and let dn be the demand of vehicles at node n. Then, the path flow formulation of the proposed synergetic minimum
cost flow problem can be represented as follows:
Minimize
X
m2O

X
n2D

X
P2Pmn

cðPÞf ðPÞ ð9Þ

Subject to
X
n2D

X
P2Pmn

f ðPÞ ¼ sm 8m 2 O ð10Þ
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X
m2O

X
P2Pmn

f ðPÞ ¼ dn 8n 2 D ð11Þ

X
m2O

X
n2D

X
P2Pmn

dijðPÞf ðPÞ 6 aij 8ði; jÞ 2 A ð12Þ

X
m2O

X
n2D

X
P2Pmn

dijðPÞf ðPÞ ¼ bij 8ði; jÞ 2 B ð13Þ

X
m2O

X
n2D

X
P2Pmn

divðPÞf ðPÞ ¼ ŝi 8ði;vÞ 2 C ð14Þ

f ðPÞP 0 8m 2 O; n 2 D; P 2 Pmn ð15Þ
Constraints (10) and (11) are mass balance constraints. Constraints (12)–(14) are flow bound constraints. Constraints (12)
indicate that only those profitable auctioned loads are selected. Constraints (13) ensure that all booked and forecasted loads
are serviced. Constraints (14) ensure that the expected vehicle supply at the end of the planning horizon is met.

Problem (9)–(15) has a single constraint for each link ði; jÞ 2 A [ B [ C stating that the sum of the path flows passing
through the link must satisfy the lower bound and capacity constraint. Moreover, the problem has a single constraint for
each origin m and destination n indicating that the total flow on all the paths originating from the source node m must equal
the supply sm, and that the total flow on all the paths entering the sink node n must equal the demand dn. Therefore, problem
(9)–(15) contains |O| + |D| + |A| + |B| + |C| constraints (in addition to the nonnegativity constraints imposed on the path flow
values), where |(�)| represent the cardinality of set (�).

4.2. Solution techniques

Most solution techniques in the literature for minimum cost network flow problems rely on the concept of residual net-
works (see, e.g., Ahuja et al., 1993). These algorithms share a commonality of repeatedly solving shortest path problems in
residual networks. However, the building of a residual network is based on the assumption of direction reversibility of link
cost that is violated in the synergetic network. Therefore, these residual-network-based algorithms cannot be applied to the
proposed synergetic minimum cost network flow problem. The network simplex algorithm, another main type of solution
technique, does not rely on the concept of residual networks but on the concept of spanning tree solutions. However, the
network simplex algorithm still cannot be applied to the proposed problem because the link-based procedure of updating
the tree also cannot cope with the synergetic property.

Problem (9)–(15) has a variable for each path connecting a source node to a destination node; there may exist a huge
number of paths between an origin–destination pair. The problem consists of |O| � |D| origin–destination pairs, where |O|
and |D| represent the number of supply nodes and demand nodes, respectively. Therefore, the problem typically consists
of a large number of variables, and the number of variables grows exponentially with the size of the network. For such a
large-scale linear program with a large number of variables, an efficient solution procedure called column generation can
be applied to solve the problem (see, e.g., Barnhart et al., 1998). The key idea in column generation method is to generate
columns (paths) only as needed, and thus only a small fraction of all feasible paths are generated instead of explicitly enu-
merating all feasible paths. Before going into the procedures of column generation, we will first introduce the preparatory
work needed to apply the technique.

Let am(m e O), bn(n e D), hij((i, j) e A), xij((i, j) e B) and qiv((i, v) e C) be the dual variables associated with constraints (10)–
(14), respectively. The dual of problem (9)–(15) is then as follows:
Maximize
X
m2O

