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Abstract

Multiple classi"er fusion may generate more accurate classi"cation than each of the constituent classi"ers. Fusion is
often based on "xed combination rules like the product and average. Only under strict probabilistic conditions can these
rules be justi"ed. We present here a simple rule for adapting the class combiner to the application. c decision templates
(one per class) are estimated with the same training set that is used for the set of classi"ers. These templates are then
matched to the decision pro"le of new incoming objects by some similarity measure. We compare 11 versions of our
model with 14 other techniques for classi"er fusion on the Satimage and Phoneme datasets from the database ELENA.
Our results show that decision templates based on integral type measures of similarity are superior to the other schemes
on both data sets. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Combining classi"ers to achieve higher accuracy is an
important research topic with di!erent names in the
literature:

f combination of multiple classi"ers [1}5];
f classi"er fusion [6}10];
f mixture of experts [11}14];
f committees of neural networks [15,16];
f consensus aggregation [17}19];
f voting pool of classi"ers [20];
f dynamic classi"er selection [3];
f composite classi"er system [21];

f classi"er ensembles [16,22];
f divide-and-conquer classi"ers [23];
f pandemonium system of re#ective agents [24];
f change-glasses approach to classi"er selection [25],

etc.

The paradigms of these models di!er on the: assump-
tions about classi"er dependencies; type of classi"er out-
puts; aggregation strategy (global or local); aggregation
procedure (a function, a neural network, an algorithm),
etc.

There are generally two types of combination: classi"er
selection and classi"er fusion [3]. The presumption in
classi"er selection is that each classi"er is `an experta in
some local area of the feature space. When a feature
vector x3R~ is submitted for classi"cation, the classi"er
responsible for the vicinity of x is given the highest credit
when assigning the class label to x. We can nominate
exactly one classi"er to make the decision, as in [26], or
more than one `local experta, as in [11,27]. Classi"er
fusion assumes that all classi"ers are trained over
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the whole feature space, and are thereby considered as
competitive rather than complementary [4,18].

Multiple classi"er outputs are usually made compara-
ble by scaling them to the [0,1] interval. For some
classi"ers these values can be treated as classi"er-condi-
tional posterior probabilities for the classes [28]. In some
cases, e.g., undertrained or overtrained neural networks,
the probabilistic interpretation does not make sense.
Furthermore, the probabilistic interpretation [5,12] does
not lead very far without some assumptions, which may
appear unrealistic and restrictive, e.g., that the individual
classi"ers use mutually independent subsets of features,
or commit independent misclassi"cation errors. Under
such assumptions, fusion often reduces to simple aggre-
gation operators such as the product or average [5], or
the so-called `Naive Bayesa rule explained in Section 4.

The more general interpretation of classi"er outputs as
the support for the classes is the basis of fuzzy aggregation
methods, examples of which are simple connectives be-
tween fuzzy sets, the fuzzy integral [6,7,9,29}31], and
Dempster}Shafer fusion [2,4,32].

There is another way to look at the fusion problem: we
can treat the classi"er outputs simply as the input to
a second-level classi"er, and use classical pattern recogni-
tion techniques for the second-level design [33]. The use
of traditional feature-based classi"ers in this approach is
di$cult because the class distributions in the intermedi-
ate feature space are not well-behaved (there will be
many points in the regions close to 0 and 1, and very few
in-between). So, simple classi"ers like linear and quad-
ratic discriminant functions that assume normal distribu-
tions will fail.

The method developed here is based on a set of c ma-
trices called decision templates (DTs). DTs are a robust
classi"er fusion scheme that combines classi"er outputs
by comparing them to a characteristic template for each
class. DT fusion uses all classi"er outputs to calculate the
"nal support for each class, which is in sharp contrast to
most other fusion methods which use only the support for
that particular class to make their decision.

Section 2 introduces the formalism of classi"er fusion.
In Section 3 we present DT schemes with 11 measures of
similarity. Section 4 describes the algorithmic details of
some simple aggregation schemes; Naive}Bayes (NB),
behavior-knowledge space (BKS), Dempster}Shafer (DS),
and fuzzy integral (FI). Section 5 contains our experi-
ments with the 2 data sets (Satimage and Phoneme);
Section 6, the discussion; and Section 7, a summary.

2. Classi5er fusion

Let x3Rn be a feature vector and M1, 2,2, cN be the
label set of c classes. We call a classixer every mapping

D :RnP[0, 1]c!M0N,

where 0"[0, 0,2, 0]T is the origin of Rc. We call the
output of D a `class labela and denote it by
k
D
(x)"[k1

D
(x),2,kc

D
(x)]T,ki

D
(x)3[0,1]. The compo-

nents Mki
D
(x)N can be regarded as (estimates of) the poste-

rior probabilities for the classes, given x, i.e.
ki
D
(x)"P(iDx). Alternatively, ki

D
(x) can be viewed as typi-

calness, belief, certainty, possibility, etc. Bezdek et al. [34]
de"ne three types of classi"ers:

1. Crisp classi"er: ki
D
(x)3M0, 1N,+c

i/1
ki
D
(x)"1, ∀x3Rn;

2. Fuzzy classi"er: ki
D
(x)3[0, 1],+c

i/1
ki
D
(x)"1, ∀x3Rn

(probabilistic interpretation of the outputs falls in this
category);

3. Possibilistic classi"er: ki
D
(x)3[0,1],+c

i/1
ki
D
(x)'0,

∀x3Rn.

The decision of D can be `hardeneda so that a crisp
class label in M1, 2,2, cN is assigned to x. This is typically
done by the maximum membership rule:

D(x)"kQkk
D
(x)" max

i/1,2,c

Mki
D
(x)N. (1)

Let MD
1
,2,D

L
N be the set of ¸ classi"ers. We denote

the output of the ith classi"er as D
i
(x)"[d

i,1
(x),

2, d
i,c

(x)]T, where d
i,j

(x) is the degree of `supporta given
by classi"er D

i
to the hypothesis that x comes from class

j. We construct DK , the fused output of the ¸ "rst-level
classi"ers as

DK (x)"F(D
1
(x),2, D

L
(x)), (2)

where F is called aggregation rule.
The classi"er outputs can be organized in a decision

proxle (DP) as the matrix

(3)

Some methods calculate the support for class i (ki
DK
(x))

using only the ith column of DP(x). Fusion methods that
use the DP class-by-class will be called class-conscious.
Examples of class-conscious fusion operators are dis-
cussed in Section 4: average, minimum, maximum, prod-
uct, fuzzy integral, etc.

The choice of an aggregation operator F depends on
the interpretation of d

i,j
(x), i"1,2,¸, j"1,2, c.

We can regard d
i,j

(x) as an estimate of the posterior
probability P( j D x) produced by classi"er D

i
(denoted
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Table 1
Intermediate feature values from classi"ers D

1
and D

2

D
1

D
2

Class 1 Class 2 Class 1 Class 2

0.9807 0.0193 0.9007 0.0993
0.9318 0.0682 0.8200 0.1800
0.9697 0.0303 0.8357 0.1643
0.9458 0.0542 0.8710 0.1290
0.9849 0.0151 0.8364 0.1636
0.9302 0.0698 0.8680 0.1320
0.9622 0.0378 0.9316 0.0684
0.9140 0.0860 0.9421 0.0579
0.9146 0.0854 0.9318 0.0682
0.9406 0.0594 0.8932 0.1068

PK
i
( j D x), i"1,2,¸, j"1,2, c). Optimal (in the

Bayesian sense) combination of these estimats is not
straightforward. Kittler et al. [5] show two (di!erent!)
ways of combining such estimates starting from the same
independence assumption. For many classi"ers, the esti-
mates MPK

i
( j Dx)N can have both large bias and variance,

which, together with the independence assumption, can
invalidate the probabilistic approach.

