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Abstract

Auctions are becoming an increasingly popular method for transacting business, espe-
cially over the Internet. This article presents a general approach to building autonomous
bidding agents to bid in multiple simultaneous auctions for interacting goods. A core
component of our approach learns a model of the empirical price dynamics based on past
data and uses the model to analytically calculate, to the greatest extent possible, optimal
bids. We introduce a new and general boosting-based algorithm for conditional density
estimation problems of this kind, i.e., supervised learning problems in which the goal is to
estimate the entire conditional distribution of the real-valued label. This approach is fully
implemented as ATTac-2001, a top-scoring agent in the second Trading Agent Competition
(TAC-01). We present experiments demonstrating the effectiveness of our boosting-based
price predictor relative to several reasonable alternatives.

1. Introduction

Auctions are an increasingly popular method for transacting business, especially over the
Internet. In an auction for a single good, it is straightforward to create automated bidding
strategies—an agent could keep bidding until reaching a target reserve price, or it could
monitor the auction and place a winning bid just before the closing time (known as sniping).

When bidding for multiple interacting goods in simultaneous auctions, on the other
hand, agents must be able to reason about uncertainty and make complex value assess-
ments. For example, an agent bidding on one’s behalf in separate auctions for a camera and
flash may end up buying the flash and then not being able to find an affordable camera.
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Alternatively, if bidding for the same good in several auctions, it may purchase two flashes
when only one was needed.

This article makes three main contributions. The first contribution is a general ap-
proach to building autonomous bidding agents to bid in multiple simultaneous auctions for
interacting goods. We start with the observation that the key challenge in auctions is the
prediction of eventual prices of goods: with complete knowledge of eventual prices, there
are direct methods for determining the optimal bids to place. Our guiding principle is to
have the agent model its uncertainty in eventual prices and, to the greatest extent possible,
analytically calculate optimal bids.

To attack the price prediction problem, we propose a machine-learning approach: gather
examples of previous auctions and the prices paid in them, then use machine-learning meth-
ods to predict these prices based on available features in the auction. Moreover, for our
strategy, we needed to be able to model the uncertainty associated with predicted prices;
in other words, we needed to be able to sample from a predicted distribution of prices
given the current state of the game. This can be viewed as a conditional density estimation
problem, that is, a supervised learning problem in which the goal is to estimate the entire
distribution of a real-valued label given a description of current conditions, typically in the
form of a feature vector. The second main contribution of this article is a new algorithm
for solving such general problems based on boosting (Freund & Schapire, 1997; Schapire &
Singer, 1999).

The third contribution of this article is a complete description of a prototype implemen-
tation of our approach in the form of ATTac-2001, a top-scoring agent1 in the second Trading
Agent Competition (TAC-01) that was held in Tampa Bay, FL on October 14, 2001 (Well-
man, Greenwald, Stone, & Wurman, 2003a). The TAC domain was the main motivation for
the innovations reported here. ATTac-2001 builds on top of ATTac-2000 (Stone, Littman,
Singh, & Kearns, 2001), the top-scoring agent at TAC-00, but introduces a fundamentally
new approach to creating autonomous bidding agents.

We present details of ATTac-2001 as an instantiation of its underlying principles that
we believe have applications in a wide variety of bidding situations. ATTac-2001 uses a pre-
dictive, data-driven approach to bidding based on expected marginal values of all available
goods. In this article, we present empirical results demonstrating the robustness and effec-
tiveness of ATTac-2001’s adaptive strategy. We also report on ATTac-2001’s performance at
TAC-01 and TAC-02 and reflect on some of the key issues raised during the competitions.

The remainder of the article is organized as follows. In Section 2, we present our general
approach to bidding for multiple interacting goods in simultaneous auctions. In Section 3,
we summarize TAC, the substrate domain for our work. Section 4 describes our boosting-
based price predictor. In Section 5, we give the details of ATTac-2001. In Section 6,
we present empirical results including a summary of ATTac-2001’s performance in TAC-
01, controlled experiments isolating the successful aspects of ATTac-2001, and controlled
experiments illustrating some of the lessons learned during the competition. A discussion
and summary of related work is provided in Sections 7 and 8.

1. Top-scoring by one metric, and second place by another.
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2. General Approach

In a wide variety of decision-theoretic settings, it is useful to be able to evaluate hypothetical
situations. In computer chess, for example, a static board evaluator is used to heuristically
measure which player is ahead and by how much in a given board situation. The scenario
is similar in auction domains, and our bidding agent ATTac-2001 uses a situation evaluator,
analogous to the static board evaluator, which estimates the agent’s expected profit in a
hypothetical future situation. This “profit predictor” has a wide variety of uses in the agent.
For example, to determine the value of an item, the agent compares the predicted profit
assuming the item is already owned to the predicted profit assuming that the item is not
available.

Given prices for goods, one can often compute a set of purchases and an allocation that
maximizes profit.2 Similarly, if closing prices are known, they can be treated as fixed, and
optimal bids can be computed (bid high for anything you want to buy). So, one natural
profit predictor is simply to calculate the profit of optimal purchases under fixed predicted
prices. (The predicted prices can, of course, be different in different situations, e.g., previous
closing prices can be relevant to predicting future closing prices.)

A more sophisticated approach to profit prediction is to construct a model of the prob-
ability distribution over possible future prices and to place bids that maximize expected
profit. An approximate solution to this difficult optimization problem can be created by
stochastically sampling possible prices and computing a profit prediction as above for each
sampled price. A sampling-based scheme for profit prediction is important for modeling
uncertainty and the value of gaining information, i.e., reducing the price uncertainty.

Section 2.1 formalizes this latter approach within a simplified sequential auction model.
This abstraction illustrates some of the decision-making issues in our full sampling-based
approach presented in Section 2.2. The full setting that our approach addresses is consid-
erably more complex than the abstract model, but our simplifying assumptions allow us to
focus on a core challenge of the full scenario. Our guiding principle is to make decision-
theoretically optimal decisions given profit predictions for hypothetical future situations.3

2.1 Simplified Abstraction

In the simple model, there are n items to be auctioned off in sequence (first item 0, then
item 1, etc.). The bidder must place a bid ri for each item i, and after each bid, a closing
price yi is chosen for the corresponding item from a distribution specific to the item. If the
bid matches or exceeds the closing price, ri ≥ yi, the bidder holds item i, hi = 1. Otherwise,
the bidder does not hold the item, hi = 0. The bidder’s utility v(H) is a function of its
final vector of holdings H = (h0, . . . , hn−1) and its cost is a function of the holdings and

2. The problem is computationally difficult in general, but has been solved effectively in the non-trivial
TAC setting (Greenwald & Boyan, 2001; Stone et al., 2001).