amsm þ
X
n2D

bndn �
X
ði;jÞ2A

hijaij þ
X
ði;jÞ2B

xijbij þ
X
ði;vÞ2C

qiv ŝi ð16Þ

Subject to am þ bn þ
X

ði;vÞ2C\P

qim þ
X
ði;jÞ2B\P

xij �
X
ði;jÞ2A\P

hij 6 cðPÞ8m 2 O; n 2 D; P 2 Pmn ð17Þ

am free 8m 2 O ð18Þ
bn free 8n 2 D ð19Þ
hij P 0 8ði; jÞ 2 A ð20Þ
xij free 8ði; jÞ 2 B ð21Þ
qiv free 8ði;vÞ 2 C ð22Þ
Assume that path flow vector F(P) is a feasible solution to problem (9)–(15), and let (a, b, h, x, q) be the associated dual solu-
tion to problem (16)–(22). Based on linear programming duality, the primal solution F(P) is optimal if and only if the reduced
cost �cP is nonnegative; that is,
�cP ¼ cðPÞ þ
X
ði;jÞ2P\A

hij �
X
ði;jÞ2P\B

xij �
X

ði;vÞ2P\C

qiv � am � bn P 0 8m 2 O; n 2 D; P 2 Pmn
Thus, to check the optimality of F(P), we can solve the following pricing problem:
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z ¼ min
m2O;n2D;P2Pmn

cðPÞ þ
X
ði;jÞ2P\A

hij �
X
ði;jÞ2P\B

xij �
X

ði;vÞ2P\C

qiv � am � bn

 !
ð23Þ
If z P 0, then F(P) is an optimal solution; otherwise, if any reduced cost is negative, the approach will introduce the variable
(column) associated with most negative reduced cost into the basis in place of one of the current basic variables. The pricing
problem can be actually solved by a synergetic shortest path algorithm on the modified network defined later. The explana-
tion is as follows. The value of ½cðPÞ þ

P
ði;jÞ2P\Ahij �

P
ði;jÞ2P\Bxij �

P
ði;vÞ2P\Cqiv � denoted as ĉðPÞ in the right-hand side of Eq.

(23) can be considered as the per unit cost of flow on the path P with respect to the modified network. In the modified net-
work, we impose extra cost hij on each link (i, j) e A,�xij on each link (i, j) e B, and �qiv on each link (i, v) e C. It is noted that
the modified network is still a synergetic network. Consequently,
ĉðPÞ ¼ min
m2O;n2D;P2Pmn

cðPÞ þ
X
ði;jÞ2P\A

hij �
X
ði;jÞ2P\B

xij �
X

ði;vÞ2P\C

qiv

 !
is the length of the shortest path connecting the source node m to the sink node n, with respect to the modified costs. There-
fore, we can use a synergetic shortest path algorithm detailed below to easily solve the pricing problem (23) and locate paths
that price out.

Bellman’s Principle of Optimality (Bellman, 1958) may not hold for path-finding problems in the synergetic network. The
standard shortest path algorithms (see, e.g., Ahuja et al., 1993) build on the principle, and thus cannot be applied to locate
shortest paths in such a network. Hence, we propose a synergetic shortest path algorithm. The input to the algorithm is a
synergetic network G, a specified origin node s, and a specified destination node r. Let wij be an indicator variable such that
wij = 1 if there exists a load across link (i, j); otherwise, wij = 0. The algorithm can be summarized as follows:

(1) Create an empty priority queue (heap).
(2) Insert the trivial path to node s into the priority queue with key = 0. Store this path in the table under node s.
(3) Remove the highest priority path from the priority queue. Assume node i is the destination node of the path, and let

pred(i) represent the predecessor of node i. Denote this path as q.
(4) Extend path q from i to all other nodes, j, that are adjacent to it. This creates a set of trial paths whose elements we will

denote by qj because they are extensions of path q and they terminate at node j.
(5) For each trial path qj associated with the last link (i, j), compare it to all other paths in the table that terminate at node j

denoted as path q0j associated with the last link (pred(j), j).
(a) If wij 6 wpredðjÞj and path qj is dominated (using the values of keys), discard path qj.
(b) If wij P wpredðjÞj and path qj dominates path q0j, delete path q0j from the priority queue and from the table. Also delete

from the priority queue and the table any path that is an extension of q0j to some other nodes.
(c) If path qj dominates another path, or if no comparisons are possible, add path qj to the priority queue, with a key

equal to ĉðqjÞ.

(6) If the priority queue is not empty, return to step 2; otherwise, terminate. The paths in the table under node r are the

shortest paths.
Proposition. The synergetic shortest path algorithm generates all optimal paths between a specified origin node s, and a specified
destination node r on a synergetic network G.