Another approach is to use all of DP(x) to calculate the
support for each class. We call the range of the classi"er
outputs (decision pro"le matrices), [0,1](L>c)!M0NLR(L >c),
intermediate feature space. Each vector in this set is an
`expandeda version of the DP matrix obtained by con-
catenating its ¸ rows. The problem now is to design the
second (fusion) stage of the classi"er using the intermedi-
ate features, disregarding the matrix context. Fusion
methods in this group will be called class-indiwerent.
Here we can use any classi"er with the intermediate
features as inputs and the class label DK (x) as the output.

The di$culty comes from the speci"c structure of the
intermediate feature space. If all ¸ classi"ers are perfect
(produce the right crisp class label for every x), then there
will be no variance of the values of DP(x) over the subset
of the data set from class i. The covariance matrices for
the classes (or the single covariance matrix for all classes)
are singular. Classi"ers such as linear and quadratic
discriminant classi"ers, which are based on the assump-
tion of normally distributed classes, will fail when trying
to estimate and invert the covariance matrices. To get
high overall accuracy, we try to use the most accurate
individual classi"ers. The higher the accuracy of all clas-
si"ers, the more likely it is that the covariance matrix of
the intermediate features will be close to singular.

As an example, consider two classi"ers D
1

and
D

2
giving the values in Table 1 for 10 objects in c"2

classes from a certain data set, labeled in class 1. The
values were generated at random and independently,
so that the expected support for class 1 from D

1
is in

[0.9,1.0], and from classi"er D
2
, in [0.8, 1.0]. These

values form the data set in the intermediate space. The
mean is

m"(0.9475, 0.0525, 0.8830, 0.1170)T,

and the covariance matrix is

S"C
0.0007 !0.0007 !0.0004 0.0004

!0.0007 0.0007 0.0004 !0.0004

!0.0004 0.0004 0.0019 !0.0019

0.0004 !0.0004 !0.0019 0.0019D.
To calculate a linear or quadratic discriminant func-

tion we have to invert the covariance matrix S. In Mat-
lab, a warning is displayed that S is close to singular or

badly scaled and that the results may be inaccurate. The
following matrix results:

S~1"C
4.6117 4.6117 0.0000 0.0000

4.6117 4.6117 !0.0000 0

0.0000 0 4.6117 4.6117

0.0000 0.0000 4.6117 4.6117D1.0e118.

In our experiments we tried linear, quadratic, and
logistic classi"ers, and Fisher's discriminant as the fusion
classi"er DK .

Notice the di!erence between the class-conscious and
class-indi!erent groups of methods. The former use the
context of the DP but disregard part of the information,
using only one column per class. Class-indi!erent methods
use the whole DP but disregard the context (which might
be useful). In this paper we propose a middle ground
framework that makes use of both approaches.

In our approach it is assumed that we know the desir-
able DP for each class in advance. Consider an example
with ¸"3 and c"4. Presumably, the most desirable
decision pro"le for class 3 is the `crispa decision pro"le
shown in Table 2. Then the aggregation rule F in (2) can
be used to measure the correspondence of the current
DP(x) to the `modela for class i, i"1,2, c.

Some popular fusion methods, like majority vote and
naive Bayes, require crisp labels. To use them we "rst
need to harden the decisions of D

1
,2,D

L
. Some fusion

schemes, like simple fuzzy aggregation connectives, do
not require any additional training, i.e., once the indi-
vidual classi"ers are ready, the fusion can be performed
right away. Others, like the fuzzy integral and the prob-
abilistic product, train a small number of parameters.
Table 3 gives our grouping of classi"er fusion methods
divided by the absence/presence of parameters to train at
the fusion level, type of classi"er outputs, and the way DP
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Table 2
Most desirable (presumably) decision pro"le for class 3

ClassP 1 2 3 4

D
1
(x) 0 0 1 0

D
2
(x) 0 0 1 0

D
3
(x) 0 0 1 0

Table 3
Classi"er fusion techniques

First level Training at fusion level
outputB

No Yes

C1: C2:
Behavior-knowledge space [36]

Crisp Majority
[35]

`Naivea Bayes [4]

CC1: CC2:
Min, Max,
OWA [37],

Probabilistic product [39,40]

Average,
Product,
[38,5]

Fuzzy integral [6,7,9],

Trained linear combinations
[41}43],

Soft CI2
LDC, QDC, Fisher
Logistic classi"er
Neural networks [44,13],
Dempster}Shafer [32,2,4],
Decision templates

is used. Acronym CC denotes class-conscious fusion
methods, CI, class-indi!erent methods, and C, fusion
methods that require crisp class labels from the indi-
vidual classi"ers.

3. Decision templates (DT)

Let Z"Mz
1
,2, z

N
N, z

j
3Rn, be the crisply labeled

training data set.

De5nition. The decision template D¹
i
(Z) of class i is the

¸]c matrix D¹
i
(Z)"[dt

i
(k, s)(Z)] whose (k, s)th ele-

ment is computed by

dt
i
(k, s)(Z)"

+N
j/1

Ind(z
j
, i)d

k,s
(z

j
)

+N
j/1

Ind(z
j
, i)

, k"1,2,¸,

s"1,2, c, (4)

where Ind(z
j
, i) is an indicator function with value 1 if

z
j
has crisp label i, and 0, otherwise [50]. To simplify the

notation D¹
i
(Z) will be denoted by D¹

i
.

The decision template D¹
i
for class i is the average of

the decision pro"les of the elements of the training set
Z labeled in class i. When x3Rn is submitted for classi-
"cation, the DT scheme matches DP(x) to D¹

i
,

i"1,2, c, and produces the soft class labels

kiDK (x)"S(D¹
i
, DP(x)), i"1,2, c, (5)

whereS is interpreted as a similarity measure. The higher
the similarity between the decision pro"le of the current
x (DP(x)) and the decision template for class i (D¹

i
), the

higher the support for that class (ki
DK
(x)). Notice that we

use the word `similaritya in a broad sense, meaning
`degree of matcha or `likenessa, etc. Among the measures
of similarity that we consider are 4 (proper) measures of
similarity, 5 inclusion indices, and one consistency
measure. However, there is no reason to prefer these.
Since the general idea is to compare the matrix DP(x) to
c template matrices (D¹

1
,2, D¹

c
), any measure that

does this might be appropriate. Fig. 1 illustrates how the
DT scheme operates. The decision templates are cal-
culated in advance using Z in Eq. (4).