3. An alternative approach would be to abstractly calculate the Bayes-Nash equilibrium (Harsanyi, 1968)
for the game and play the optimal strategy. We dismissed this approach because of its intractability in
realistically complex situations, including TAC. Furthermore, even if we were able to approximate the
equilibrium strategy, it is reasonable to assume that our opponents would not play optimal strategies.
Thus, we could gain additional advantage by tuning our approach to our opponents’ actual behavior as
observed in the earlier rounds, which is essentially the strategy we adopted.
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the vector of closing prices, H · Y . We will formalize the problem of optimal bid selection
and develop a series of approximations to make the problem solvable.

2.1.1 Exact Value

What is the value of the auction, that is, the bidder’s expected profit (utility minus cost)
for bidding optimally for the rest of the auction? If a bidder knows this value, it can make
its next bid to be one that maximizes its expected profit. The value is a function of the
bidder’s current holdings H and the current item to bid on, i. It can be expressed as

value(i, H) = max
ri

Eyi max
ri+1

Eyi+1 . . .max
rn−1

Eyn−1(v(G + H) − G · Y ), (1)

where the components of G are the new holdings as a result of additional winnings gj ≡
rj ≥ yj . Note that H only has non-zero entries for items that have already been sold
(∀j ≥ i, Hj = 0) and G only has non-zero entries for items that have yet to be sold
(∀j < i,Gj = 0). Note also that G and Y are fully specified when the gj and yj variables
(for j ≥ i) are bound sequentially by the expectation and maximization operators. The
idea here is that the bids ri through rn−1 are chosen to maximize value in the context of
the possible closing prices yj .

Equation 1 is closely related to the equations defining the value of a finite-horizon par-
tially observable Markov decision process (Papadimitriou & Tsitsiklis, 1987) or a stochastic
satisfiability expression (Littman, Dean, & Kaelbling, 1995). Like these other problems,
the sequential auction problem is computationally intractable for sufficiently general repre-
sentations of v(·) (specifically, linear functions of the holdings are not expressive enough to
achieve intractability while arbitrary nonlinear functions are).

2.1.2 Approximate Value by Reordering

There are three major sources of intractability in Equation 1—the alternation of the maxi-
mization and expectation operators (allowing decisions to be conditioned on an exponential
number of possible sets of holdings), the large number of maximizations (forcing an ex-
ponential number of decisions to be considered), and the large number of expectations
(resulting in sums over an exponential number of variable settings).

We attack the problem of interleaved operators by moving all but the first of the maxi-
mizations inside the expectations, resulting in an expression that approximates the value:

value-est(i, H) = max
ri

EyiEyi+1 . . . Eyn−1 max
ri+1

. . .max
rn−1

(v(G + H) − G · Y ). (2)

Because the choices for bids ri+1 through rn−1 appear more deeply nested than the bindings
for the closing prices yi through yn−1, they cease to be bids altogether, and instead represent
decisions as to whether to purchase goods at given prices. Let G = opt(H, i, Y ) be a vector
representing the optimal number of goods to purchase at the prices specified by the vector
Y given the current holdings H starting from auction i. Conceptually, this can be computed
by evaluating

opt(H, i, Y ) = argmax
gi,...,gn−1

(v(G + H) − H · Y ). (3)
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Thus, Equation 2 can be written:

value-est(i, H) = max
ri

Eyi,...,yn−1(v(opt(H ′, i + 1, Y ) + H ′) − opt(H ′, i + 1, Y ) · Y ) (4)

where H ′ is identical to H except the i-th component reflects whether item i is won—ri ≥ yi.
Note that there is a further approximation that can be made by computing the expected

prices (as point values) before solving the optimization problem. This approach corresponds
to further swapping the expectations towards the core of the equation:

value-est(i, H)ev = max
ri

(v(opt(H ′, i + 1, EY ) + H ′) − opt(H ′, i + 1, EY ) · EY ) (5)

where EY = E[yi+1, . . . , yn−1], the vector of expected costs of the goods. In the remainder
of the article, we refer to methods that use this further approximation from Equation 5 as
expected value approaches for reasons that will be come apparent shortly.

The technique of swapping maximization and expectation operators was previously used
by Hauskrecht (1997) to generate a bound for solving partially observable Markov decision
processes. The decrease of uncertainty when decisions are made makes this approximation
an upper bound on the true value of the auction: value-est ≥ value. The tightness of the ap-
proximations in Equations 2 and 5 depends on the true distributions of the expected prices.
For example, if the prices were known in advance with certainty, then both approximations
are exact.

2.1.3 Approximate Bidding

Given a vector of costs Y , the optimization problem opt(H, i, Y ) in Equation 4 is still NP-
hard (assuming the representation of the utility function v(·) is sufficiently complex). For
many representations of v(·), the optimization problem can be cast as an integer linear pro-
gram and approximated by using the fractional relaxation instead of the exact optimization
problem. This is precisely the approach we have adopted in ATTac (Stone et al., 2001).

2.1.4 Approximation via Sampling

Even assuming that opt(H, i, Y ) can be solved in unit time, a literal interpretation of Equa-
tion 4 says we’ll need to solve this optimization problem for an exponential number of cost
vectors (or even more if the probability distributions Pr(yj) are continuous). Kearns, Man-
sour, and Ng (1999) showed that values of partially observable Markov decision processes
could be estimated accurately by sampling trajectories instead of exactly computing sums.
Littman et al. (1995) did the same for stochastic satisfiability expressions. Applying this
idea to Equation 4 leads to the following algorithm.

1. Generate a set S of vectors of closing costs Y according to the product distribution
Pr(yi) × · · · × Pr(yn−1).

2. For each of these samples, calculate opt(H ′, i+1, Y ) as defined above and average the
results, resulting in the approximation

value-ests(i, H) = max
ri

∑
Y ∈S

(v(opt(H ′, i + 1, Y ) + H ′)− opt(H ′, i + 1, Y ) · Y )/|S|. (6)
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This expression converges to value-est with increasing sample size.
A remaining challenge in evaluating Equation 6 is computing the real-valued bid ri that

maximizes the value. Note that we want to buy item i precisely at those closing prices for
which the value of having the item (minus its cost) exceeds the value of not having the item;
this maximizes profit. Thus, to make a positive profit, we are willing to pay up to, but not
more than, the difference in value of having the item and not having the item.

