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Abstract Age-related Macular Degeneration (AMD) affects the central vision and

subsequently may lead to visual loss in people over 60 years of age. There is no per-

manent cure for AMD, but early detection and successive treatment may improve the

visual acuity. AMD is mainly classified into dry and wet type, however dry AMD is

more common in ageing population. AMD is characterized by drusen, yellow pigmen-

tation and neovascularisation. These lesions are examined through visual inspection

of retinal fundus images by ophthalmologists. It is laborious, time consuming and
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resource intensive. Hence, in this study we have proposed an automated AMD detec-

tion system using Discrete Wavelet Transform (DWT) and feature ranking strategies.

The first four order statistical moments (mean, variance, skewness and kurtosis), en-

ergy, entropy and Gini index-based features are extracted from DWT coefficients. We

have used five (t-test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhat-

tacharyya Distance (CBBD), Receiver Operating Characteristics Curve (ROC)-based

and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of super-

vised classifiers namely Support Vector Machine (SVM), Decision Tree (DT), k-Nearest

Neighbour (k-NN), Naive Bayes (NB) and Probabilistic Neural Network (PNN) were

used to evaluate the highest performance measure using minimum number of features

in classifying normal and dry AMD classes. The proposed framework obtained an av-

erage accuracy of 93.70%, sensitivity of 91.11% and specificity of 96.30% using KLD

ranking and SVM classifier. We have also formulated an AMD Risk Index (AMDRI)

using selected features to classify the normal and dry AMD class using one number. The

proposed system can be used to assist the clinicians and also for mass AMD screening

programs.

Keywords Age-related macular degeneration; Energy; Entropy; Gini index; Feature

ranking; Classifier tuning; Computer aided diagnosis

1 Introduction

AMD is one of the most common retinal disease, caused by deterioration of cells in

the macula1. Macula is the small part of the retina responsible for central vision and

color2. AMD has several risk factors such as age, hypertension, smoking and family

history3. It is one of the leading cause of vision loss for people aged 60 years and

older1. The World Health Organization (WHO) report revealed that 8 million people

have affected with severe vision loss due to AMD 1. Moreover, globally 20-25 million

people are affected by AMD4. Depending on the presence of clinical signs such as drusen

or hyper-pigmentations or small hypo-pigmentations, AMD is mainly categorized into

early, intermediate and late stage1. The clinical signs, symptoms, diagnostic technique

and treatment of AMD are briefly described in Table 1.
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Table 1: Stages of AMD1,3,4.

Early AMD Intermediate AMD Late AMD

Dry Wet

Clinical signs -Presence of drusen

(63µm to 124µm in size)

or hyper-pigmentations

or small

hypo-pigmentations.

-Without visible

choroidal vessels.

-Presence of minimum

one drusen (124µm in

size) or geographic atro-

phy not in centre of the

macula (Figure 1b).

-Presence of fatty de-

posits or drusen in centre

of the macula.

-Filling of fluid under the

retina.

-Choroidal neovasculari-

sation (Figure 1c).

Symptoms -Blurring of central vision, Metamorphopsia and Reduced vision.

Diagnostic

technique

-Opththalmological ex-

amination.

-Retinal and choroidal angiography.

Treatment -Thermal laser or verteporfin photo-dynamic therapy.

Early detection of AMD can be achieved by identifying drusen and fatty deposits

or exudates using retinal fundus images of the affected patients. Drusen can be mainly

classified as hard or soft drusen according to the visibility of the border. Hard drusen

have well defined boundaries compared to soft drusen2. Most of the previous works

have reported that automated drusen segmentation is necessary for AMD classification.

Ben Sbeh et al.5 have proposed maxima and minima-based mathematical morphol-

ogy for automated drusen segmentation and classified various classes of drusen. Pixel

and region-wise classification methods were introduced in6 to identify drusen. Bran-

don et al.7 have proposed wavelet-based drusen segmentation and multi-level pixel

classification to discriminated drusen. Rapantzikos et al.8 employed multilevel his-

togram equalization to enhance the contrast of the local retinal image structures and

Histogram-based Adaptive Local Thresholding (HALT) applied to detect the drusen.

Köse et al.9 proposed an inverse segmentation method to identify the unhealthy re-

gions in the retinal fundus images. Initially, optic disk is detected to determine the

macula. Further, the healthy area is chosen around the macula to compute the sta-

tistical properties and region growing algorithm applied to segment the healthy area.