Regarding the arguments of S as fuzzy sets on some
universal set with ¸ ) c elements, various fuzzy measures
of similarity can be used. Let A and B be fuzzy sets on
;"Mu

1
,2, u

n
N. In this study we used the following four

proper measures of similarity [45]:

S
1
(A,B),

DDAWBDD
DDAXBDD

, (6)

where DDfDD is the relative cardinality of the fuzzy set f on;

DDfDD"
1

n

n
+
i/1

kf (ui ). (7)

S
2
(A,B),1!DDA+BDD, (8)

where A+B is the symmetric di!erence de"ned by the
Hamming distance

k
A+B(u)"Dk

A
(u)!k

B
(u)D, u3;. (9)

S
3
(A,B),1!DDA*BDD, (10)

where

k
A*B(u)"maxMk

AWBM
(u),k

AM WB
(u)N, u3;. (11)

S
4
(A,B),1!sup

u|U

Mk
A+B(u)N. (12)

We also used the following 5 indices of inclusion of A in
B [45]:

I
1
(A,B),

DDAWBDD
DDADD

. (13)
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Fig. 1. Architecture of the decision templates classi"er fusion scheme.

I
2
(A,B),1!DDAD!DBDD, (14)

where D!D is the bounded di!erence

k
A@~@B

(u)"maxM0,k
A
(u)!k

B
(u)N, u3;. (15)

I
3
(A,B),DDAM XBDD. (16)

I
4
(A,B),inf

u|U
Mk

A@~@B
(u)N. (17)

I
5
(A,B),inf

u|U
Mk

AM XB
(u)N. (18)

The consistency index was

C(A,B),sup
u|U

Mk
AWB

(u)N. (19)

For intersection and union we use the minimum
and maximum, respectively, and for complement,
k
AM
(u)"1!k

A
(u). The 11th decision template is

based on the Euclidean distance between matrices DP
and D¹

i
,

N(DP,D¹
i
)"ki

DK
(x)"1!

1

¸c

L
+
k/1

c
+
s/1

(dt
i
(k, s)!d

k,s
(x))2.

(20)

While we use only the Euclidean norm in this study,
there is no reason to stop at this choice. Any norm could
be used in (20), e.g., the Minkowski norms (1 and sup
norms), or the Mahalanobis norm.

It is important to notice the di!erence between integral
and point-wise measures. Integral measures are based on
cardinality (S

1
, S

2
,S

3
, I

1
, I

2
, I

3
,N), while pointwise

measures use a single degree of membership to determine
their value (S

4
, I

4
, I

5
,C). Therefore, point-wise measures

tend to be more sensitive to outliers and prone to errors
than integral measures.

4. Fusion techniques used for comparison

4.1. Techniques for crisp individual labels

C1: Majority vote. The class labels of the classi"ers are
crisp, or are hardened by (1), and the crisp label that is
most represented in the set of ¸ labels is assigned to x.
Ties are broken randomly. This fusion does not require
any parameters to be trained, and is therefore classi"ed in
C1 (Table 3).

C2: `Naivea-Bayes combination (NB) [4]. This scheme
assumes that the classi"ers are mutually independent
(this is the reason we use the name `naivea); Xu et al. [4]
and others call it Bayes combination. For each classi"er
D

j
, a c]c confusion matrix CMj is calculated by ap-

plying D
j
to the training data set. The (k, s)th entry of this

matrix, cmj
k,s

is the number of elements of the data set
whose true class label was k, and were assigned by D

j
to

class s. By cmj
.,s

we denote the total number of elements
labeled by D

j
into class s (this is calculated as the sum of

the sth column of CMj). Using these values, a c]c label
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Fig. 2. Operation of BKS method for classi"er fusion.

Table 4
A possible BKS look-up table

s
1
, s

2
1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3

Numbers from each class 10/3/3 3/0/6 5/4/5 0/0/0 1/16/6 4/4/4 7/2/4 0/2/5 0/0/6
Cell label 1 3 1, 3 0 2 1, 2, 3 1 3 3

matrix ¸Mj is computed, whose (k, s)th entry lmj
k,s

is an
estimate of the probability that the true label is k given
that D

j
assigns crisp class label s.

lmj
k,s

"PK (kDD
j
(x)"s)"

cmj
k,s

cmj
.,s

,

For every x3Rn, D
j

yields a crisp label vector D
j
(x)

pointing at one of the classes, say s, in M1,2, cN.
Associated with s is a soft label vector
[PK (1DD

j
(x)"s),2, PK (cDD

j
(x)"s)]T, which is the sth col-

umn of the label matrix ¸Mj. Let s
1
,2, s

L
be the crisp

class labels assigned to x by classi"ers D
1
,2,D

L
, respec-

tively. Then, by the independence assumption, the esti-
mate of the probability that the true class label is i (which
is the ith component of the "nal label vector) is calculated
by

ki
DK
(x)"

L
<
j/1

PK (i D D
j
(x)"s

j
)"

L
<
j/1

lm j
i,sj

, i"1,2, c.

C2: Behavior-knowledge space (BKS) [36]. Let again
s
1
,2, s

L
be the crisp class labels assigned to x by classi-

"ers D
1
,2,D

L
, respectively. Every possible combination

of class labels D
1
(x), (s

1
,2, s

L
)3M1,2, cNL is an index to

a cell in a look-up table (BKS table). The table is "lled
in using the data set Z: z

j
goes to the cell indexed by

D
1
(z

j
),2,D

L
(z

j
). Thus, each entry in the look-up table

contains one of the following: a single class label (the one
that is most often encountered amongst the elements of
Z in this cell); no label (no element of Z had the respective
combination of class labels); or a set of tied class labels (if
more than one class have the same highest number of
elements in this cell).

Example. Let c"3, ¸"2, N"100. A possible BKS
look-up table is displayed in Table 4.

The decision for an x3Rn is made according to the
class label of the cell indexed by D

1
(x),2,D

L
(x). Ties are

broken randomly. If an empty cell is hit, the class label is
chosen at random from M1,2, cN. The operation of BKS
is illustrated in Fig. 2.

Both Naive Bayes and BKS have sets of parameters
that are estimated using the trained classi"ers and the
training data: for NB these are the ¸ label matrices, and
for BKS, the look-up table. This places them in group C2
(Table 3).
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Fig. 3. Operation of the simple aggregation rules.

4.2. Class-conscious fusion techniques for soft labels

CC1: Minimum, maximum, average and product. We
used the ¸-place operators minimum, maximum, average
and product as the aggregation rule (F):

ki
DK
(x)"F(d

1,i
(x),2, d

L,i
(x)), i"1,2, c.

Fig. 3 shows the operation of simple aggregation
rules. The following example helps to clarify these four
fusion methods. Let c"3 and ¸"5. Assume that for a
certain x,

DP(x)"C
0.1 0.5 0.4

0.0 0.0 1.0

0.4 0.3 0.4

0.2 0.7 0.1

0.1 0.8 0.2D.
Classi"ers D

1
and D

4
are fuzzy, D

2
is crisp, and D

3
and

D
5

are possibilistic. Applying each of the operators col-
umnwise, we obtain as the "nal soft class label k

DK
(x)

Minimum"(0.0, 0.0, 0.1)T;

Maximum"(0.4, 0.8, 1.0)T;

Average"(0.16, 0.46, 0.42)T;

Product"(0.0, 0.0, 0.0032)T;

If hardened, minimum, maximum, and product will label
x in class 3, whereas the average will put x in class 2.

CC2: Probabilistic product [39,40] is an aggregation
formula (derived in [46]) which gives the Bayes decision
if the classi"ers use mutually independent subsets of
features and yield the true posterior probability,
d
i,j

(x)"P(i Dx
j
), on their respective feature subspaces,

kjDK (x)"
<L

i/1
d
i,j

(x)

P( j )L~1
, j"1,2, c.