Formally, let H be the vector of current holdings and Hw be the holdings modified to
reflect winning item i. Let Gw(Y ) = opt(Hw, i+1, Y ), the optimal set of purchases assuming
item i was won, and G(Y ) = opt(H, i+1, Y ) the optimal set of purchases assuming otherwise
(except in cases of ambiguity, we write simply Gw and G for Gw(Y ) and G(Y ) respectively).
We want to select ri to achieve the equivalence

ri ≥ yi ≡
∑
Y ∈S

(v(Gw + H) − Gw · Y )/|S| − yi ≥
∑
Y ∈S

(v(G + H) − G · Y )/|S|. (7)

Setting
ri =

∑
Y ∈S

([v(Gw + H) − Gw · Y ] − [v(G + H) − G · Y ])/|S|. (8)

achieves the equivalence desired in Equation 7, as can be verified by substitution, and
therefore bidding the average difference between holding and not holding the item maximizes
the value.4

2.2 The Full Approach

Leveraging from the preceding analysis, we define our sampling-based approach to profit
prediction in general simultaneous, multi-unit auctions for interacting goods. In this sce-
nario, let there be n simultaneous, multi-unit auctions for interacting goods a0, . . . , an−1.
The auctions might close at different times and these times are not, in general, known in
advance to the bidders. When an auction closes, let us assume that the m units available
are distributed irrevocably to the m highest bidders, who each need to pay the price bid
by the mth highest bidder. This scenario corresponds to an mth price ascending auction.5

Note that the same bidder may place multiple bids in an auction, and thereby potentially
win multiple units. We assume that after the auction closes, the bidders will no longer have
any opportunity to acquire additional copies of the goods sold in that auction (i.e., there
is no aftermarket).

Our approach is based upon five assumptions. For G = (g0, . . . , gn−1) ∈ INn, let v(G) ∈
IR represent the value derived by the agent if it owns gi units of the commodity being sold
in auction ai. Note that v is independent of the costs of the commodities. Note further that
this representation allows for interacting goods of all kinds, including complementarity and
substitutability.6 The assumptions of our approach are as follows:

4. Note that the strategy for choosing ri in Equation 8 does not exploit the fact that the sample S contains
only a finite set of possibilities for yi, which might make it more robust to inaccuracies in the sampling.

5. For large enough m it is practically the same as the more efficient m + 1st auction. We use the mth
price model because that is what is used in TAC’s hotel auctions.

6. Goods are considered complementary if their value as a package is greater than the sum of their individual
values; goods are considered substitutable if their value as a package is less than the sum of their
individual values.
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1. Closing prices are somewhat, but only somewhat, predictable. That is, given a set
of input features X, for each auction ai, there exists a sampling rule that outputs a
closing price yi according to a probability distribution of predicted closing prices for
ai.

2. Given a vector of holdings H = (h0, . . . , hn−1) where hi ∈ IN represents the quantity
of the commodity being sold in auction ai that are already owned by the agent, and
given a vector of fixed closing prices Y = (y0, . . . , yn−1), there exists a tractable
procedure opt(H, Y ) to determine the optimal set of purchases (g0, . . . , gn−1) where
gi ∈ IN represents the number of goods to be purchased in auction i such that

v(opt(H, Y ) + H) − opt(H, Y ) · Y ≥ v(G + H) − G · Y

for all G ∈ INn. This procedure corresponds to the optimization problem opt(H, i, Y )
in Equation 3.

3. An individual agent’s bids do not have an appreciable effect on the economy (large
population assumption).

4. The agent is free to change existing bids in auctions that have not yet closed.

5. Future decisions are made in the presence of complete price information. This as-
sumption corresponds to the operator reordering approximation from the previous
section.

While these assumptions are not all true in general, they can be reasonable enough approx-
imations to be the basis for an effective strategy.

By Assumption 3, the price predictor can generate predicted prices prior to considering
one’s bids. Thus, we can sample from these distributions to produce complete sets of closing
prices of all goods.

For each good under consideration, we assume that it is the next one to close. If a
different auction closes first, we can then revise our bids later (Assumption 4). Thus, we
would like to bid exactly the good’s expected marginal utility to us. That is, we bid the
difference between the expected utilities attainable with and without the good. To compute
these expectations, we simply average the utilities of having and not having the good under
different price samples as in Equation 8. This strategy rests on Assumption 5 in that we
assume that bidding the good’s current expected marginal utility cannot adversely affect
our future actions, for instance by impacting our future space of possible bids. Note that as
time proceeds, the price distributions change in response to the observed price trajectories,
thus causing the agent to continually revise its bids.

Table 1 shows pseudo-code for the entire algorithm. A fully detailed description of an
instantiation of this approach is given in Section 5.

2.3 Example

Consider a camera and a flash with interacting values to an agent as shown in Table 2.
Further, consider that the agent estimates that the camera will sell for $40 with probability
25%, $70 with probability 50%, and $95 with probability 25%. Consider the question
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• Let H = (h0, . . . , hn−1) be the agent’s current holdings in each of the n auctions.

• For i = 0 to n − 1 (assume auction i is next to close):

– total-diff = 0

– counter = 0

– As time permits:

∗ For each auction aj , j �= i, generate a predicted price sample yj . Let Y =
(y0, . . . , yi−1,∞, yi+1, . . . , yn−1).

∗ Let Hw = (h0, . . . , hi−1, hi + 1, hi+1, . . . , hn−1), the vector of holdings if the agent
wins a unit in auction ai.

∗ Compute Gw = opt(Hw, Y ), the optimal set of purchases if the agent wins a unit in
auction ai. Note that no additional units of the good will be purchased, since the
i-th component of Y is ∞.

∗ Compute G = opt(H, Y ), the optimal set of purchases if the agent never acquires
any additional units in the auction ai and prices are set to Y .

∗ diff = [v(Gw + H) − Gw · Y ] − [v(G + H) − G · Y ]
∗ total-diff = total-diff + diff
∗ counter = counter + 1

– r = total-diff/counter

– Bid r in auction ai.

Table 1: The decision-theoretic algorithm for bidding in simultaneous, multi-unit, interact-
ing auctions.

utility
camera alone $50
flash alone 10
both 100
neither 0

Table 2: The table of values for all combination of camera and flash in our example.

of what the agent should bid for the flash (in auction a0). The decision pertaining to the
camera would be made via a similar analysis. First, the agent samples from the distribution
of possible camera prices. When the price of the camera (sold in auction a1) is $70 in the
sample:

• H = (0, 0), Hw = (1, 0), Y = (∞, 70)

• Gw = opt(Hw, Y ) is the best set of purchases the agent can make with the flash, and
assuming the camera costs $70. In this case, the only two options are buying the
camera or not. Buying the camera yields a profit of 100 − 70 = 30. Not buying the
camera yields a profit of 10− 0 = 10. Thus, Gw = (0, 1), and [v(Gw + H)−Gw ·Y ] =
v(1, 1) − (0, 1) · (∞, 70) = 100 − 70.
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• Similarly G = (0, 0) (since if the flash is not owned, buying the camera yields a profit of
50−70 = −20, and not buying it yields a profit of 0−0 = 0) and [v(G+H)−G·Y ] = 0.

• val = 30 − 0 = 30.

Similarly, when the camera is predicted to cost $40, val = 60−10 = 50; and when the camera
is predicted to cost $95, val = 10 − 0 = 10. Thus, we expect that 50% of the camera price
samples will suggest a flash value of $30, while 25% will lead to a value of $50 and the other
25% will lead to a value of $10. Thus, the agent will bid .5× 30 + .25× 50 + .25× 10 = $30
for the flash.