Finally, inverse segmentation can be performed to identify drusen. Inverse segmenta-

tion and statistical properties were used to segment out drusen in10. The statistical

information of the reference Characteristic Images (CIs) are compared with Sample

Images (SIs) to identify the drusen10. Multi-scale analysis using Mexican hat wavelet

and Support Vector Data Description (SVDD) are described for automated detection

of AMD anomaly in11. Santos-Villalobos et al.12 proposed a statistical method to seg-

ment drusen. Their method assumes the class conditional density from color features

of the drusen lesions. Liang et al.13 proposed a maximal region-based pixel intensity

method to detect drusen. Their method identified local regions with high intensity

pixels and fixed threshold value to segment the drusen.
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Fig. 1: Typtical fundus images: (a) Normal; (b) Dry AMD; (c) Wet AMD.

All above mentioned work mainly focuses on the segmentation or identification of

drusen, rather than AMD screening. However, very few work2,14–18 reported the appli-

cation of image analysis and machine learning methods for automated AMD diagnosis.

Cheng et al.14 proposed automated AMD detection using Biologically Inspired Fea-

tures (BIF) based on Gabor filters. Independent Component Analysis (ICA) is used to

extract different drusen phenotypes to perform automated AMD screening in15. Am-

plitude Modulation (AM)-Frequency Modulation (FM)-based multi-scale features are

computed in16,17,19 to classify pathological structures (drusen) for automated AMD

screening. Hijazi et al.18 proposed Case Based Reasoning (CBR) and Dynamic Time

Warping (DTW) approaches to quantify the similarity between normal and AMD im-

age histogram to identify AMD. Also Hijazi et al.2 have compared the performance

of spatial histograms and hierarchical decomposition methods for automated screening

of AMD. Zheng et al.20 have used quadtree decomposition and Weighted Frequent

SubGraph (WFSG) mining for automated detection of AMD.

The aforementioned approaches, except2,18 require drusen segmentation, but it is

a challenging task due to poor visual appearance of drusen and associated lesions2.

Hence, we propose a method to classify normal and dry AMD retinal fundus images

using energy and entropy features of DWT coefficients without using drusen segmenta-

tion. The overall block diagram of the proposed approach is shown in Figure 2. Initially,

the fundus images are subjected to preprocessing to enhance the contrast using adaptive

histogram equalization. Further, we have performed three level wavelet decomposition

to obtain fine and coarse changes in the form of coefficient matrices. We have computed

184 features such as energy, entropy, relative wavelet energy & entropy, probability of

energy, entropy, statistical moments and Gini index from the approximate, horizontal,

vertical and diagonal coefficients. All these features were fed to ttest, KLD, CBBD,

ROC-based and Wilcoxon ranking methods to rank the features. Subsequently, these

ranked features are fed to the supervised classifiers (SVM, DT, k-NN, NB and PNN)

to discriminate normal and AMD classes using minimum number of features. We have

employed 10-fold cross validation for data resampling. During training phase the pro-

posed system uses significant features which are extracted from preprocessed normal

and dry AMD fundus images. Once the system is trained, the trained model classifies

the test set or unknown image into either normal or dry AMD class automatically using
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the significant features are extracted from the test set or unknown image. Hence, the

system does not require any user intervention.

Fig. 2: The proposed automated AMD detection system.

The paper is organized as follows: Materials and methods such as study subject se-

lection and fundus image acquisition, preprocessing, DWT method, feature extraction,

feature ranking, selection, AMD Risk Index and AMD classification are discussed in

Section 2. The results of the proposed system is presented in Section 3. The obtained

results are described in Section 4 and the paper is concluded in Section 5.

2 Materials and methods

This section describes with the details of fundus image acquisition, contrast enhance-

ment of the acquired fundus images using Contrast Limited Adaptive Histogram Equal-

isation (CLAHE), feature extraction using DWT, choosing the best feature ranking

method, AMD risk index computation and comparison of various supervised classifiers

to discriminate normal and AMD classes.

2.1 Study subject selection and fundus image acquisition

All the participants in this study were screened and clinically confirmed for AMD at

the Department of Ophthalmology, Kasturba Medical College, Manipal, India. After

signing an informed consent, a total of 135 patients with AMD and 135 normal sub-

jects were participated in this study. The age group of subjects ranged from 50 to 80

years. The images were acquired from both the eyes using TOPCON non-mydriatic

retinal camera (TRC-NW200) from Department of Ophthalmology, Kasturba Medical

College, Manipal, India. The images were acquired and labelled by the clinicians. The

institute ethics committee has approved the images for research purpose. Several im-

ages are taken from each study subjects, however in this work five hundred and forty

images (Normal-270 and AMD-270) are used and all these images are stored in a 24-bit

uncompressed JPEG format. The resolution of the image is 480× 364 pixels.

2.2 Preprocessing

The contrast enhancement of the retinal fundus images are performed using CLAHE21.

Initially, the green band was separated from the Red Green Blue (RGB) color fundus

image. Further, CLAHE is applied on the green band image. This method separates
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the images into contextual regions and applies adaptive histogram equalization on

the separated regions. Hence, each pixel intensity in the image is mapped to a new

intensity value within the display range which is proportional to the pixel intensity

rank in the local intensity histogram21. This method stretches the grayscale intensity

distribution to the whole image which makes the image features such as blood vessels,

Optic Disk (OD), macula, and drusen are more visible21.