For the prior probabilities P( j ) we used the sample-
based estimates from the training set Z

PK ( j )"
N

j
N

, j"1,2, c,

where N
j
is the number of elements in Z from class j and

N is the total training sample size. Even when the classi-
"er outputs are not the true values but are estimates of
the posterior probabilities, the probabilistic product
works well as an aggregation connective.

CC2: Fuzzy integral (FI) [6,7,9,31]. For an input x we
calculate c vectors of length ¸. Each such vector corres-
ponds to a class, and contains ¸ values of a fuzzy measure.
Then the ith column of the decision pro"le, with the
¸ values of support for class i, is sorted and fused with the
fuzzy measure for that class to get ki

DK
(x). Thus, fuzzy

integration is interpreted as searching for the maximal
grade of agreement between the objective evidence (pro-
vided by the sorted classi"er outputs for class i) and the
expectation (the ¸ fuzzy measure values) [6]. The prob-
lem is how to "nd the fuzzy measure vector. Most
authors that use the fuzzy integral suggest computing
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Table 6
Applying the FI procedure to the columns of DP(x) in Table 5

Column 1 g Column 2 g Column 3 g Column 4 g

0.7 0.70 0.1 0.66 0.6 0.66 0.3 0.63
0.2 0.91 0.1 0.90 0.4 0.90 0.2 0.90
0.0 1.00 0.0 1.00 0.1 1.00 0.2 1.00H

Table 5
Decision pro"le for x

Class P 1 2 3 4

D
1
(x) 0.2 0.1 0.4 0.3 g1"PK

1
"0.63,

DP(x)" D
2
(x) 0.7 0.0 0.1 0.2 g2"PK

2
"0.70,

D
3
(x) 0.1 0.1 0.6 0.2 g3"PK

3
"0.66,

a j-fuzzy measure gj . To "nd the support for class k,
kk
DK
(x), the following procedure is applied

1. Fix the ¸ fuzzy densities g1,2, gL. These densities can
be interpreted as importance of the classi"ers. Wang
et al. [31] report that good results have been obtained
with gi"PK

i
/2, i.e., half of the estimated probability of

correct classi"cation of classi"er D
i
; Cho and Kim [6]

use gi"PK
i
, i"1,2,¸.

2. Calculate j'!1 as the only real root greater than
!1 of the equation

j#1"
L
<
i/1

(1#jgi). (21)

3. For a given x sort the kth column of DP(x) to obtain
[d

i1,k
(x), d

i2 ,k
(x),2, d

iL ,k
(x)]T, d

i1 ,k
(x) being the highest

degree of support, and d
iL ,k

(x), the lowest.
4. Sort the densities correspondingly, i.e., gi1 ,2, giL .
5. Set g(1)"gi1 .
6. For t"2 to ¸ calculate recursively

g(t)"git#g(t!1)#jgitg(t!1).

7. Calculate the "nal degree of support for class k as

kk
DK
(x)"

L
max
t/1

MminMd
it ,k

, g(t)NN.

Notice that the fuzzy measure vector might be di!erent
for each class, and is also speci"c for the current x. The
fuzzy measure vector for two classes will be the same only
if the ordering of the classi"er support for the classes is
the same. For example, consider the DP and classi"er
accuracies shown in Table 5.

Solving Eq. (21) we get j"!0.94977. Applying the
above procedure separately to each column of the table,
we get the results shown in Table 6.

Thus, k1DK (x)"0.7, k2DK (x)"0.1, k3DK (x)"0.6, k4DK (x)"0.3
and the class label for x is 1. The FI scheme is illustrated
in Fig. 4.

CI2: Dempster}Shafer combination (DS) [2]. This tech-
nique is the one closest to the DT. The classi"er outputs
MD

i
(x)N are possibilistic. Instead of calculating the sim-

ilarity between the decision template D¹
i
and the deci-

sion pro"le DP(x), the DS algorithm goes further. The
following steps are performed:

1. Let D¹i
j

denote the ith row of the decision template
for class j. We calculate the `proximitya ' between
D¹i

j
and D

i
(x) for every class j"1,2, c and for every

classi"er i"1,2,¸. As recommended in Ref. [2], this
proximity is calculated as

'
j,i

(x)"
(1#DDD¹i

j
!D

i
(x)DD2)~1

+c
k/1

(1#DDD¹i
k
!D

i
(x)DD2)~1

, (22)

where DD*DD is any matrix norm.
2. Using Eq. (22), we calculate for every class, j"1,2, c;

and for every classi"er, i"1,2,¸, the following
belief degrees

b
j
(D

i
(x))"

'
j,i

(x)<
kEj

(1!'
k,i

(x))

1!'
j,i

(x)[1!<
kEj

(1!'
k,i

(x))]
.

3. The "nal DS label vector with membership degrees
has the components

kj
DK
(x)"K

L
<
i/1

b
j
(D

i
(x)), j"1,2, c,

where K is a normalizing constant.

In the CI2 category we also use some well-known classi-
"ers: linear and quadratic discriminant classi"ers (LDC
and QDC assuming normal densities [33]), the logistic
classi"er (LOG) [47], and Fisher's discriminant (FSH)
[33]. LDC and Fisher are identical for well-sampled
two class problems. For undersampled datasets LDC
(and even more severely QDC) su!er from unstable
covariance matrix estimates. Our Fisher implementation
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Fig. 4. Operation of fuzzy integral for classi"er fusion.

uses the pseudo-inverse approach [48] in those situ-
ations.

5. Experiments

We used two data sets from the ELENA database
(anonymous ftp at ftp.dice.ucl.ac.be, directory pub/neu-
ral-nets/ELENA/databases). Results with the same data
using classi"er selection methods can be found in [3].

The Satimage data was generated from Landsat
Multi-Spectral Scanner image data. It consists of 6435
pixels with 36 attributes (4 spectral bands ]9 pixels in
a 3]3 neighborhood). The pixels are crisply classi"ed
into six classes, and are presented in random order in the
database. The classes are: red soil (23.82%), cotton crop
(10.92%), grey soil (21.10%), damp grey soil (9.73%), soil
with vegetation stubble (10.99%), and very damp grey
soil (23.43%). What makes this database attractive is:
large sample size; numerical, equally ranged features; no
missing values; and compact classes of approximately
equal size, shape and prior probabilities. Fig. 5 is a scat-
terplot of the 6 Satimage classes on features d17 and
d18. In our experiments we used only features d17 to
d20, as recommended by the database designers.

The Phoneme data consists of 5404 "ve-dimensional
vectors characterizing two classes of phonemes: nasals
(70.65%) and orals (29.35%). The scatterplot of features
3 and 4 of 800 randomly selected data points is shown in
Fig. 6. The two classes are highly overlapping with com-

plex classi"cation boundaries, suggesting that parametric
classi"ers will not achieve good results.

Using the Matlab code for the Quadratic Discriminant
Classi"er from the package PRTOOLS [49] we designed
6 classi"ers with the Satimage data and 10 classi"ers with
the Phoneme data using all combinations of 2 features in
each case. For example, we trained six QDCs for the 4-D
Satimage data, using feature pairs (17,18), (17,19),2(19,20).
We split each 2D data set into training and testing sets,
and averaged the results from 10 random data shu%es.
Four training set sizes were used with both Satimage and
Phoneme: 100, 200, 1000, and 2000. For all experiments,
the test set was the remaining part of the data set after
taking out the training set.