Notice that in this analysis of what to bid for the flash, the actual closing price of
the flash is irrelevant. The proper bid depends only on the predicted price of the camera.
To determine the proper bid for the camera, a similar analysis would be done using the
predicted price distribution of the flash.

3. TAC

We instantiated our approach as an entry in the second Trading Agent Competition (TAC),
as described in this section. Building on the success of TAC-00 held in July 2000 (Wellman,
Wurman, O’Malley, Bangera, Lin, Reeves, & Walsh, 2001), TAC-01 included 19 agents from
9 countries (Wellman et al., 2003a). A key feature of TAC is that it required autonomous
bidding agents to buy and sell multiple interacting goods in auctions of different types. It
is designed as a benchmark problem in the complex and rapidly advancing domain of e-
marketplaces, motivating researchers to apply unique approaches to a common task. By
providing a clear-cut objective function, TAC also allows the competitors to focus their
attention on the computational and game-theoretic aspects of the problem and leave aside
the modeling and model validation issues that invariably loom large in real applications of
automated agents to auctions (see Rothkopf & Harstad, 1994). Another feature of TAC
is that it provides an academic forum for open comparison of agent bidding strategies in
a complex scenario, as opposed to other complex scenarios, such as trading in real stock
markets, in which practitioners are (understandably) reluctant to share their technologies.

A TAC game instance pits eight autonomous bidding agents against one another. Each
TAC agent is a simulated travel agent with eight clients, each of whom would like to travel
from TACtown to Tampa and back again during a 5-day period. Each client is characterized
by a random set of preferences for the possible arrival and departure dates, hotel rooms, and
entertainment tickets. To satisfy a client, an agent must construct a travel package for that
client by purchasing airline tickets to and from TACtown and securing hotel reservations; it
is possible to obtain additional bonuses by providing entertainment tickets as well. A TAC
agent’s score in a game instance is the difference between the sum of its clients’ utilities for
the packages they receive and the agent’s total expenditure. We provide selected details
about the game next; for full details on the design and mechanisms of the TAC server and
TAC game, see http://www.sics.se/tac.

TAC agents buy flights, hotel rooms and entertainment tickets through auctions run
from the TAC server at the University of Michigan. Each game instance lasts 12 minutes
and includes a total of 28 auctions of 3 different types.
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Flights (8 auctions): There is a separate auction for each type of airline ticket: to Tampa
(inflights) on days 1–4 and from Tampa (outflights) on days 2–5. There is an unlimited
supply of airline tickets, and every 24–32 seconds their ask price changes by from −$10
to $x. x increases linearly over the course of a game from 10 to y, where y ∈ [10, 90]
is chosen uniformly at random for each auction, and is unknown to the bidders. In
all cases, tickets are priced between $150 and $800. When the server receives a bid at
or above the ask price, the transaction is cleared immediately at the ask price and no
resale is allowed.

Hotel Rooms (8): There are two different types of hotel rooms—the Tampa Towers (TT)
and the Shoreline Shanties (SS)—each of which has 16 rooms available on days 1–4.
The rooms are sold in a 16th-price ascending (English) auction, meaning that for each
of the 8 types of hotel rooms, the 16 highest bidders get the rooms at the 16th highest
price. For example, if there are 15 bids for TT on day 2 at $300, 2 bids at $150, and
any number of lower bids, the rooms are sold for $150 to the 15 high bidders plus
one of the $150 bidders (earliest received bid). The ask price is the current 16th-
highest bid and transactions clear only when the auction closes. Thus, agents have
no knowledge of, for example, the current highest bid. New bids must be higher than
the current ask price. No bid withdrawal or resale is allowed, though the price of bids
may be lowered provided the agent does not reduce the number of rooms it would win
were the auction to close. One randomly chosen hotel auction closes at minutes 4–11
of the 12-minute game. Ask prices are changed only on the minute.

Entertainment Tickets (12): Alligator wrestling, amusement park, and museum tickets
are each sold for days 1–4 in continuous double auctions. Here, agents can buy and
sell tickets, with transactions clearing immediately when one agent places a buy bid
at a price at least as high as another agent’s sell price. Unlike the other auction
types in which the goods are sold from a centralized stock, each agent starts with a
(skewed) random endowment of entertainment tickets. The prices sent to agents are
the bid-ask spreads, i.e., the highest current bid price and the lowest current ask price
(due to immediate clears, ask price is always greater than bid price). In this case, bid
withdrawal and ticket resale are both permitted. Each agent gets blocks of 4 tickets
of 2 types, 2 tickets of another 2 types, and no tickets of the other 8 types.

In addition to unpredictable market prices, other sources of variability from game in-
stance to game instance are the client profiles assigned to the agents and the random initial
allotment of entertainment tickets. Each TAC agent has eight clients with randomly as-
signed travel preferences. Clients have parameters for ideal arrival day, IAD (1–4); ideal
departure day, IDD (2–5); hotel premium, HP ($50–$150); and entertainment values, EV
($0–$200) for each type of entertainment ticket.

The utility obtained by a client is determined by the travel package that it is given in
combination with its preferences. To obtain a non-zero utility, the client must be assigned
a feasible travel package consisting of an inflight on some arrival day AD, an outflight on a
departure day DD, and hotel rooms of the same type (TT or SS) for the days in between
(days d such that AD ≤ d < DD). At most one entertainment ticket of each type can be
assigned, and no more than one on each day. Given a feasible package, the client’s utility
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is defined as
1000 − travelPenalty + hotelBonus + funBonus

where

• travelPenalty = 100(|AD − IAD | + |DD − IDD |)

• hotelBonus = HP if the client is in the TT, 0 otherwise.

• funBonus = sum of EVs for assigned entertainment tickets.

A TAC agent’s score is the sum of its clients’ utilities in the optimal allocation of
its goods (computed by the TAC server) minus its expenditures. The client preferences,
allocations, and resulting utilities from a sample game are shown in Tables 3 and 4.

Client IAD IDD HP AW AP MU
1 Day 2 Day 5 73 175 34 24
2 Day 1 Day 3 125 113 124 57
3 Day 4 Day 5 73 157 12 177
4 Day 1 Day 2 102 50 67 49
5 Day 1 Day 3 75 12 135 110
6 Day 2 Day 4 86 197 8 59
7 Day 1 Day 5 90 56 197 162
8 Day 1 Day 3 50 79 92 136

Table 3: ATTac-2001’s client preferences from an actual game. AW, AP, and MU are EVs
for alligator wrestling, amusement park, and museum respectively.

Client AD DD Hotel Ent’ment Utility
1 Day 2 Day 5 SS AW4 1175
2 Day 1 Day 2 TT AW1 1138
3 Day 3 Day 5 SS MU3, AW4 1234
4 Day 1 Day 2 TT None 1102
5 Day 1 Day 2 TT AP1 1110
6 Day 2 Day 3 TT AW2 1183
7 Day 1 Day 5 SS AF2, AW3, MU4 1415
8 Day 1 Day 2 TT MU1 1086

Table 4: ATTac-2001’s client allocations and utilities from the same actual game as that in
Table 3. Client 1’s “4” under “Ent’ment” indicates on day 4.