2.3 Discrete Wavelet Transform method

DWT analyses a temporal signal in the scale (or frequency) and time dimensions22. It

is used in several automated disease detection systems such as cardiac arrhythmias23,

epilepsy24 and diabetic neuropathy25. It decomposes an image in scale and space

dimensions (not time). It is capable of capturing both high frequency (detail) and low

frequency (approximate) information and is better at capturing transient or localized

features than the Fast Fourier Transform (FFT). The transfer functions HL and HH

are used to define the low pass and high pass filters respectively. The high pass filter

output contains detail coefficients and low pass filter output contains approximate

coefficients. The detail coefficients (D[n]) are obtained using the following equation

D[n] =
∞∑

k=−∞
x[k]HH [2n− k]

(1)

The approximate coefficients (A[n]) are obtained using the following equation

A[n] =
∞∑

k=−∞
x[k]HL[2n− k]

(2)

Where x[k] is original input signal, k is an integer and n is denoted as sampling

factor.

The frequency resolution is further increased by cascading the low and high pass

filter operations where the first level low pass filter output is fed into the same low and

high pass filter combination22. The above decomposition is repeated recursively and it

is called as Mallat-tree decomposition26 (Figure 3) shows the two dimensional DWT

structure22.
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Fig. 3: Two-dimensional DWT decomposition structure (one-level).

In this work, the normal and dry AMD fundus images are subjected to three-level

DWT decomposition using bi-orthogonal 3.7 mother wavelet27. Initially, rows are fed

to the low pass and high pass filters to obtain HL and HH and these down sampled

images along the columns were fed to both low pass and high pass filters to obtain

approximation (A1), horizontal (H1), vertical (V1) and diagonal (D1) coefficients re-

spectively. Figure 4 shows the result of 2D three level DWT decomposition on normal

and dry AMD fundus images. It can be seen from the figure that, the subtle changes

are visible in the high frequency sub-bands of dry AMD images.



8 Muthu Rama Krishnan Mookiah* et al.

(a)

(b)

Fig. 4: Discrete Wavelet Transform decomposition of fundus image (a) Normal; (b)

Dry AMD.

(ACL3: Approximation coefficient at level 3; HDCL1: Horizontal detail coefficient at

level 1; HDCL2: Horizontal detail coefficient at level 2; HDCL3: Horizontal detail coef-

ficient at level 3; VDCL1: Vertical detail coefficient at level 1; VDCL2: Vertical detail

coefficient at level 2; VDCL3: Vertical detail coefficient at level 3; DDCL1: Diagonal

detail coefficient at level 1; DDCL2: Diagonal detail coefficient at level 2; DDCL3:

Diagonal detail coefficient at level 3)
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2.4 Feature extraction

Features such as mean, variance, skewness. kurtosis, Shannon entropy, Renyi entropy,

Kapur entropy, relative energy, relative entropy, probability of energy, entropy and Gini

index are computed from the wavelet coefficients. These features are briefly described

below. The list of symbols and mathematical notations used in the following equations

are explained in the Table 2.

Table 2: List of symbols and mathematical notations.

Symbol or mathe-

matical notation

Description

f(x, y) Probability density function

M and N Rows and columns of wavelet coefficients

m mean value of wavelet coefficients

σ Standard deviation

Ck
N C is either horizontal (H), vertical (V ), diagonal

(D) or approximate (A) coefficients; N is the num-

ber of levels of decomposition (in this work 3); k

is the number of coefficients at each level of de-

composition

EngC
k

N Energy of either approximate, horizontal, vertical

or diagonal coefficients

EngA
k

N Energy of the approximate coefficients

EngH
k

N Energy of the horizontal coefficients

EngV
k

N Energy of the vertical coefficients

EngD
k

N Energy of the diagonal coefficients

EntC
k

N Entropy of either approximate, horizontal, verti-

cal or diagonal coefficients

EntA
k

N Entropy of the approximate coefficients

EntH
k

N Entropy of the horizontal coefficients

EntV
k

N Entropy of the vertical coefficients

EntD
k

N Entropy of the diagonal coefficients

α and β Diversity indices

c Ordered sparsity vector

‖c‖1 Manhattan distance of vector c

i Integer

VEnergy Energy of vertical coefficients

PRWEnergy Probability of energy and relative wavelet energy

HEnergy Energy of horizontal coefficients

δEntropy Probability of entropy and relative wavelet en-

tropy

λ Bias

CV 2Eng Energy of vertical coefficient at level 2

CV 2AvgEng Average energy of vertical coefficient at level 2

Continued on next page
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Table 2 – Continued from previous page