We did not consider here the reject option * all ties
were broken randomly. In our version of majority voting
we assigned a class label, even if the number of votes for
the winning class might be less than half (this concerns
the Satimage data where six classes are possible and the
votes may spread so that none of the classes gets more
than half of all votes).

Tables 7 and 8 show the classi"cation accuracy for the
two data sets, respectively. We display only the% correct
on the test sets, which have not been seen during training
of either the individual classi"ers or the second level
fusion models.The fusion schemes are arranged as fol-
lows:

Group C1

1. MAJ, Majority voting.
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Fig. 5. Satimage data on features d17 and d18.

Fig. 6. Phoneme data on features d3 and d4.
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Table 7
Average test accuracy (in %) and ranks for the SATIMAGE data

Training 100 200 1000 2000 Total rank
size P

SB 77.50 7 79.73 6 80.67 7 80.62 6 26

C1
MAJ 80.89 9 81.27 9 82.13 10 82.23 10 38

C2
NB 77.18 6 80.28 8 83.45 13 83.70 13 40
BKS 68.15 5 72.26 5 79.81 6 81.59 9 25

CC1
MAX 81.44 11 82.19 13 82.91 12 82.84 12 48
MIN 82.51 15 83.53 23 84.42 23 84.57 25 86
AVR 82.63 17 82.85 14 83.81 14 83.88 15 60
PRO 83.02 21 83.55 24 84.44 24 84.48 22 91

CC2
PPR 82.53 16 83.42 16 84.14 16 84.18 16 64
FI 81.75 13 81.95 12 82.64 11 82.77 11 47

CI2
DS 83.01 20 83.43 17 84.42 22 84.50 23 82
LDC 41.97 3 41.64 4 32.33 2 42.45 2 11
QDC 23.83 1 22.55 1 28.69 1 47.24 3 6
LOG 57.23 4 39.58 3 39.89 4 55.14 4 15
DT:NM 82.98 19 83.48 22 84.50 25 84.57 24 90
DT:I1 83.11 23.5 83.45 19.5 84.32 18.5 84.38 19.5 81
DT:I2 83.11 23.5 83.45 19.5 84.32 18.5 84.38 19.5 81
DT:I3 81.62 12 81.60 10 81.54 8 81.26 7 37
DT:I4 82.36 14 83.57 25 84.32 21 84.37 17 77
DT:I5 81.21 10 81.91 11 82.00 9 81.39 8 38
DT:S1 83.11 23.5 83.45 19.5 84.32 18.5 84.38 19.5 81
DT:S2 83.11 23.5 83.45 19.5 84.32 18.5 84.38 19.5 81
DT:S3 82.93 18 83.28 15 83.88 15 83.87 14 62
DT:S4 34.81 2 32.15 2 34.37 3 31.53 1 8
DT:C 79.50 8 79.85 7 79.36 5 79.29 5 25

OR 90.15 26 90.29 26 90.47 26 90.51 26 104

Group C2

1. NB, Naive Bayes.
2. BKS, Behavior Knowledge Space method.

Group CC1

1. MAX, Maximum aggregation rule.
2. MIN, Minimum aggregation rule.
3. AVR, Average aggregation rule.
4. PRO, Product aggregation rule.

Group CC2

1. PPR, Probabilistic product.
2. FI, Fuzzy integral.

Group CI2

1. DS, Dempster}Shafer.
2. LDC, Linear discriminant classi"er on the intermedi-

ate-output space.
3. QDC, Quadratic discriminant classi"er.
4. LOG, Logistic classi"er.
5. FSH, Fisher linear classi"er.
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Table 8
Average test accuracy (in %) and ranks for the Phoneme data

Training 100 200 1000 2000 Total rank
size P

SB 74.29 11 75.45 13 75.52 9 75.17 9 42

C1
MAJ 75.51 21 75.96 19 76.38 16 76.08 15 71

C2
NB 74.13 9 73.58 6 74.09 8 73.61 8 31
BKS 72.71 5 75.12 10 77.48 24 77.96 24 63

CC1
MAX 75.42 19.5 75.40 11.5 75.80 10.5 75.47 10.5 52
MIN 75.42 19.5 75.40 11.5 75.80 10.5 75.47 10.5 52
AVR 75.82 25 75.81 17 76.37 15 75.91 14 71
PRO 75.77 24 75.81 16 76.34 14 75.88 13 67

CC2
PPR 73.67 7 73.62 7 71.81 5 72.11 5 24
FI 75.65 23 75.60 14 76.10 12 75.76 12 61

CI2
DS 75.08 18 75.85 18 76.79 18 77.12 18 72
LDC 37.63 1 50.05 1 37.38 1 54.02 2 5
QDC 54.07 2 51.00 2 52.74 2 47.30 1 7
LOG 74.97 12 77.13 25 77.91 25 77.97 25 87
FSH 75.08 * 76.53 * 77.09 * 76.75 * *

DT:NM 75.02 17 75.78 15 76.73 17 77.12 19 68
DT:I1 75.00 14.5 76.35 21.5 77.07 20.5 77.45 21.5 78
DT:I2 75.00 14.5 76.35 21.5 77.07 20.5 77.45 21.5 78
DT:I3 73.86 8 73.71 8 73.85 7 73.30 7 30
DT:I4 74.16 10 73.86 9 76.17 13 76.94 17 49
DT:I5 69.06 4 66.99 3 65.21 3 65.30 3 13
DT:S1 75.00 14.5 76.35 21.5 77.07 20.5 77.45 21.5 78
DT:S2 75.00 14.5 76.35 21.5 77.07 20.5 77.45 21.5 78
DT:S3 75.64 22 76.50 24 77.12 23 76.65 16 85
DT:S4 65.03 3 68.31 4 68.45 4 69.04 4 15
DT:C 73.36 6 73.07 5 73.22 6 72.69 6 23

OR 97.44 26 97.25 26 97.74 26 97.62 26 104

Group CI2 (DTs) Each DT scheme is denoted by
`DT : ssa : where `ssa stands for the respective similarity
measure, e.g., DT : I5. By DT :NM we denote the DT
scheme based on the Euclidean distance. `NMa stands
for the `nearest meana.

Also given in Tables 7 and 8 are the accuracy of the
single best (SB) classi"er and the `oraclea (OR). The
`oraclea works as follows: assign the correct class label to
x i! at least one individual classi"er produces the correct
class label of x (when its decision is hardened).

For classi"ers 2}5 in Group CI2, we used the Matlab
code in PRTools.

Not surprisingly, the fusion schemes have approxim-
ately the same performance. To "nd out which were
consistently better (even a little better) than the others,
we sorted the testing accuracies and calculated their
ranks. To the right of classi"cation accuracy in each
column is the rank of the fusion scheme, based on that
column. For an individual test, the ranks range from
1 (poorest) to 26 (best). The last column in each table is
the total rank (the sum of the four) for the respective data
set.