Proof. The algorithm is implemented as a generation of best-first search (or priority-first search). Let link (i, j) with indicator
variable wij, and link (pred(j), j) with indicator variable wpred(j)j be the last links constituting partial path qj, and partial path q0j,
respectively. Since the Bellman’s Principle of Optimality may not hold in the synergetic network, the algorithm does not
prune the partial path, say q0j, that has larger travel cost unless either of the following two conditions is met: (1) the endpoint
j is the destination r; (2) wij P wpredðjÞj. Condition (1) is obvious and does not need further explanation. Based on Eqs. (1) and
(2), once wij P wpredðjÞj and the travel cost of path qj is smaller than that of path q0j, the travel cost of any path extending from
path q0j, say (q0j [ qjv , will be always larger than that of path (qj [ qjv ), where qjv denotes a partial path from node j to node v.
Therefore, partial path q0j can be discarded from further consideration. Obviously, the synergetic shortest path algorithm
equipped with the aforementioned pruning mechanism will not pre-prune any optimal path, and thus will generate all opti-
mal paths. h

To implement the column generation approach, we call problem (9)–(15) the master problem (MP), and when it includes
only partial columns it is called restricted master problem (RMP). The column generation method used to solve problem (9)–
(15) is summarized as follows:

Step 1. Determine an initial feasible RMP.
Step 2. Solve the current RMP.
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Step 3. Solve the pricing problem. If z P 0 then stop; otherwise, add the column with the most negative reduced cost to
the RMP, form a new current RMP, and go to Step 2.

Quite often, determining an initial feasible RMP in Step 1 is not trivial. However, as mentioned in Barnhart et al. (1998),
Savelsbergh and Sol (1998), if such an initial restricted master problem exists, it can always be found using a two-phase ap-
proach similar in spirit to the two-phase method embodied in simplex methods to find an initial basic feasible solution.

Let M ¼
P

m2Osm ¼
P

n2Ddn (the number of vehicles). Then, after solving problem (9)–(15), the output will contain M
paths. Each path corresponds to a vehicle, and may form a load package if the path contains at least one auctioned load. Note
that the loads may connect or disconnect to each other. It is easy to check that all load packages are mutually exclusive. Con-
sequently, applying the proposed network flow technique to prepare the bids, the TL carrier, instead of valuing up to ð2n � 1Þ
packages, only needs to consider submitting at most k ¼minfM;ng mutually exclusive bid packages, where M denotes the
number of vehicles and n is the number of auctioned loads.

So far, we have not yet explicitly explained how to determine the bidding prices of suggested load packages. Here, we
show that the result of implementing the column generation method to solve problem (9)–(15) can be further used to gen-
erate bid price ranges for load packages. The idea is as follows. Let RMP* represent the last RMP generated by implementing
the column generation approach, and let F(P*) be the corresponding optimal path flow vector associated with the net path
cost (negative profit) vector C(P*). Denote SP� ¼ fP1; . . . ; Pkg# P� as the set of paths containing load bundles, and let
SCðP�Þ ¼ fcðP1Þ; . . . ; cðPkÞg# CðP�Þ be the corresponding set of net path costs. In addition, let c(Bi) represent the revenue of
the load bundle Bi embedded in Pi 2 SP�; that is, cðBiÞ ¼

P
l2Bi

cl where l represents an auctioned load and cl denotes its asso-
ciated revenue (recall that, in this paper, the revenues of auctioned loads are treated as known). We can first conduct sen-
sitivity analysis on RMP* to obtain the range of c(Pi) in the objective function such that FðP�Þ remains optimal. Let the range
be cl

i 6 cðPiÞ 6 cu
i . Then, the bid price range for load bundle Bi can be derived from the values of c(Bi), c(Pi), cl

i and cu
i . Note that

elementary sensitivity analysis holds only for a single coefficient change, with all other data held constant. To simulta-
neously obtain the bid price ranges for more than one load bundle, we can conduct the 100% rule or parametric multiple-
change analysis to track the effect when multiple objective function coefficients are changing. Since the above-mentioned
analysis techniques are discussed in most OR textbooks, they are skipped here.
5. The bidding advisor and empirical analysis