Symbol or mathe-

matical notation

Description

CV 1Eng Energy of vertical coefficient at level 1

CH1Eng Energy of horizontal coefficient at level 1

CH3Eng Energy of horizontal coefficient at level 3

CH3AvgEng Average energy of horizontal coefficient at level 3

PH1Eng Probability of horizontal coefficient energy at level

1

CH1RWEng Relative wavelet energy of horizontal coefficient at

level 1

PH3Eng Probability of horizontal coefficient energy at level

3

CH3RWEng Relative wavelet energy of horizontal coefficient at

level 3

ARWEng Average relative wavelet energy

CH2RWEnt Relative wavelet entropy of horizontal coefficient

at level 2

PH2Ent Probability of horizontal coefficient entropy at

level 2

2.4.1 Statistical moments

Statistical moments are used to define the probability density function of the wavelet

coefficients. The first four order statistical moments26 are computed using below equa-

tions:

Mean =
∑M

x=1

∑N
y=1

{f(x,y)}

M×N

(3)

Variance =
∑M

x=1

∑N
y=1

{f(x,y)−m}2

M×N

(4)

Mean and variance provides the information on the spread or scale of the data

distribution28,29.

Skewness = 1
M×N

∑M
x=1

∑N
y=1

{f(x,y)−m}3

σ3

(5)
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Skewness is mainly used to measure the shape of a distribution, whether it follows

symmetry or not. If the value is zero the distribution is symmetry28,29.

Kurtosis = 1
M×N

∑M
x=1

∑N
y=1

{f(x,y)−m}4

σ4

(6)

Kurtosis is mainly used to measure the flatness of the distribution28,29.

2.4.2 Energy and entropy features

Energy is used to define the amount of information present in the image and entropy

is used to measure the uncertainty associated with randomness30. In this work, rel-

ative wavelet energy (RWEnergy), relative wavelet entropy (RWEntropy), probability

of energy (PEnergy) and entropy (PEntropy) features were computed on the wavelet

coefficients31. It can be defined as follows

RWEnergy(C
k
N ) =

∑
N EngCk

N
∑

N EngAk

N +
∑

N EngHk

N +
∑

N EngV k

N +
∑

N EngDk

N

(7)

RWEntropy(C
k
N ) =

∑
N EntC

k

N
∑

N EntA
k

N +
∑

N EntH
k

N +
∑

N EntV
k

N +
∑

N EntD
k

N

(8)

PEnergy(C
k
N ) =

EngCk

N

[
∑

N EngAk

N ]+[
∑

(EngHk

N +EngV k

N +EngDk

N )]

(9)

PEntropy(C
k
N ) =

EntC
k

N

[
∑

N EntA
k

N ]+[
∑

(EntH
k

N +EntV
k

N +EntD
k

N )]

(10)

where EngC
k

N =
∑

k |C
k
N |2; EntC

k

N = −
∑

k(C
k
N )log2(C

k
N )

In addition to above mentioned features, Shannon, Renyi and Kapur entropies were

also computed to measure the uncertainty in the wavelet coefficients. The basic idea of



12 Muthu Rama Krishnan Mookiah* et al.

the Shannon entropy is the information gain of an event and is inversely related to its

probability of occurrence30,32. It can be computed using the following formula30,32

Shannon entropy = −
∑k

i=1(CN )log2(CN )

(11)

Renyi and Kapur entropy have high dynamic range in scattering conditions com-

pared to Shannon entropy. It can be computed30,32 as follows:

Renyi entropy = 1
1−α log

∑k
i=0 C

α
N , For α 6= 1, α > 0

(12)

Here, we have chosen α = 3.
The Kapur entropy is further generalized version of Renyi entropy30,32 and is given

by:

Kapur entropy = 1
1−α ln

∑k
i=0

Cα
N∑

k
i=0

C
β
N

, For α 6= β, α+ β − 1 > 0, β > 0

(13)

Here, we have chosen α = 0.5 and β = 0.7.

2.4.3 Gini index

Gini index is used to measure the dispersion of wavelet coefficients33. It is computed

using the formula:

G = 1− 2
∑k

i=1
ci

‖c‖1

(k−i+0.5
k )

(14)

Using above mentioned feature extraction methods, total 184 features are extracted.

2.5 Feature ranking and selection

Feature ranking step is used to select the minimum number of best possible features

which can discriminates the two classes34. In this work we have compared five fea-

ture ranking methods namely t-test, KLD, CBBD, ROC-based and Wilcoxon ranking

methods. t-test compares the population means of the two groups to identify the cor-

relation among the features35. KLD rank the features are based on summation of the

divergence measure for each features between normal and dry AMD classes. It has a
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direct relation with the Bayes error36. Chernoff bound provides exponential decay on

tail distributions using independent variables. Hence it is used with Bhattacharyya dis-

tance for feature ranking37. ROC-based feature ranking selects the features using area

between ROC and the random classifier slope37. Wilcoxon method is a non-parametric

test, which does not assume normal distribution. The features are ranked based on U

statistic35.