The rules of TAC-01 are largely identical to those of TAC-00, with three important
exceptions:

1. In TAC-00, flight prices did not tend to increase;

2. In TAC-00, hotel auctions usually all closed at the end of the game;
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3. In TAC-00, entertainment tickets were distributed uniformly to all agents

While relatively minor on the surface, these changes significantly enriched the strategic
complexity of the game. Stone and Greenwald (2005) detail agent strategies from TAC-00.

TAC-01 was organized as a series of four competition phases, culminating with the
semifinals and finals on October 14, 2001 at the EC-01 conference in Tampa, Florida. First,
the qualifying round, consisting of about 270 games per agent, served to select the 16
agents that would participate in the semifinals. Second, the seeding round, consisting of
about 315 games per agent, was used to divide these agents into two groups of eight. After
the semifinals, on the morning of the 14th consisting of 11 games in each group, four teams
from each group were selected to compete in the finals during that same afternoon. The
finals are summarized in Section 6.

TAC is not designed to be fully realistic in the sense that an agent from TAC is not
immediately deployable in the real world. For one thing, it is unrealistic to assume that an
agent would have complete, reliable access to all clients’ utility functions (or even that the
client would!); typically, some sort of preference elicitation procedure would be required (e.g.
Boutilier, 2002). For another, the auction mechanisms are somewhat contrived for the
purposes of creating an interesting, yet relatively simple game. However, each mechanism
is representative of a class of auctions that is used in the real world. And it is not difficult
to imagine a future in which agents do need to bid in decentralized, related, yet varying
auctions for similarly complex packages of goods.

4. Hotel Price Prediction

As discussed earlier, a central part of our strategy depends on the ability to predict prices,
particularly hotel prices, at various points in the game. To do this as accurately as possible,
we used machine-learning techniques that would examine the hotel prices actually paid
in previous games to predict prices in future games. This section discusses this part of
our strategy in detail, including a new boosting-based algorithm for conditional density
estimation.

There is bound to be considerable uncertainty regarding hotel prices since these depend
on many unknown factors, such as the time at which the hotel room will close, who the
other agents are, what kind of clients have been assigned to each agent, etc. Thus, exactly
predicting the price of a hotel room is hopeless. Instead, we regard the closing price as a
random variable that we need to estimate, conditional on our current state of knowledge
(i.e., number of minutes remaining in the game, ask price of each hotel, flight prices, etc.).
We might then attempt to predict this variable’s conditional expected value. However,
our strategy requires that we not only predict expected value, but that we also be able to
estimate the entire conditional distribution so that we can sample hotel prices.

To set this up as a learning problem, we gathered a set of training examples from
previously played games. We defined a set of features for describing each example that
together are meant to comprise a snap-shot of all the relevant information available at the
time each prediction is made. All of the features we used are real valued; a couple of the
features can have a special value ⊥ indicating “value unknown.” We used the following
basic features:
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• The number of minutes remaining in the game.

• The price of each hotel room, i.e., the current ask price for rooms that have not closed
or the actual selling price for rooms that have closed.

• The closing time of each hotel room. Note that this feature is defined even for rooms
that have not yet closed, as explained below.

• The prices of each of the flights.

To this basic list, we added a number of redundant variations, which we thought might help
the learning algorithm:

• The closing price of hotel rooms that have closed (or ⊥ if the room has not yet closed).

• The current ask price of hotel rooms that have not closed (or ⊥ if the room has already
closed).

• The closing time of each hotel room minus the closing time of the room whose price
we are trying to predict.

• The number of minutes from the current time until each hotel room closes.

During the seeding rounds, it was impossible to know during play who our opponents
were, although this information was available at the end of each game, and therefore during
training. During the semifinals and finals, we did know the identities of all our competitors.
Therefore, in preparation for the semifinals and finals, we added the following features:

• The number of players playing (ordinarily eight, but sometimes fewer, for instance if
one or more players crashed).

• A bit for each player indicating whether or not that player participated in this game.

We trained specialized predictors for predicting the price of each type of hotel room.
In other words, one predictor was specialized for predicting only the price of TT on day
1, another for predicting SS on day 2, etc. This would seem to require eight separate
predictors. However, the tournament game is naturally symmetric about its middle in the
sense that we can create an equivalent game by exchanging the hotel rooms on days 1 and
2 with those on days 4 and 3 (respectively), and by exchanging the inbound flights on
days 1, 2, 3 and 4 with the outbound flights on days 5, 4, 3 and 2 (respectively). Thus,
with appropriate transformations, the outer days (1 and 4) can be treated equivalently, and
likewise for the inner days (2 and 3), reducing the number of specialized predictors by half.

We also created specialized predictors for predicting in the first minute after flight prices
had been quoted but prior to receiving any hotel price information. Thus, a total of eight
specialized predictors were built (for each combination of TT versus SS, inner versus outer
day, and first minute versus not first minute).

We trained our predictors to predict not the actual closing price of each room per se,
but rather how much the price would increase, i.e., the difference between the closing price
and the current price. We thought that this might be an easier quantity to predict, and,
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because our predictor never outputs a negative number when trained on nonnegative data,
this approach also ensures that we never predict a closing price below the current bid.

From each of the previously played games, we were able to extract many examples.
Specifically, for each minute of the game and for each room that had not yet closed, we
extracted the values of all of the features described above at that moment in the game, plus
the actual closing price of the room (which we are trying to predict).

Note that during training, there is no problem extracting the closing times of all of the
rooms. During the actual play of a game, we do not know the closing times of rooms that
have not yet closed. However, we do know the exact probability distribution for closing
times of all of the rooms that have not yet closed. Therefore, to sample a vector of hotel
prices, we can first sample according to this distribution over closing times, and then use
our predictor to sample hotel prices using these sampled closing times.

4.1 The Learning Algorithm

Having described how we set up the learning problem, we are now ready to describe the
learning algorithm that we used. Briefly, we solved this learning problem by first reducing to
a multiclass, multi-label classification problem (or alternatively a multiple logistic regression
problem), and then applying boosting techniques developed by Schapire and Singer (1999,
2000) combined with a modification of boosting algorithms for logistic regression proposed
by Collins, Schapire and Singer (2002). The result is a new machine-learning algorithm for
solving conditional density estimation problems, described in detail in the remainder of this
section. Table 5 shows pseudo-code for the entire algorithm.

Abstractly, we are given pairs (x1, y1), . . . , (xm, ym) where each xi belongs to a space X
and each yi is in R. In our case, the xi’s are the auction-specific feature vectors described
above; for some n, X ⊆ (R∪{⊥})n. Each target quantity yi is the difference between closing
price and current price. Given a new x, our goal is to estimate the conditional distribution
of y given x.