In this section, we first detail the proposed bidding advisor for assisting TL carriers in preparing bids when they partic-
ipate in one-shot combinatorial auctions. Then, we conduct experiments to analyze the performance of the advisor. The
developed bidding advisor has two major advantages: (1) it tightly integrates the load information in the e-markets with
TL carriers’ current fleet management plans, and thus makes the proposed bidding strategies very effective; and (2) it re-
moves the great burden of evaluating the huge number of possible bid packages from the TL carriers, and thus makes the
TL carriers capable of promptly making bidding decisions.

The bidding advisor for one-shot combinatorial auctions is shown in Fig. 2. The core design ideas behind the advisor have
been described in Section 3. Fig. 2 applies a flow chart to delineate the whole framework of the advisor. First, the input data
to the advisor includes the costs of empty repositioning vehicles and pulling loads, the known revenues of pulling booked
loads, the expected revenues of transporting auctioned and forecasted loads, the pairwise synergy value, and the marginal
values of vehicles in different regions at the end of planning horizon. In addition, the link and node data constituting a phys-
ical network are also required. Based on the above information, the advisor creates a synergetic network (see Section 3 for
details). The bid generation and evaluation problems are then formulated as a synergetic minimum cost flow problem
embedded in the synergetic network. The problem is solved by the column generation approach equipped with the syner-
getic shortest path algorithm. The result of implementing the column generation method is then used to generate bid prices
(or price ranges) corresponding to suggested load bundles (see Section 4 for details). The output shows M (the number of
vehicles available at the beginning of the planning horizon) paths. The auctioned loads on the same path constitute a bid
package; therefore, the output provides up to k = min {M, n} bid packages, where n denotes the number of auctioned loads.
Finally, submit optimal bids to the target one-shot combinatorial auction. The proposed bidding advisor can substantially
remove the burden of making bidding decisions from those TL carriers who participate in one-shot combinatorial auctions.
In the remainder of this section, we present the results of experiments to analyze the performance of the proposed bidding
advisor.

It has been pointed out that real data from combinatorial auctions are generally not publicly available (An et al., 2005).
Thus, to test the proposed bidding advisor, we construct several hypothetical data sets. We first consider a case that a car-
rier (bidder) owns a fleet of 20 vehicles serving 48 loads in 15 regions within one week (planning horizon). Then, to eval-
uate the computational limitations of the column generation solution approach, we consider larger-size problems in which
a TL carrier may own a fleet of 100, 250, 500, 750, or 1000 vehicles serving loads with a double size of corresponding fleet
between 20, 40, or 60 regions within 1 week (planning horizon). The determination of the ratio of loads per vehicle per
week is based on the information that the typical ratio in practice ranges from 2 to 2.5 (Powell, 1996); thus, we set
the ratio in the small-size problem to 2.4, and in every large-size problem to 2.0. In each case, the number of vehicles
available in each region at the beginning of the planning horizon is randomly generated. Assume that the carrier’s
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Fig. 2. The structure of the bidding advisor for one-shot combinatorial auctions.
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operation cycle is one week starting from Monday and ending Sunday. Thus, the vehicle distribution at the end of the plan-
ning horizon is set to be equal to that at the beginning. The salvage value, us

t , at region t at the end of the planning horizon
is estimated roughly by using the procedure proposed in Frantzeskakis and Powell (1988). The procedure is briefly de-
scribed in Appendix A. The day of week load distribution refers to the day of week booking profile and the day of week
call-in distribution in Powell (1996). The cost of moving empty across link (i, j), ce

ij, is uniformly distributed in [400, 600].
The profit of pulling a booked load across link (i, j), ub

ij, is set to be equal to ce
ij=1:5. However, the profit of a forecasted load,

uf
ij, is set to be equal to hijðce

ij=1:5Þ, where hij represents the realization probability of the load. The profits of serving auc-
tioned loads are decided according to those of booked loads. Finally, An et al. (2005) using the data from Plummer (2003)
propose that average pairwise synergy value

average item value ¼ 0:18. Thus, in this paper, S, the pairwise synergy is set to be equal to 0.18 multiplied
by the average profit of pulling a load across a link; that is, S = 60. In addition, the value of parameter b is set to 0.5. The
solution algorithm is implemented in Java with an interface to the CPLEX 11.0 linear programming solver on a desktop PC
with a 2.40 GHz Core2 Quad Q6600 processor and 1 GB RAM.