2.6 AMD Risk Index

In addition to automated classification we have formed single-valued index using a

combination of ranked features (See Figure 5) extracted from 270 normal and 270 dry

AMD images. This index is computed using Eq. (15) such that the combination of the

ranked features resulted in unique range for normal and dry AMD class with maxi-

mum separation. Since we noticed a uniform pattern in the selected features (See Table

3) between normal and dry AMD, we have used selected these features to formulate

AMDRI. In the clinical context, a threshold can be set for these index to enable ob-

jective discrimination by the doctors as to whether the input retinal fundus image is

belongs to normal or dry AMD class. The range of index may provide the information

about the classes. AMDRI is computed using the following formula.

Table 3: Summary statistics of features used for AMDRI formulation.

Features Normal (Mean±
Standard
Deviation (SD))

Dry AMD (Mean±SD) p-value

CV 2Eng (1.59± 1.19)107 (8.83± 5.24)106 <0.0001
CV 2AvgEng (7.97± 5.96)106 (4.41± 2.62)106 <0.0001
CV 1Eng (1.36± 0.62)106 (9.03± 3.99)105 <0.0001
CH1Eng (1.67± 1.04)106 (9.00± 3.78)105 <0.0001
CH3Eng (5.31± 2.83)107 (3.16± 1.60)107 <0.0001
CH3AvgEng (1.77± 0.94)107 (1.05± 0.53)107 <0.0001
PH1Eng 0.001± 0.0005 0.0006± 0.0002 <0.0001
CH1RWEng 0.0003± 0.0002 0.0002± 0.0001 <0.0001
PH3Eng 0.0254± 0.0096 0.0164± 0.0063 <0.0001
CH3RWEng 0.0095± 0.0038 0.0061± 0.0024 <0.0001
ARWEng 0.9703± 0.0104 0.9790± 0.0082 <0.0001
CH2RWEnt 0.0610± 0.0010 0.0591± 0.0022 <0.0001
PH2Ent 0.2103± 0.0029 0.2039± 0.0069 <0.0001

AMDRI =
(VEnergy×(PRWEnergy×HEnergy))

δEntropy×λ

(15)

where

VEnergy = CV 2Eng + CV 2AvgEng + CV 1Eng
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HEnergy = CH1Eng + CH3Eng + CH3AvgEng

PRWEnergy = (PH1Eng×CH1RWEng×PH3Eng×CH3RWEng)+(ARWEng)
δEntropy = CH2RWEnt+ PH2Ent

λ = 1015

2.7 Classification

In this work, we have used five supervised classifiers (NB, DT, k-NN, PNN and SVM)

to compare the performance of various ranking schemes. The NB is a simple classi-

fier based on Bayes theorem with independent assumptions between predictors. The

posterior probability is calculated by building frequency table for each feature against

the class. Then, the frequency table is transformed into likelihood table to calculate

posterior probability for each class. The class with highest posterior probability is the

desired output37. In the DT, complex decision is divided into a union of several simpler

decisions, that are derived from the training data38. k-NN is a simple, non-parametric

lazy learning algorithm. It performs classification by computing distance between k-

nearest neighbours, where majority vote of its neighbours decides the class. In this

work, we have chosen k = 137. PNN is a feed forward neural network developed using

probability density function based on Parzens’ result. It is a three layer (input, pattern

and summation) network, where summation layer compete transfer function decides the

output using distance vector probabilities39. The spread (σ) value of the summation

layer is obtained using bootstrap40 approach (varying σ value from 0.01 to 1 with the

increment of 0.01). SVM is developed based on statistical learning and uses the essence

of structural risk minimization principle. The basic idea of SVM is to find an optimal

hyperplane in the high dimensional feature space that can separate the data in the

best possible way37,41. In this work, we have evaluated various kernels of SVM such as

linear, quadratic, Radial Basis Function (RBF) and polynomial. The RBF kernel width

(σ) is varied between 0.1 to 5 with the increment of 0.1 using bootstrap40 method.

The optimal spread (σ) value and RBF kernel width (σ) for PNN and SVM classifiers

are 0.23 and 4.2 respectively.

3 Results

In this work, 184 features are extracted using statistical moments, wavelet energy,

entropy and gini index from the wavelet coefficients. Statistical moments captures the

shape variations in the images26. Energy and entropy measures quantify the uniformity

and randomness in the images31. Gini index measures the dispersion of the wavelet

coefficients33, which reflects the pixel pattern variation in the normal and dry AMD.

The statistical summary (Mean± SD) of features is shown in Figure 5(a)–(d).
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(a) (b)

(c) (d)

Fig. 5: (a)–(d) Statistical variation (mean ± standard deviation) of features for normal

and dry AMD classes.