Table 9 shows the 25 schemes (without FSH, which
cannot be run for six classes, and was applied only to the
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Table 9
Fusion schemes sorted by their ranks, for Satimage, Phoneme,
and both data sets

Satimage Phoneme Total for both Group

OR 104 OR 104 OR 208 *

PRO 91 LOG 87 DT:S2 159 CI2
DT:NM 90 DT:S3 85 DT:S1 159 CI2
MIN 86 DT:S1 78 DT:I2 159 CI2
DS 82 DT:I1 78 DT:I1 159 CI2
DT:S1 81 DT:I2 78 DT:NM 158 CI2
DT:I1 81 DT:S2 78 PRO 158 CC1
DT:S2 81 DS 72 DS 154 CI2
DT:I2 81 MAJ 71 DT:S3 147 CI2
DT:I4 77 AVR 71 MIN 138 CC1
PPR 64 DT:NM 68 AVR 131 CC1
DT:S3 62 PRO 67 DT:I4 126 CI2
AVR 60 BKS 63 MAJ 109 C1
MAX 48 FI 61 FI 108 CC2
FI 47 MIN 52 LOG 102 CI2
NB 40 MAX 52 MAX 100 CC1
DT:I5 38 DT:I4 49 PPR 88 CC2
MAJ 38 SB 42 BKS 88 C2
DT:I3 37 NB 31 NB 71 C2
SB 26 DT:I3 30 SB 68 *

BKS 25 PPR 24 DT:I3 67 CI2
DT:C 25 DT:C 23 DT:I5 51 CI2
LOG 15 DT:S4 15 DT:C 48 CI2
LDC 11 DT:I5 13 DT:S4 23 CI2
DT:S4 8 QDC 7 LDC 16 CI2
QDC 6 LDC 5 QDC 13 CI2

Phoneme data) sorted by their ranks for Satimage,
Phoneme, and both data sets. Since there were two data
sets and four tests, the maximum possible score is
26]8"208, which is achieved by the oracle. If the same
classi"er had ranked lowest at all 8 tests, the minimum
cumulative value of 8]1"8 would be attained, but this
did not happen.

6. Discussion

Overall classixcation accuracy. The accuracy of the
combinations in our experimental setting is not very high
compared to studies on the same data sets reported
elsewhere [3]. We believe this is because we did not
confer special attention on designing the individual "rst-
level classi"ers. In this study we were interested in com-
paring the second-level fusion schemes, and hence, the
type of "rst-level classi"ers was immaterial. The 2-fea-
tures quadratic discriminant classi"er (QDC) that we
adopted for all individual classi"er designs, was not a bad
choice for the Satimage data because the classes are
distributed in roughly compact `cloudsa (Fig. 5). This

explains the better accuracy with this data set than with
Phoneme data.

Improvement over the single-best classixer. The gap
from 68 to 208 between the single best classi"er and the
`oraclea presumably shows the `potentiala of the pool of
classi"ers. Interestingly, although for both data sets there
is a big gap, many of the fusion schemes did not improve
very much on the single-best classi"er rate. This is prob-
ably due to dependencies between the classi"ers. If we
used a large number of features and built the classi"ers
on disjoint subsets the chance to obtain good improve-
ment over the single best classi"er would have been
higher. The best improvement for the Satimage data
(Table 7) was 5.61% for a training set of size 100, 3.84%
for 200, 3.83% for 1000, and 3.95% for 2000. Im-
provement for the Satimage data was higher than
improvement with the Phoneme data (Table 8): 1.53%
for a training set of size 100, 1.68% for 200, 2.38% for
1000, and 2.80% for 2000, although the Phoneme data
had a better `oraclea.

Ewects of sample size. Surprisingly, many of the fusion
schemes fared better with smaller amounts of training
data. With the Satimage data, DT schemes using integral
measures were the best on the smallest training size (100),
which can be explained by the fact that they estimate
large enough, but not too large, numbers of parameters
(like, e.g., BKS). For the Phoneme data, the 2-class prob-
lem with training size 100 appears to be best solved by
the simplest aggregation rules (which were not so accu-
rate for the 6 Satimage classes). This might be evidence of
overtraining for those schemes that use second-level
training.

Overtraining and number of parameters. BKS appeared
to be most prone to overtraining because its look-up
table needs large data sets to be properly calculated. In
almost all the experiments the BKS method gave the best
training accuracy but did badly on testing. From Tables
7 and 8 it can be seen that BKS had the highest rate of
improvement on the testing accuracy from 100 to 2000
training size. The BKS overtraining problem is especially
severe with a large number of classes and classi"ers: the
number of parameters (cells in the table) is ¸c, which for
the Satimage data is 66"46656, and for the Phoneme
data is 102"100. Not all combinations will be encoun-
tered in practice, but a large number of them might be.
To compare, DT, DS, and NB acquire ¸]c2 parameters
(216 for Satimage and 40 for Phoneme); FI, ¸#1 (7 for
Satimage and 3 for Phoneme); PPR, ¸ (2 for Satimage
and 1 for Phoneme); while the simple aggregation tech-
niques need to learn none.

Statistical classixers. LDC and QDC are not appropri-
ate on the intermediate space because the covariance
matrices needed for these designs are close to singular,
as explained in Section 2. The other two schemes though,
the logistic classi"er (LOG) and Fisher's discrimi-
nant (FSH), do not share this drawback. These two
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classi"ers both gave excellent results with the 2-class
Phoneme data. LOG failed on the Satimage data because
some of the classes were almost separable in the inter-
mediate space (i.e., the classi"ers had very distinct deci-
sion templates). It would be interesting to look at other
conventional classi"ers, for example decision trees or
nearest neighbor and multiple prototype rules for the
intermediate-output space.

Assumption-based schemes. The assumption-based clas-
si"er fusion schemes, Naive Bayes and the probabilistic
product, did not reach the performance of the other
schemes. They both failed to improve over the single best
rate with the Phoneme data. In the overall ranking Naive
Bayes was the poorer of these two.

Dempster}Shafer method [2]. This method rated com-
paratively high on both data sets. It had a little lower
"nal rank than the best DT techniques, and can be put
basically in the same group. The calculations that it
involves however, are more complex than any of the DT
schemes.

Simple aggregation rules. It is somewhat surprising to
see how well the simple aggregation rules, with no sec-
ond-level training, compete with the more sophisticated
ones. This is probably the reason that simple aggregation
continues to be popular [5,40]. One problem with simple
aggregation is, that although they have good overall
performance, it is not clear which one is good for a par-
ticular data set. The Product and Minimum, for example,
gave excellent results with the Satimage data (see Table
9 where PRO rates as the best model), but were not as
good for the Phoneme data. Interestingly, in our experi-
ments they outperformed the Average, which is viewed as
the favorite in this group [5].

Fuzzy integral. In our experiments the fuzzy integral
using a j-fuzzy measure rates in the middle. Gader et al.
[7] report the results from a handwritten word recogni-
tion problem, where the fuzzy integral dramatically out-
performs various neural networks. The authors attribute
this to the e$cient way in which the FI fusion model uses
the additional information (called here class-conscious-
ness). This shows again that there is no `perfecta classi"er
or fusion scheme that will surpass the others on all data
sets.

Decision templates. In our experiments, DT classi"er
fusion schemes based on integral measures tended to give
good results with both data sets. The overall ranking
(Table 9) puts 5 of them on the top, just one rank point
above the PRO (!). The four schemes based on S

1
, S

2
, I

1
,

and I
2

were not distinguishable. It can be formally
proven that when the individual classi"er outputs sum up
to the same ("xed) value (1, for the individual QDCs used
here), fusion by these four DTs induces the same order on
the set of class labels, and therefore, leads to the same
decision.