5.1. A small-size problem

Consider the case that a carrier owns a fleet of 20 vehicles serving 48 loads in 15 regions within one week. The 48 loads
constitute 10 auctioned, 12 booked, and 26 forecasted loads. The resulting distributions of the number of vehicles available
in each region at the beginning and the end of the planning horizon are shown in Table 2. The unit salvage value correspond-
ing to each region is also shown in Table 2. The day of week load distribution is shown in Table 3.
Table 2
Vehicle amount distribution and unit salvage value

Region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

Number of vehicles (beginning) 4 1 0 1 1 1 0 0 2 1 0 1 3 2 3 20
Number of vehicles (end) 4 1 0 1 1 1 0 0 2 1 0 1 3 2 3 20
Unit salvage value 232 190 188 199 164 187 227 173 189 217 229 183 204 171 194 –



Table 3
Day of week load distribution

Pickup day

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Auctioned loads 3 4 2 1
Booked loads 7 5
Forecasted loads 7 7 9 2 1

1 11 1 1 1 1 1
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4 44 4 4 4 4 4
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Fig. 3. Relative positions of all considered loads.
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The resulting synergetic time–space network includes 169 nodes and 1686 links. Let the 10 auctioned loads be labeled
1, 2,. . ., 10 associated with triplet (origin, destination, pickup-day), (9, 10, Monday), (14, 2, Monday), (10, 11, Tuesday),
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(5, 10, Tuesday), (1, 12, Monday), (9, 8, Wednesday), (15, 9, Tuesday), (4, 11, Wednesday), (4, 13, Tuesday), and (9, 12,
Thursday), respectively. The costs of moving empty across links are shown in Appendix B. The information (origin,
destination, pickup date and profit) corresponding to each load is shown in Appendix C, where hij is set to 0.8. The relative
positions of all considered loads are graphically shown in Fig. 3. Note that we only demonstrate the loaded and sal-
vage links for clarity purpose. We will show later that it is very easy to trace the bid-package patterns via the network
in Fig. 3.

The solution algorithm to the synergetic minimum cost (maximum profit) flow problem is implemented in Java with
an interface to the CPLEX 11.0 linear programming solver. The computations to most instances require less than one min-
ute, and only few instances take a little more than one minute. The output consists of 20 paths (one vehicle on one path),
and five profitable bid packages: {1, 3}, {2}, {4}, {5}, and {7}. Four auctioned loads, 6, 8, 9, and 10, are not considered
because they are not profitable. The five paths embedded with the five bid packages are graphically shown in Fig. 4.
Each of the five paths gains both explicit synergy (i.e., S and/or bS) and implicit synergy (i.e., the sum of the profits of
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Table 4
Sources of explicit and implicit synergies

Bid package Number of forecasted loads Number of booked loads

{1, 3} 1
{2} 1 1
{4} 1 1
{5} 2
{7} 3 1

Fig. 5. Output paths and corresponding bid packages (S = 0).
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all embedded loads) from the (auctioned, booked, and forecasted) loads embedded in the path to increase its profitability
(see Table 4). The path with load package {1, 3} gains synergy from one forecasted load, the path with load package {2}



Fig. 6. Output paths and corresponding bid packages (h = 0.6).

Table 5
Sources of implicit synergy

Bid package Number of forecasted loads Number of booked loads

{1, 3} 2
{2} 2
{4} 2 1
{7} 1 1
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from one forecasted and one booked loads, the path with load package {4} from one forecasted and one booked loads, the
path with load package {5} from two forecasted loads, and the path with package {7} from one booked and three fore-



Table 6
Sources of explicit and implicit synergies (h = 0.6)

Bid package Number of forecasted loads Number of booked loads

{1, 3} 1
{2} 2 1
{4} 1 1
{7} 2 1
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casted loads. Such results indicate that it is crucial to consider both booked and forecasted loads in the combinatorial bid
generation problem for transportation procurement. Fig. 4 shows that there is only one round-trip load package, and
three paths contain sub-tours, which demonstrates the insufficiency of considering only round-trip load-package patterns
in combinatorial auctions for TL service procurement. Consequently, the bidding advisor, instead of evaluating 210–1 (i.e.,
1023) possible bid packages, only suggests submitting the five profitable bids. This fact justifies the value of the proposed
bidding advisor.