The results show that the mean values of all features are low for dry AMD and

high for normal. This is due to the presence of drusen and yellow pigmentation in the

dry AMD images that changes the pixel patterns. These subtle changes are clearly

captured by the extracted features (Figure 6 and 7).
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(a) (b) (c) (d)

Fig. 6: Box plots: (a) PH1Energy; (b) CH1RWEnergy; (c) CV 2RWEnergy; (d)

CH3RWEnergy

The box plots (Figure 6) also show that the energy values are low for dry AMD

and high for normal. The medians of the box plots are significantly different for normal

and dry AMD classes.

(a) (b)

Fig. 7: (a) Scatter plot of features CH1Energy versus PH2Entropy; (b) Density esti-

mation plot of PH3Energy for normal and dry AMD classes.

The group scatter and density estimation plots (Figure 7) show that the features

are distinct for normal and dry AMD classes. All these plots reveal that the extracted

features can discriminate the normal and dry AMD classes with higher accuracy.

The extracted features are ranked using five ranking methods (ttest, KLD, CBBD,

ROC-based and Wilcoxon) to identify the optimal feature set for the classification
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task. The ranked features are fed to NB, DT, k-NN, PNN and SVM classifiers using

bootstrapping40 and each classifier was evaluated using 10-fold cross validation to

measure the accuracy. Finally, the optimal feature set and ranking method are identified

using accuracy measure where the ranking method should maximize the accuracy using

minimum number of features (See Figure 8). Among these five ranking methods KLD

method used 121 optimum features to achieve highest average accuracy of 93.70%.

The performance of the different ranking methods for different combination of features

is shown in Figure 8. The performance measures like average accuracy, sensitivity,

specificity and Positive Predictive Value (PPV) are tabulated in Table 4.

Table 4: Performance measures of various classifiers (features are ranked using KLD

ranking method).

Classifier Number of
features used

Accuracy (%) PPV (%) Sensitivity (%) Specificity (%)

NB 63 83.70 82.88 85.19 82.22
DT 55 84.44 84.70 84.81 84.07
k-NN 117 87.78 89.28 85.93 89.63
PNN 123 89.07 96.41 81.11 97.04
SVM-Linear 121 93.70 96.09 91.11 96.30

SVM-Quadratic 30 88.52 89.32 87.78 89.26
SVM-Polynomial 11 86.11 87.92 84.07 88.15
SVM-RBF 121 91.85 91.45 92.22 91.48

The classification results (Table 4 and Figure 8) show that SVM linear kernel

obtained highest accuracy (93.70%) using 121 features ranked by KLD ranking method.

Fig. 8: Plot of average accuracy versus number of features for various ranking methods

using SVM classifier.
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In this work, the SVM-RBF kernel and PNN classifier parameters are tuned us-

ing bootstrap40 method to obtain better performance. SVM-RBF kernel yielded the

highest accuracy (91.85%) with σ = 4.9 and PNN obtained highest accuracy (89.07%)

with σ = 0.32 (Figure 9) using 121 and 123 ranked features respectively(Table 4).

(a) (b)

Fig. 9: Classifier parameter (σ) tuning : (a) SVM-RBF kernel; (b) PNN classifier

In addition to classification, we have formulated AMDRI to discriminate normal

and dry AMD classes. The range (mean±SD) of AMDRI for the normal and dry AMD

classes are 6.539 ± 1.911 and 2.264 ± 0.162 respectively. The values are significantly

different for both the classes (Figure 10), it is low for dry AMD and high for normal.

Fig. 10: Box plot of AMDRI.
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4 Discussion

Automated retinal fundus image processing and machine learning methods help in

early detection of Diabetic Retinopathy (DR), glaucoma and AMD42,43. In this work,

features such as statistical moments, energy, entropy and Gini index are extracted from

wavelet coefficients. DWT decomposes the images in both rows and columns using low

and high pass filter. Hence, it can capture local and global features in the normal and

dry AMD fundus images. This DWT property44 captures the morphological structures

of fundus images and also captures the drusen, exudates and neovascularization45.

Hence, the extracted features are robust (See Figure 6 and 7) and resulted in highest

classification accuracy (See Table 4).

The results (See Table 4) show that SVM linear kernel yielded highest accuracy

(93.70%) with 121 features compared to other kernels and classifiers. However, other

kernel functions such as quadratic, polynomial and RBF provided average accuracies of

88.52%, 86.11% and 91.85% using 30, 11 and 121 features respectively. The difference

in accuracies is approximately 4%-7%-2% compared with linear kernel using minimum

number of features. It shows that the complex kernels convert the non-linearly separable

features into linearly separable one46. Other classifiers such as NB, DT, k-NN and PNN

obtained accuracies of 83.70%, 84.44%, 87.78% and 89.07% respectively. Hence, we can

infer that the linear kernel achieved highest accuracy in classifying normal and dry

AMD classes. We have compared our results with existing automated AMD detection

literatures in Table 5 and are briefly summarized as follows.