We proceed with the working assumption that all training and test examples (x, y) are
i.i.d. (i.e, drawn independently from identical distributions). Although this assumption is
false in our case (since the agents, including ours, are changing over time), it seems like a
reasonable approximation that greatly reduces the difficulty of the learning task.

Our first step is to reduce the estimation problem to a classification problem by breaking
the range of the yi’s into bins:

[b0, b1), [b1, b2), . . . , [bk, bk+1]

for some breakpoints b0 < b1 < · · · < bk ≤ bk+1 where for our problem, we chose k = 50.7

The endpoints b0 and bk+1 are chosen to be the smallest and largest yi values observed
during training. We choose the remaining breakpoints b1, . . . , bk so that roughly an equal
number of training labels yi fall into each bin. (More technically, breakpoints are chosen so
that the entropy of the distribution of bin frequencies is maximized.)

For each of the breakpoints bj (j = 1, . . . , k), our learning algorithm attempts to estimate
the probability that a new y (given x) will be at least bj . Given such estimates pj for each

7. We did not experiment with varying k, but expect that the algorithm is not sensitive to it for sufficiently
large values of k.
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Input: (x1, y1), . . . , (xm, ym) where xi ∈ X, yi ∈ R

positive integers k and T

Compute breakpoints: b0 < b1 < · · · < bk+1 where
• b0 = mini yi

• bk+1 = maxi yi

• b1, . . . , bk chosen to minimize
∑k

j=0 qj ln qj where q0, . . . , qk are fraction of yi’s in
[b0, b1), [b1, b2), . . . , [bk, bk+1] (using dynamic programing)

Boosting:
• for t = 1, . . . T :

− compute weights Wt(i, j) =
1

1 + esj(yi)ft(xi,j)

where sj(y) is as in Eq. (10)
− use Wt to obtain base function ht : X × {1, . . . , k} → R minimizing

m∑
i=1

k∑
j=1

Wt(i, j)e−sj(yi)ht(xi,j) over all decision rules ht considered. The decision rules

can take any form. In our work, we use “decision stumps,” or simple thresholds on one
of the features.

Output sampling rule:

• let f =
T∑

t=1

ht

• let f ′ = (f + f)/2 where

f(x, j) = max{f(x, j′) : j ≤ j′ ≤ k}
f(x, j) = min{f(x, j′) : 1 ≤ j′ ≤ j}

• to sample, given x ∈ X

− let pj =
1

1 + e−f ′(x,j)

− let p0 = 1, pk+1 = 0
− choose j ∈ {0, . . . , k} randomly with probability pj − pj+1

− choose y uniformly at random from [bj , bj+1]
− output y

Table 5: The boosting-based algorithm for conditional density estimation.

bj , we can then estimate the probability that y is in the bin [bj , bj+1) by pj+1 − pj (and
we can then use a constant density within each bin). We thus have reduced the problem
to one of estimating multiple conditional Bernoulli variables corresponding to the event
y ≥ bj , and for this, we use a logistic regression algorithm based on boosting techniques as
described by Collins et al. (2002).

Our learning algorithm constructs a real-valued function f : X × {1, . . . , k} → R with
the interpretation that

1
1 + exp(−f(x, j))

(9)
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is our estimate of the probability that y ≥ bj , given x. The negative log likelihood of the
conditional Bernoulli variable corresponding to yi being above or below bj is then

ln
(
1 + e−sj(yi)f(xi,j)

)
where

sj(y) =

{
+1 if y ≥ bj

−1 if y < bj .
(10)

We attempt to minimize this quantity for all training examples (xi, yi) and all break-
points bj . Specifically, we try to find a function f minimizing

m∑
i=1

k∑
j=1

ln
(
1 + e−sj(yi)f(xi,j)

)
.

We use a boosting-like algorithm described by Collins et al. (2002) for minimizing objective
functions of exactly this form. Specifically, we build the function f in rounds. On each
round t, we add a new base function ht : X × {1, . . . , k} → R. Let

ft =
t−1∑
t′=1

ht′

be the accumulating sum. Following Collins, Schapire and Singer, to construct each ht, we
first let

Wt(i, j) =
1

1 + esj(yi)ft(xi,j)

be a set of weights on example-breakpoint pairs. We then choose ht to minimize

m∑
i=1

k∑
j=1

Wt(i, j)e−sj(yi)ht(xi,j) (11)

over some space of “simple” base functions ht. For this work, we considered all “decision
stumps” h of the form

h(x, j) =




Aj if φ(x) ≥ θ
Bj if φ(x) < θ
Cj if φ(x) =⊥

where φ(·) is one of the features described above, and θ, Aj , Bj and Cj are all real numbers.
In other words, such an h simply compares one feature φ to a threshold θ and returns a
vector of numbers h(x, ·) that depends only on whether φ(x) is unknown (⊥), or above
or below θ. Schapire and Singer (2000) show how to efficiently search for the best such
h over all possible choices of φ, θ, Aj , Bj and Cj . (We also employed their technique for
“smoothing” Aj , Bj and Cj .)

When computed by this sort of iterative procedure, Collins et al. (2002) prove the
asymptotic convergence of ft to the minimum of the objective function in Equation (11)
over all linear combinations of the base functions. For this problem, we fixed the number
of rounds to T = 300. Let f = fT+1 be the final predictor.
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As noted above, given a new feature vector x, we compute pj as in Equation (9) to be
our estimate for the probability that y ≥ bj , and we let p0 = 1 and pk+1 = 0. For this to
make sense, we need p1 ≥ p2 ≥ · · · ≥ pk, or equivalently, f(x, 1) ≥ f(x, 2) ≥ · · · ≥ f(x, k), a
condition that may not hold for the learned function f . To force this condition, we replace
f by a reasonable (albeit heuristic) approximation f ′ that is nonincreasing in j, namely,
f ′ = (f +f)/2 where f (respectively, f) is the pointwise minimum (respectively, maximum)
of all nonincreasing functions g that everywhere upper bound f (respectively, lower bound
f).

With this modified function f ′, we can compute modified probabilities pj . To sample
a single point according to the estimated distribution on R associated with f ′, we choose
bin [bj , bj+1) with probability pj − pj+1, and then select a point from this bin uniformly at
random. Expected value according to this distribution is easily computed as

k∑
j=0

(pj − pj+1)
(

bj+1 + bj

2

)
.

Although we present results using this algorithm in the trading agent context, we did
not test its performance on more general learning problems, nor did we compare to other
methods for conditional density estimation, such as those studied by Stone (1994). This
clearly should be an area for future research.

5. ATTac-2001

Having described hotel price prediction in detail, we now present the remaining details of
ATTac-2001’s algorithm. We begin with a brief description of the goods allocator, which
is used as a subroutine throughout the algorithm. We then present the algorithm in a
top-down fashion.