To know how the consideration of synergy influences the selection of bid packages, we reset the pairwise synergy, S, to 0.
The output includes 20 paths (one vehicle takes one path), and four profitable bid packages: {1, 3}, {2}, {4}, and {7}. Five auc-
tioned loads, 5, 6, 8, 9, and 10, are considered as profitless. Package {5} disappears from the set of bid packages under the
scenario of S = 60 due to the absence of explicit synergy. The four paths embedded with the four bid packages are graphically
shown in Fig. 5. There is no round-trip package, but three paths contain sub-tours. Table 5 demonstrates the sources of im-
plicit synergies corresponding to each bid package; the path with load package {1, 3} gains synergy from two forecasted
loads; the path with load package {2} from two forecasted loads; the path with load package {4} from two forecasted and
one booked loads; and the path with load package {7} from one booked and one forecasted loads. Comparing the information
in Table 4 with that in Table 5, we can see that the value of synergy, S, significantly influences the combination of booked and
forecasted loads (i.e., implicit synergy) corresponding to each bid package, and thus the TL carrier’s fleet management plan,
even though the value does not much change the set of bid packages.

Furthermore, to see how hij, the realization probability of the forecasted load on link (i, j), affects the choice of bid pack-
ages, we set the realization probability to 0.6, instead of 0.8, for all forecasted loads. The output consists of 19 paths (two
vehicles take the same path, and the others take one path), and four profitable bid packages: {1, 3}, {2}, {4}, and {7}. Five
auctioned loads, 5, 6, 8, 9, and 10, are considered as profitless. The four paths embedded with the four bid packages are
graphically shown in Fig. 6. As shown in Fig. 6, there is no round-trip package, but two paths contain sub-tours. Package
{5} disappears from the set of bid packages under the scenario of S = 60 due to the decrease of implicit synergy. Table 6 dem-
onstrates the sources of explicit and implicit synergies corresponding to each bid package; the path with load package {1, 3}
gains synergy from one forecasted load; the path with load package {2} from one booked and two forecasted loads; the path
with load package {4} from one forecasted and one booked loads; and the path with load package {7} from one booked and
two forecasted loads. Comparing the information in Table 6 with that in Table 4, we can see that the value of realization
probability significant influences the combination of booked and forecasted loads (i.e., implicit synergy) corresponding to
each bid package. The sets of bid packages under the scenarios of S = 0 and hij = 0.6 turn out the same. However, the sources
of explicit and implicit synergies corresponding to each bid package are quite different. That is, the TL carrier will have very
different fleet deployments.
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The above experimental results show that the bid generation and evaluation problems could be substantially affected by
the synergy values, the estimated profits of forecasted and auctioned loads. It follows that TL carriers’ fleet management
plans should not neglect the above influence factors. In addition, the numerical results demonstrate the efficiency of the pro-
posed solution algorithm to the synergetic minimum cost flow problem.
5.2. Large-size problems