Murray et al.16 have developed AM-FM-based methods to characterize AMD le-

sions in retinal fundus images. They used four-scale filterbank and AM-FM-based es-

timates to characterize the retinal images having soft and hard drusen. Their method

are tested using both synthetic and AMD retinal images. However, the accuracy of

their method is not reported. Their method can be used to encode the AMD lesions

with certain frequency component.

Soliz et al.15 have presented a novel approach for extracting image-based features

to discriminate AMD in retinal fundus images. Initially, the images are categorized

into 12 drusen phenotypes. The features are extracted from these phenotypes using

ICA. Further, the phenotypes are classified by partial least square regression using

ICA derived features. Their approach achieved 100% accuracy using 12 images. To

train their algorithm, independent components of drusen needs to be selected using

Region Of Interest (ROI) at different scales.

Barriga et al.17 have proposed AM-FM-based multi-scale features to characterize

intensity variations in the normal and AMD images. The dimension of the AM-FM

features are reduced using Principle Component Analysis (PCA) and obtained the

classification accuracy of more than 90% using Mahalanobis distance. Their method

encodes the AMD lesions with certain frequency component and train their algorithm

hard and soft drusen, vessels and background needs to be selected by the trained grader.

Hijazi et al.18 have proposed two stage CBR technique which is applied to his-

togram of the retinal image to detect AMD. Their approach involves two stages: (i) case

base generation and (ii) classification of unknown image. Their algorithm achieved a

mean sensitivity of 82%, specificity of 65% and accuracy of 75% compared with graders

observation. The anatomical structures such as OD and retinal blood vessels needs to

be removed before applying their method.

The Instantaneous Frequency (IF) and Instantaneous Amplitude (IA) of AM-FM

is used in19 for automated DR and AMD detection. Initially, the green channel is



20 Muthu Rama Krishnan Mookiah* et al.

separated from RGB color image and 140 × 140 pixels ROI is chosen for AM-FM

decomposition. The features such as statistical moments and histogram percentiles

are extracted from the decomposed images. The extracted features are fed to partial

least square method the discriminate DR and AMD. Their algorithm is tested on two

datasets namely Retina Institute of South Texas (RIST) and University of Texas Health

Science Centre in San Antonio (UTHSCSA) and obtained Area Under receiver operator

characteristics Curve (AUC) of 0.84 and 0.77 respectively. Their method encodes the

AMD lesions such as drusen, abnormal pigmentation and Geographic Atrophy (GA)

with certain frequency component.

Cheng et al.14 have proposed an automated AMD detection system using BIF.

Initially, centre of the macula is located using particle tracing algorithm. Further, BIF

features are computed around the centre using 5×5 grid. These features are fed to the

SVM classifier to diagnose AMD. Their method obtained a sensitivity of 86.3% and

specificity of 91.9%. Before applying their method OD, blood vessels and fovea needs

to be segmented.

Hijazi et al.2 have presented spatial histograms and hierarchical image decompo-

sition methods to differentiate normal and AMD images. Spatial histogram method

generates signature histogram using shape and texture information of the normal and

AMD images. These histogram features are fed to CBR and DTW approaches to clas-

sify normal and AMD classes. Hierarchical decomposition provides collection of trees

and frequently occurring sub-trees are identified using weighted frequent sub-graph

mining algorithm. Further, these trees were fed to SVM classifier to discriminate nor-

mal and AMD classes. Their method yielded an accuracy of 74% and 100% using spatial

histograms and hierarchical image decomposition methods respectively. Authors have

improved the classification accuracy by removing the retinal anatomy such as OD and

blood vessels. Also, their method do not require to locate and segment drusen.

Table 5: Summary of literatures on automated AMD detection.

Authors Method Classifier (Im-
age data size)

Detected fea-
ture

Advantages/
Disadvantages

Performance measure

Murray et al. (2008)16 Four scale filter
bank
AM-FM estimates

Not Applicable
(Not
Mentioned)

Instantaneous
amplitude and
frequency

–Encodes AMD lesions
with certain frequency
component

Not Mentioned

Soliz et al. (2008)15 ICA Linear
regression (12)

Independent
Components

–Independent compo-
nents of drusen needs
to be selected using
ROI for training

Accuracy-100%

Barriga et al. (2009)17 AM-FM Linear
regression (5)

Instantaneous
amplitude and
frequency

–Encodes AMD lesions
with certain frequency
component
–Manual grading of
lesions and anatomical
structures needed for
training

Accuracy-90%

Hijazi et al. (2010)18 DTW CBR (144) Histogram
features

–Isolation and
segmentation of
drusen is not required
–OD and retinal blood
vessels needs to be
removed before
applying DTW