5.1 Starting Point

A core subproblem for TAC agents is the allocation problem: finding the most profitable
allocation of goods to clients, G∗, given a set of owned goods and prices for all other goods.
The allocation problem corresponds to finding opt(H, i, Y ) in Equation 3. We denote the
value of G∗ (i.e., the score one would attain with G∗) as v(G∗). The general allocation
problem is NP-complete, as it is equivalent to the set-packing problem (Garey & Johnson,
1979). However it can be solved tractably in TAC via integer linear programming (Stone
et al., 2001).

The solution to the integer linear program is a value-maximizing allocation of owned
resources to clients along with a list of resources that need to be purchased. Using the linear
programming package “LPsolve”, ATTac-2001 is usually able to find the globally optimal
solution in under 0.01 seconds on a 650 MHz Pentium II. However, since integer linear
programming is an NP-complete problem, some inputs can lead to a great deal of search
over the integrality constraints, and therefore significantly longer solution times. When only
v(G∗) is needed (as opposed to G∗ itself), the upper bound produced by LPsolve prior to
the search over the integrality constraints, known as the LP relaxation, can be used as an
estimate. The LP relaxation can always be generated very quickly.
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Note that this is not by any means the only possible formulation of the allocation
problem. Greenwald and Boyan (2001) studied a fast, heuristic search variant and found
that it performed extremely well on a collection of large, random allocation problems. Stone
et al. (2001) used a randomized greedy strategy as a fallback for the cases in which the linear
program took too long to solve.

5.2 Overview

Table 6 shows a high-level overview of ATTac-2001. The italicized portions are described in
the remainder of this section.

When the first flight quotes are posted:

• Compute G∗ with current holdings and expected prices
• Buy the flights in G∗ for which expected cost of postponing commitment exceeds the expected

benefit of postponing commitment

Starting 1 minute before each hotel close:

• Compute G∗ with current holdings and expected prices
• Buy the flights in G∗ for which expected cost of postponing commitment exceeds expected

benefit of postponing commitment (30 seconds)
• Bid hotel room expected marginal values given holdings, new flights, and expected hotel

purchases (30 seconds)

Last minute: Buy remaining flights as needed by G∗

In parallel (continuously): Buy/sell entertainment tickets based on their expected values

Table 6: ATTac-2001’s high-level algorithm. The italicized portions are described in the
remainder of this section.

5.3 Cost of Additional Rooms

Our hotel price predictor described in Section 4 assumes that ATTac-2001’s bids do not
affect the ultimate closing price (Assumption 3 from Section 2). This assumption holds in
a large economy. However in TAC, each hotel auction involved 8 agents competing for 16
hotel rooms. Therefore, the actions of each agent had an appreciable effect on the clearing
price: the more hotel rooms an agent attempted to purchase, the higher the clearing price
would be, all other things being equal. This effect needed to be taken into account when
solving the basic allocation problem.

The simplified model used by ATTac-2001 assumed that the nth highest bid in a hotel
auction was roughly proportional to c−n (over the appropriate range of n) for some c ≥ 1.
Thus, if the predictor gave a price of p, ATTac-2001 only used this for purchasing two hotel
rooms (the “fair” share of a single agent of the 16 rooms), and adjusted prices for other
quantities of rooms by using c.

For example, ATTac-2001 would consider the cost of obtaining 4 rooms to be 4pc2. One
or two rooms each cost p, but 3 each cost pc, 4 each cost pc2, 5 each cost pc3, etc. So in
total, 2 rooms cost 2p, while 4 cost 4pc2. The reasoning behind this procedure is that if
ATTac-2001 buys two rooms — its fair share given that there are 16 rooms and 8 agents,
then the 16th highest bid (ATTac-2001’s 2 bids in addition to 14 others) sets the price.
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But if ATTac-2001 bids on an additional unit, the previous 15th highest bid becomes the
price-setting bid: the price for all rooms sold goes up from p to pc.

The constant c was calculated from the data of several hundred games during the seeding
round. In each hotel auction, the ratio of the 14th and 18th highest bids (reflecting the
most relevant range of n) was taken as an estimate of c4, and the (geometric) mean of the
resulting estimates was taken to obtain c = 1.35.

The LP allocator takes these price estimates into account when computing G∗ by as-
signing higher costs to larger purchase volumes, thus tending to spread out ATTac-2001’s
demand over the different hotel auctions.

In ATTac-2001, a few heuristics were applied to the above procedure to improve stability
and to avoid pathological behavior: prices below $1 were replaced by $1 in estimating c;
c = 1 was used for purchasing fewer than two hotel rooms; hotel rooms were divided into
early closing and late closing (and cheap and expensive) ones, and the c values from the
corresponding subsets of auctions of the seeding rounds were used in each case.

5.4 Hotel Expected Marginal Values

Using the hotel price prediction module as described in Section 4, coupled with a model
of its own effect on the economy, ATTac-2001 is equipped to determine its bids for hotel
rooms.

Every minute, for each hotel auction that is still open, ATTac-2001 assumes that auction
will close next and computes the marginal value of that hotel room given the predicted
closing prices of the other rooms. If the auction does not close next, then it assumes that
it will have a chance to revise its bids. Since these predicted prices are represented as
distributions of possible future prices, ATTac-2001 samples from these distributions and
averages the marginal values to obtain an expected marginal value. Using the full minute
between closing times for computation (or 30 seconds if there are still flights to consider
too), ATTac-2001 divides the available time among the different open hotel auctions and
generates as many price samples as possible for each hotel room. In the end, ATTac-2001
bids the expected marginal values for each of the rooms.

The algorithm is described precisely and with explanation in Table 7.
One additional complication regarding hotel auctions is that, contrary to one of our

assumptions in Section 2.2 (Assumption 4), bids are not fully retractable: they can only
be changed to $1 above the current ask price. In the case that there are current active
bids for goods that ATTac-2001 no longer wants that are less than $1 above the current ask
price, it may be advantageous to refrain from changing the bid in the hopes that the ask
price will surpass them: that is, the current bid may have a higher expected value than the
best possible new bid. To address this issue, ATTac-2001 samples from the learned price
distribution to find the average expected values of the current and potential bids, and only
enters a new bid in the case that the potential bid is better.

5.5 Expected Cost/Benefit of Postponing Commitment

ATTac-2001 makes flight bidding decisions based on a cost-benefit analysis: in particular,
ATTac-2001 computes the incremental cost of postponing bidding for a particular flight
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• For each hotel (in order of increasing expected price):

• Repeat until time bound
1. Generate a random hotel closing order (only over open hotels)
2. Sample closing prices from predicted hotel price distributions
3. Given these closing prices, compute V0, V1, . . . Vn

− Vi ≡ v(G∗) if owning i of the hotel
− Estimate v(G∗) with LP relaxation
− Assume that no additional hotel rooms of this type can be bought
− For other hotels, assume outstanding bids above sampled price are already owned

(i.e., they cannot be withdrawn).
− Note that V0 ≤ V1 ≤ . . . ≤ Vn: the values are monotonically increasing since having

more goods cannot be worse in terms of possible allocations.