To understand the computational limitations in terms of CPU time of the proposed solution algorithm, we test it on
large-size instances. The cases assume that a TL carrier may own a fleet of 100, 250, 500, 750, or 1000 vehicles serving
loads with a double size of corresponding fleets within one week between 20, 40, or 60 regions (the largest case we
have found so far in the literature). Each synergetic network, therefore, consists of at most 8n + m + 1 nodes and at
most 71n + 2m links, where n represents the number of regions and m represents the number of loads (also the twice
number of vehicles). The day of week load distribution of each case is proportionally similar to the one shown in Table
3. Following Cheung and Powell (1996), we assume that the synergetic networks are not completely dense; rather,
loaded vehicles from a region can be moved to ten other regions. The travel time between each pair of connected re-
gions is set to one day (i.e., one time period in the synergetic time–space networks). The value of hij is set to 0.8. On
the other hand, the distribution of the number of vehicles available in each region at the beginning and thus the end
of the planning horizon, and the load information (origin, destination, and profit corresponding to each load of which-
ever type) are randomly generated. The computational CPU time corresponding to each case is shown in Fig. 7. Approx-
imately, the CPU time is increasing linearly with the number of vehicles (or loads), but is increasing with the square of
the number of regions. We eventually omit the cases in which a TL carrier owns a fleet of 750 or 1000 vehicles serving
loads between 60 regions because of long computational times; their computational CPU times can be, however, easily
estimated by linear extrapolation. Fig. 7 shows that we may need to develop heuristic approaches to the synergetic min-
imum cost flow problem to help a big TL carrier owning a large number of vehicles and operating over a huge area make
quick bidding decisions.
6. Conclusion and future research

This paper develops a bidding advisor to help the TL carriers who participate in one-shot combinatorial auctions make
bidding decisions. The bidding advisor has two major advantages: (1) it tightly integrates load information in the e-markets
with bidders’ current fleet management plans, and, therefore, can provide TL carriers effective bidding strategies; and 2) it
prevents TL carriers from evaluating the potentially huge number of possible bid packages, and thus makes TL carriers capa-
ble of promptly making bidding decisions. The core of the bidding advisor is the technique for converting the bid generation
and evaluation problems into a synergetic minimum cost network flow problem. Due to the special structure of the syner-
getic network, conventional solution methods for minimum cost flow problems cannot be applied to the synergetic network
flow problem. A column generation technique equipped with a synergetic shortest path algorithm is developed to solve the
problem. The empirical analysis shows that a TL carrier adopting the proposed advisor can easily determine the desirable bid
packages without evaluating all possible bid packages.

As mentioned above, the proposed bidding advisor suggests bid packages by solving the synergetic minimum cost
network flow problem. This specific network problem builds on the ‘‘average synergy” techniques of estimating the
synergy values between loads. The pros and cons of the estimation approaches are detailed in Section 3. We, however,
emphasize that it is important and worthwhile to develop more sophisticated methods to accurately compute the
synergy values between loads. The more accuracy of the estimated synergy values, the more efficacy of the bidding
advisor.

There are two natural extensions to this research. First, this research focuses on one-shot combinatorial auctions for
transportation service procurement. Multi-round combinatorial auctions have, however, received much attention recently
in spite of their complexities; thus, it is also important to develop bidding advisors for those bidders who participate in mul-
ti-round combinatorial auctions. The advisor developed in Section 5 can definitely be the building blocks for developing the
bidding advisors for complex multi-round combinatorial auctions. The second extension of this research is to develop bid-
ding advisors for the other major type of freight carriers: less-than-truckload (LTL) carriers. The characteristics of TL and LTL
carriers are actually quite different and should have a significant impact on their bidding strategies and thus on their needs
and requirements with respect to bidding advisors.
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Appendix A. Calculation of the salvage values

Appendix A briefly describes the procedure proposed in Frantzeskakis and Powell (1988) to calculate Qt(H), the salvage
value of a vehicle at region t at the end of planning horizon H. To mitigate truncation effects, they consider a planning hori-
zon H0 that is substantially longer than H. Then, given the loaded and empty activities, they apply a backward recursion
method to estimate Qt(H). Let

fti(d): forecasted number of vehicles moving loaded from t to i at time d,
eti(d): forecasted number of vehicles moving empty from t to i at time d,
fti(d): fraction of vehicles moving loaded from t to i at time d,
sti(d): fraction of vehicles moving empty from t to i at time d,
rti: average profit for pulling a load from t to i,
cti: cost of moving empty from t to i, and
R: set of regions.