Sensitivity-82%
Specificity-65%
Accuracy-75%

Continued on next page
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Table 5 – Continued from previous page
Authors Method Classifier (Im-

age data size)
Detected fea-
ture

Advantages/
Disadvantages

Performance measure

Agurto et al. (2011)19 AM-FM Partial least
square (507)

Statistical
moments and
histogram
percentiles

–Encodes lesions such
as drusen, abnormal
pigmentation and GA
with certain frequency
component

AUC-0.84 (RIST)
AUC-0.77
(UTHSCSA)

Cheng et al. (2012)14 Dyadic Gaussian
pyramids convolu-
tion

SVM (350) Biologically in-
spired features

–Segmentation of OD,
blood vessels and
fovea needed

Sensitivity-86.3%
Specificity-91.9%

Hijazi et al. (2012) 2 Spatial histogram
and hierarchical
image
decomposition

CBR and
DTW (161)

Image feature –Isolation and
segmentation of
drusen is not required
–Removal of OD and
blood vessels are
needed to improve the
accuracy

Spatial histogram
accuracy-74%; Hierar-
chical decomposition
accuracy-100%

Zheng et al. (2012)20 Quadtrees and
WFSG mining

SVM and NB
(258)

Image feature –Removal of blood
vessels is required to
improve the accuracy

Accuracy-99.6%
(SVM)
Accuracy-78.7% (NB)

The current study DWT SVM (540) Statistical
moments,
energy, entropy
and Gini index
on wavelet
coefficients

–Segmentation and
removal of retinal
anatomy such as OD,
blood vessels and
fovea are not needed
–Isolation and
segmentation of
drusen is not required
–The method was
evaluated using 10-fold
cross validation
–Extracted features
were evaluated using
five ranking methods
–Five supervised
classifiers were used to
compare the
discrimination ability
of the extracted
features

Accuracy-93.70%
Sensitivity-91.11%
Specificity-96.30%
PPV-96.09%

The WFSG mining algorithm is used in20 to develop automated AMD grading

system. During preprocessing the gray level images are subjected to histogram speci-

fication and equalization to normalize the color and contrast. Further, quadtree-based

image decomposition is used to extract features. These features are fed to SVM and

NB classifiers to discriminate normal and AMD classes. Their method yielded an accu-

racy of 99.6% and 78.7% using SVM and NB classifiers respectively. The classification

accuracy of their method can be improved by removing the blood vessel.

The salient features of the proposed framework are summarized below :

1. The proposed system does not require any segmentation such as retinal anatomy

and abnormal lesions.
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2. Compared to available literatures reported in Table 5 our AMD detection system

shows the highest average accuracy of 93.70%, sensitivity of 91.11% and specificity

of 96.30% using 540 images.

3. The proposed system is evaluated over 10-fold cross validation.

4. The significance of the features are evaluated using five ranking methods and the

discrimination ability is tested using five supervised classifiers, hence the obtained

results are robust and reproducible.

5. In this work, we used multi-resolution analysis for feature extraction and hence

captures subtle variations in the image pixels and provided the highest accuracy

(See Table 4 and 5).

6. The devised integrated index (AMDRI) is distinct for normal and dry AMD classes

(See Figure 10), hence it can help the clinicians in faster and accurate screening of

disease.

7. The proposed framework can be extended to diagnose DR, maculopathy and glau-

coma diseases also.

8. The execution time of the optimal system for feature extraction (image data size=540),

training (10-Fold) and testing (10-Fold) are 87.5131 sec, 0.323 sec and 0.2692 sec

respectively using Intel i7-4770 3.47GHz processor, 16GB 1600 MHz CL9 DDR3-

RAM and MATLAB 2012b computational environment. Hence our proposed sys-

tem is fast and less complex.

5 Conclusion

In this work, an automated AMD detection system is proposed using DWT and feature

ranking frame work. The statistical moments, energy, entropy and Gini index features

are extracted on DWT coefficients to capture the minute changes in the normal and dry

AMD images. The t-test, KLD, CBBD, ROC-based and Wilcoxon ranking methods are

evaluated to rank the features and subsequently features were nested for automated

classification. A set of supervised classifiers are used on the nested features to obtain the

maximum classifier performance with minimum number of features. The SVM classifier

with linear kernel yielded an average accuracy of 93.70%, sensitivity of 91.11% and

specificity of 96.30% using 121 optimal features over ten-fold cross validation. Hence,

this system can be used as an adjunct tool for AMD screening. Moreover, the developed

integrated index AMDRI discriminates normal and AMD fundus images accurately

using a single number. Hence, it may help the clinicians to make faster decisions during

mass screening of the disease. The proposed system was evaluated using 540 images

and can be further tested using more diverse images to evaluate the robustness of the

system.
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