The basic conclusion in our experiments is that the DT
fusion model shows superior performance to the other

techniques in these experiments. A practically established
postulate in pattern recognition is that there is no `besta
classi"er that will outperform every other method on all
data sets. Therefore, we try to design a scheme (for
classi"cation or classi"er fusion) which yields generally
better performance amongst similar schemes. Although
in terms of increase in classi"cation accuracy the im-
provement in our experimental study is minor, decision
templates appear to be such a scheme. Classi"er fusion
using DTs does not rely on questionable assumptions
(NB and PPR do), is less likely to overtrain than BKS,
and rated high on both data sets unlike LOG, FSH, PRO,
and MIN. The fusion scheme is simple and intuitive, and
does not require heavy calculations.

7. Summary

In this paper we described decision templates (DTs) for
combining multiple classi"er outputs using 11 similarity
measures. DTs are based on the similarity between the
matrix of classi"er outputs for an input x (the Decision
Pro"le DP(x)) and the c matrix templates found as the
class means of the classi"er outputs. For comparison we
formed three groups of classi"er fusion schemes: C, fusion
methods which require crisp class labels from the indi-
vidual classi"ers, CC `class-consciousa fusion methods,
and CI, `class-indi!erenta methods. Depending on
whether or not the fusion scheme needs to train and store
parameters for its operation we further divided the two
groups into schemes without training (C1, and CC1), and
with training (C2, CC2, CI2). The following methods
were considered:

f C1: Majority voting.
f C2: Naive Bayes, behavior knowledge space method.
f CC1: Maximum, minimum, average, product aggrega-

tion rules.
f CC2: Probabilistic product, fuzzy integral.
f CI2: A Dempster}Shafer fusion version, linear dis-

criminant classi"er on the intermediate-output space,
quadratic discriminant classi"er, logistic classi"er, and
Fisher's linear classi"er.

We also calculated the accuracy of the single best
among the individual classi"ers, and the `oraclea. We
carried out experiments on 10 permutations of two data
sets Satimage (6 classes, 6435 4-D vectors) and Phoneme
(2 classes, 5404 5-D vectors) from the ELENA database.
Four training set sizes were used: 100, 200, 1000, and
2000. The basic conclusion from our experiments is that
DTs based on integral measures of similarity (in the
broad sense) are superior to the other techniques. The
other techniques rely on faulty assumptions (NB, PPR),
or have too many parameters and so are overtrained
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(BKS). Some of the fusion schemes were excellent for the
one data set but not as good (or even applicable) for the
other (LOG, FSH, PRO, MIN).

An option for improving the overall accuracy may be
to select a subset from the pool of classi"ers instead of
using all of them. This will put all the combination rules
in the re-training group. The method of selection can
vary from exhaustive search (in the case of few classi"ers),
to procedures borrowed from feature selection or from
editing methods for the k-nearest-neighbor rule.

References

[1] L. Lam, C.Y. Suen, Optimal combination of pattern classi-
"ers, Pattern Recognition Lett. 16 (1995) 945}954.

[2] G. Rogova, Combining the results of several neural net-
work classi"ers, Neural Networks 7 (1994) 777}781.

[3] K. Woods, W.P. Kegelmeyer, K. Bowyer, Combination
of multiple classi"ers using local accuracy estimates, IEEE
Trans. Pattern Anal. Mach. Intell. 19 (1997) 405}410.

[4] L. Xu, A. Krzyzak, C.Y. Suen, Methods of combining
multiple classi"ers and their application to handwriting
recognition, IEEE Trans. Systems Man Cybernet. 22
(1992) 418}435.

[5] J. Kittler, M. Hatef, R.P.W. Duin, J. Matas, On combining
classi"ers, IEEE Trans. Pattern Anal. Mach. Intell. 20 (3)
(1998) 226}239.

[6] S.-B. Cho, J.H. Kim, Combining multiple neural networks
by fuzzy integral and robust classi"cation, IEEE Trans.
Systems Man Cybernet. 25 (1995) 380}384.

[7] P.D. Gader, M.A. Mohamed, J.M. Keller, Fusion of hand-
written word classi"ers, Pattern Recognition Lett. 17
(1996) 577}584.

[8] M. Grabisch, F. Dispot, A comparison of some for fuzzy
classi"cation on real data, Proceedings of the Second In-
ternational Conference on Fuzzy Logic and Neural Net-
works, Iizuka, Japan, 1992, pp. 659}662.

[9] J.M. Keller, P. Gader, H. Tahani, J.-H. Chiang,
M. Mohamed, Advances in fuzzy integration for pat-
tern recognition, Fuzzy Sets and Systems 65 (1994)
273}283.

[10] I. Bloch, Information combination operators for data
fusion: a comparative review with classi"cation, IEEE
Trans. Systems Man Cybernet. * Part A: Systems
Humans 26 (1996) 52}67.

[11] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton,
Adaptive mixtures of local experts, Neural Comput.
3 (1991) 79}87.

[12] R.A. Jacobs, Methods for combining experts' probability
assessments, Neural Comput. 7 (1995) 867}888.

[13] M.I. Jordan, L. Xu, Convergence results for the EM ap-
proach to mixtures of experts architectures, Neural Net-
works 8 (1995) 1409}1431.

[14] S.J. Nowlan, G.E. Hinton, Evaluation of adaptive mixtures
of competing experts, in: R.P. Lippmann, J.E. Moody, D.S.
Touretzky (Eds.), Advances in Neural Information Pro-
cessing Systems, Vol. 3, 1991, pp. 774}780.

[15] C.M. Bishop, Neural Networks for Pattern Recognition,
Clarendon Press, Oxford, 1995.

[16] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, V. Vapnik,
Boosting and other ensemble methods, Neural Comput.
6 (1994) 1289}1301.

[17] J.A. Benediktsson, P.H. Swain, Consenus theoretic classi-
"cation methods, IEEE Trans. Systems Man Cybernet. 22
(1992) 688}704.

[18] K.-C. Ng, B. Abramson, Consensus diagnosis: a simulation
study, IEEE Trans. Systems Man Cybernet. 22 (1992)
916}928.

[19] J.A. Benediktsson, J.R. Sveinsson, J.I. Ingimundarson,
H. Sigurdsson, O.K. Ersoy, Multistage classi"ers opti-
mized by neural networks and genetic algorithms, Non-
linear Anal. Theory Methods Appl. 30 (3) (1997)
1323}1334.

[20] R. Battiti, A.M. Colla, Democracy in neural nets: voting
schemes for classi"cation, Neural Networks 7 (1994)
691}707.

[21] B.V. Dasarathy, B.V. Sheela, A composite classi"er system
design: concepts and methodology, Proc. IEEE 67 (1978)
708}713.

[22] E. Filippi, M. Costa, E. Pasero, Multi-layer perceptron
ensembles for increased performance and fault-tolerance in
pattern recognition tasks, IEEE International Conference
on Neural Networks, Orlando, FL, 1994, pp. 2901}2906.

[23] C.-C. Chiang, H.-C. Fu, A divide-and-conquer methodo-
logy for modular supervised neural network design, IEEE
International Conference on Neural Networks, Orlando,
FL, 1994, pp. 119}124.

[24] F. Smieja, The pandemonium system of re#ective agents,
IEEE Trans. Neural Networks 7 (1996) 97}106.

[25] L.I. Kuncheva, Change-glasses approach in pattern recog-
nition, Pattern Recognition Lett. 14 (1993) 619}623.