The backward recursion method is described as follows: let
Q tðH0Þ ¼ 0 8t 2 R
Then, beginning with d = H
0

- 1 and working backward in time, let
Q tðdÞ ¼
X
i2R

½ftiðdÞ �wtiðdÞ � stiðdÞ � �wtiðdÞ�
where
wtiðdÞ ¼
rtiðH � dÞ if H � d 6 1
rti þ Q iðdþ 1Þ otherwise

�

�wtiðdÞ ¼
ctiðH � dÞ if H � d 6 1
cti þ Q iðdþ 1Þ otherwise

�

ftiðdÞ ¼
ftiðdÞP

j2RðftjðdÞ þ etjðdÞÞ

stiðdÞ ¼
etiðdÞP

j2RðftjðdÞ þ etjðdÞÞ
Note that in this paper, we do not make much effort to collect the required data to the backward recursion method,
and do not precisely follow the procedure. Rather, we roughly estimate the relevant information and use it to calculate
Qt(H).
Appendix B. Empty repositioning costs
To
 From
1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
1
 0
 447
 536
 484
 400
 418
 510
 403
 485
 448
 593
 569
 473
 538
 469

2
 411
 0
 464
 503
 481
 451
 452
 450
 522
 517
 419
 525
 481
 562
 423

3
 558
 563
 0
 525
 521
 484
 460
 467
 585
 557
 456
 563
 525
 523
 584

4
 454
 447
 524
 0
 595
 444
 491
 509
 551
 533
 504
 455
 412
 413
 423

5
 447
 455
 416
 409
 0
 538
 565
 526
 438
 412
 452
 507
 496
 541
 536

6
 577
 597
 453
 501
 589
 0
 569
 457
 483
 465
 546
 497
 524
 468
 436

7
 501
 424
 430
 552
 572
 530
 0
 404
 501
 459
 557
 507
 469
 565
 470

8
 491
 432
 430
 413
 577
 462
 540
 0
 548
 428
 524
 470
 586
 420
 441

9
 594
 470
 400
 463
 418
 431
 451
 417
 0
 534
 532
 450
 416
 571
 424

10
 587
 588
 580
 562
 483
 506
 548
 453
 588
 0
 522
 561
 438
 425
 438

11
 520
 428
 402
 495
 437
 562
 425
 557
 555
 547
 0
 444
 413
 421
 436

12
 467
 573
 575
 535
 538
 493
 521
 570
 421
 517
 450
 0
 580
 521
 564

13
 553
 548
 541
 438
 424
 490
 497
 577
 442
 417
 518
 482
 0
 421
 433

14
 417
 526
 408
 587
 412
 573
 581
 526
 578
 434
 519
 432
 406
 0
 565

15
 522
 469
 532
 578
 560
 480
 495
 454
 425
 545
 454
 582
 584
 571
 0



Appendix C. Load information

Number Auctioned loads Booked loads Forecasted loads

Origin Destination Pickup date Unit profit Origin Destination Pickup date Unit profit Origin Destination Pickup date Unit profit

1 9 10 Monday 392 1 11 Monday 347 11 1 Friday 316
2 14 2 Monday 375 13 8 Tuesday 391 7 6 Friday 303
3 10 11 Tuesday 365 13 12 Tuesday 387 2 3 Wednesday 300
4 5 10 Tuesday 322 14 15 Monday 381 1 3 Thursday 298
5 1 12 Monday 311 6 7 Tuesday 353 4 7 Sunday 294
6 9 8 Wednesday 292 8 5 Tuesday 351 7 10 Wednesday 292
7 15 9 Tuesday 283 13 6 Monday 349 9 8 Friday 292
8 4 11 Wednesday 264 1 11 Monday 347 11 6 Thursday 291
9 4 13 Tuesday 234 6 3 Monday 323 5 12 Thursday 287
10 9 12 Thursday 225 2 5 Tuesday 303 5 12 Saturday 287
11 13 9 Monday 277 10 4 Friday 284
12 4 5 Monday 273 13 6 Friday 279
13 1 15 Friday 278
14 10 2 Wednesday 276
15 7 13 Friday 265
16 6 3 Wednesday 258
17 9 1 Wednesday 258
18 6 8 Thursday 246
19 8 6 Wednesday 244
20 1 4 Wednesday 242
21 12 9 Thursday 240
22 9 5 Friday 234
23 14 13 Thursday 225
24 9 12 Friday 225
25 14 8 Saturday 224
26 3 11 Thursday 214
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