[26] L.A. Rastrigin, R.H. Erenstein, Method of Collective
Recognition, Energoizdat, Moscow, 1982 (in Russian).

[27] E. Alpaydin, M.I. Jordan, Local linear perceptrons for
classi"cation, IEEE Trans. Neural Networks 7 (3) (1996)
788}792.

[28] R.P.W. Duin, D.M.J. Tax, Classi"er-conditional posterior
probabilities in: A. Amin, D. Dori, P. Pudil, H. Freeman
(Eds.), Advances in Pattern Recognition, Lecture Notes
in Computer Science, Vol. 1451, Springer, Berlin, 1998, pp.
611}619.

[29] S.B. Cho, J.H. Kim, Multiple network fusion using fuzzy
logic, IEEE Trans. Neural Networks 6 (1995) 497}501.

[30] M. Grabisch, J.-M. Nicolas, Classi"cation by fuzzy inte-
gral, Fuzzy Sets and Systems 65 (1994) 255}271.

[31] D. Wang, J.M. Keller, C.A. Carson, K.K. McAdoo-
Edwards, C.W. Bailey, Use of fuzzy-logic-inspired features to
improve bacterial recognition through classi"er fusion, IEEE
Trans. Systems Man Cybernet. 28B (4) (1998) 583}591.

[32] Y. Lu, Knowledge integration in a multiple classi"er sys-
tem, Appl. Intell. 6 (1996) 75}86.

[33] R.O. Duda, P.E. Hart, Pattern Classi"cation and Scene
Analysis, Wiley, New York, 1973.

[34] J.C. Bezdek, J.M Keller, R. Krishnapuram, N.R. Pal,
Fuzzy Models and Algorithms for Pattern Recognition
and Image Processing, Kluwer, Dordrecht, 1999, in Press.

[35] L. Lam, C.Y. Suen, Application of majority voting to
pattern recognition: an analysis of its behavior and perfor-
mance, IEEE Trans. Systems Man Cybernet. 27 (5) (1997)
553}568.

L.I. Kuncheva et al. / Pattern Recognition 34 (2001) 299}314 313



About the Author*LUDMILA I. KUNCHEVA received the M.Sc. degree from the Technical University, So"a, in 1982 and the Ph.D.
degree from the Bulgarian Academy of Sciences in 1987. Until 1997 she worked at the Central Laboratory of Biomedical Engineering,
Bulgarian Academy of Sciences, as a Senior Research Associate. Dr. Kuncheva is currently a lecturer at the School of Mathematics,
University of Wales, Bangor, UK. Her interests include pattern recognition, neural networks, fuzzy classi"ers, prototype classi"ers and
multiple classi"er systems.

About the Author*JAMES C. BEZDEK received the BSCE degree from the University of Nevada, Reno, in 1969 and the Ph.D. Degree
in Applied Math from Cornell University, Ithaca, NY, in 1973. He is currently a professor in the Computer Science Department at the
University of West Florida, Pensacola. His interests include optimization, pattern recognition, computer vision and image processing,
computational neural networks and medical applications. Dr. Bezdek is the founding Editor of the International Journal of Approximate
Reasoning and the IEEE Transactions on Fuzzy Systems.

About the Author*ROBERT P.W. DUIN studied applied physics at Delft University of Technology in the Netherlands. In 1978 he
received the Ph.D. degree for a thesis on the accuracy of statistical pattern recognizers. In his research he included various aspects of the
automatic interpretation of measurements, learning systems and classi"ers. Between 1980 and 1990 he studied and developed hardware
architectures and software con"gurations for interactive image analysis.

At present he is an associate professor of the Faculty of Applied Sciences of Delft University of Technology. His present research
interest is in the design and evaluation of learning algorithms for pattern recognition applications. This includes in particular neural
network classi"ers, support vector classi"ers and classi"er combining strategies. Recently, he started to study the possibilities of
relational methods for pattern recognition.

[36] Y.S. Huang, C.Y. Suen, A method of combining multiple
experts for the recognition of unconstrained handwritten
numerals, IEEE Trans. Pattern Anal. Mach. Intell. 17
(1995) 90}93.

[37] L.I. Kuncheva, An application of OWA operators to the
aggregation of multiple classi"cation decisions, in: R.R.
Yager, J. Kacprzyk (Eds.), The Ordered Weighted Aver-
aging Operators. Theory and Applications, Kluwer, Dor-
drecht, USA, 1997, pp. 330}343.

[38] M. van Breukelen, R.P.W. Duin, D.M.J. Tax, J.E. den
Hartog, Combining classi"ers for the recognition of hand-
written digits, Proceedings of the First IAPR TC1 Work-
shop on Statistical Techniques in Pattern Recognition,
Prague, Czech Republic, 1997, pp. 13}18.

[39] L.I. Kuncheva, On combining multiple classi"ers, Pro-
ceedings of the Seventh International Conference on In-
formation Processing and Management of Uncertainty
(IPMU'98), Paris, France, 1998, pp. 1890}1891.

[40] D.M.J. Tax, R.P.W. Duin, M. ban Breukelen, Comparison
between product and mean classi"er combination rules,
Proceedings of the Workshop on Statistical Pattern Rec-
ognition, Prague, Czech, 1997.

[41] S. Hashem, B. Schmeiser, Y. Yih, Optimal linear combina-
tions of neural networks: an overview, IEEE International
Conference on Neural Networks, Orlando, FL, 1994, pp.
1507}1512.

[42] S. Hashem, Optimal linear combinations of neural net-
works, Neural Networks 10 (4) (1997) 599}614.

[43] V. Tresp, M. Taniguchi, Combining estimators using
non-constant weighting functions, in: G. Tesauro, D.S.

Touretzky, T.K. Leen (Eds.), Advances in Neural Informa-
tion Processing Systems, Vol. 7, MIT Press, Cambridge,
MA, 1995.

[44] Y.S. Huang, C.Y. Suen, A method of combining multiple
classi"ers * a neural network approach, Proceedings of
the 12th International Conference on Pattern Recognition,
Jerusalem, Israel, 1994, pp. 473}475.

[45] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, NY, 1980.

[46] R.F. Bordley, A multiplicative formula for aggregating
probability assessments, Management Sci. 28 (1982)
1137}1148.

[47] J.A. Anderson, Logistic discrimination, in: P.R. Krish-
naiah, L.N. Kanal (Eds.), Classi"cation, Pattern Recogni-
tion and Reduction of Dimensionality, Handbook of
Statistics, Vol. 2, North-Holland, Amsterdam, 1982, pp.
169}191.

[48] S. Raudys, R.P.W. Duin, On expected classi"cation error
of the "sher linear classi"er with pseudo-inverse
covariance matrix, Pattern Recognition Lett. 19 (5}6)
(1998) 385}392.

[49] R.P.W. Duin, PRTOOLS (Version 2), A Matlab toolbox
for pattern recognition, Pattern Recognition Group, Delft
University of Technology, June 1997.

[50] L.I. Kuncheva, R.K. Kounchev, R.Z. Zlatev, Aggregation
of multiple classi"cation decisions by fuzzy templates, Pro-
ceedings of the Third European Congress on Intelligent
Technologies and Soft Computing EUFIT'95, Aachen,
Germany, August 1995, pp. 1470}1474.

314 L.I. Kuncheva et al. / Pattern Recognition 34 (2001) 299}314