• The value of the ith copy of the room is the mean of Vi − Vi−1 over all the samples.

• Note further that V1 − V0 ≥ V2 − V1 . . . ≥ Vn − Vn−1: the value differences are monotonically
decreasing since each additional room will be assigned to the client who can derive the most
value from it.

• Bid for one room at the value of the ith copy of the room for all i such that the value is
at least as much as the current price. Due to the monotonicity noted in the step above, no
matter what the closing price, the desired number of rooms at that price will be purchased.

Table 7: The algorithm for generating bids for hotel rooms.

versus the value of delaying commitment. In this section, we describe the determination of
the cost of postponing the bid.

Due to difficulties that compounded with more sophisticated approaches, ATTac-2001
used the following very simple model for estimating the price of a flight ticket at a given
future time. It is evident from the formulation that—given y—the expected price increase
from time 0 to time t was very nearly of the form Mt2 for some M . It was also clear that
as long as the price did not hit the artificial boundaries at $150 and $800, the constant M
must depend linearly on y−10. This linear dependence coefficient was then estimated from
several hundred flight price evolutions during the qualifying round. Thus, for this constant
m, the expected price increase from time t to time T was m(T 2 − t2)(y − 10). When a
price prediction was needed, this formula was first used for the first and most recent actual
price observations to obtain a guess for y, and then this y was used in the formula again to
estimate the future price. No change was predicted if the formula yielded a price decrease.

This approach suffers from systemic biases of various kinds (mainly due to the fact that
the variance of price changes gets relatively smaller over longer periods of time), but was
thought to be accurate enough for its use, which was to predict whether or not the ticket
can be expected to get significantly more expensive over the next few minutes.

In practice, during TAC-01, ATTac-2001 started with the flight-lookahead parameter set
to 3 (i.e., cost of postponing is the average of the predicted flight costs 1, 2, and 3 minutes
in the future). However, this parameter was changed to 2 by the end of the finals in order
to cause ATTac-2001 to delay its flight commitments further.
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5.5.1 Expected Benefit of Postponing Commitment

Fundamentally, the benefit of postponing commitments to flights is that additional infor-
mation about the eventual hotel prices becomes known. Thus, the benefit of postponing
commitment is computed by sampling possible future price vectors and determining, on
average, how much better the agent could do if it bought a different flight instead of the
one in question. If it is optimal to buy the flight in all future scenarios, then there is no
value in delaying the commitment and the flight is purchased immediately. However, if
there are many scenarios in which the flight is not the best one to get, the purchase is more
likely to be delayed.

The algorithm for determining the benefit of postponing commitment is similar to that
for determining the marginal value of hotel rooms. It is detailed, with explanation, in
Table 8.

• Assume we’re considering buying n flights of a given type

• Repeat until time bound

1. Generate a random hotel closing order (open hotels)
2. Sample closing prices from predicted price distributions (open hotels)
3. Given these closing prices compute V0, V1, . . . Vn

− Vi = v(G∗) if forced to buy i of the flight
− Estimate v(G∗) with LP relaxation
− Assume more flights can be bought at the current price
− Note that V0 ≥ V1 ≥ . . . ≥ Vn since it is never worse to retain extra flexibility.

• The value of waiting to buy copy i is the mean of Vi − Vi−1 over all the samples. If
all price samples lead to the conclusion that the ith flight should be bought, then
Vi = Vi−1 and there is no benefit to postponing commitment.

Table 8: The algorithm for generating value of postponing flight commitments.

5.6 Entertainment Expected Values

The core of ATTac-2001’s entertainment-ticket-bidding strategy is again a calculation of the
expected marginal values of each ticket. For each ticket, ATTac-2001 computes the expected
value of having one more and one fewer of the ticket. These calculations give bounds on the
bid and ask prices it is willing to post. The actual bid and ask prices are a linear function
of time remaining in the game: ATTac-2001 settles for a smaller and smaller profit from
ticket transactions as the game goes on. Details of the functions of bid and ask price as a
function of game time and ticket value remained unchanged from ATTac-2000 (Stone et al.,
2001).

Details of the entertainment-ticket expected marginal utility calculations are given in
Table 9.
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• Assume n of a given ticket type are currently owned

• Repeat until time bound

1. Generate a random hotel closing order (open hotels)
2. Sample closing prices from predicted price distributions (open hotels)
3. Given these closing prices compute Vn−1, Vn, Vn+1

− Vi = v(G∗) if own i of the ticket
− Estimate v(G∗) with LP relaxation
− Assume no other tickets can be bought or sold
− Note that Vn−1 ≤ Vn ≤ Vn+1 since it is never worse to own extra tickets.

• The value of buying a ticket is the mean of Vn+1 − Vn over all the samples; the value
of selling is the mean of Vn − Vn−1.

• Since tickets are considered sequentially, if the determined buy or sell bid leads to a
price that would clear according to the current quotes, assume the transaction goes
through before computing the values of buying and selling other ticket types.

Table 9: The algorithm for generating value of entertainment tickets.

6. Results

This section presents empirical results demonstrating the effectiveness of the ATTac-2001
strategy. First, we summarize its performance in the 2001 and 2002 Trading Agent Com-
petitions (TACs). These summaries provide evidence of the strategy’s overall effectiveness,
but, due to the small number of games in the competitions, are anecdotal rather than sci-
entifically conclusive. We then present controlled experiments that provide more conclusive
evidence of the utility of our decision theoretic and learning approaches embedded within
ATTac-2001.

6.1 TAC-01 Competition

Of the 19 teams that entered the qualifying round, ATTac-2001 was one of eight agents
to make it to the finals on the afternoon of October 14th, 2001. The finals consisted of
24 games among the same eight agents. Right from the beginning, it became clear that
livingagents (Fritschi & Dorer, 2002) was the team to beat in the finals. They jumped to an
early lead in the first two games, and by eight games into the round, they were more than
135 points per game ahead of their closest competitor (SouthamptonTAC, He & Jennings,
2002). 16 games into the round, they were more than 250 points ahead of their two closest
competitors (ATTac-2001 and whitebear).

From that point, ATTac-2001, which was continually retraining its price predictors based
on recent games, began making a comeback. By the time the last game was to be played,
it was only an average of 22 points per game behind livingagents. It thus needed to beat
livingagents by 514 points in the final game to overtake it, well within the margins observed
in individual game instances. As the game completed, ATTac-2001’s score of 3979 was one
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of the first scores to be posted by the server. The other agents’ scores were reported one
by one, until only the livingagents score was left. After agonizing seconds (at least for us),
the TAC server posted a final game score of 4626, resulting in a win for livingagents.

After the competition, the TAC team at the University of Michigan conducted a regres-
sion analysis of the effects of the client profiles on agent scores. Using data from the seeding
rounds, it was determined that agents did better when their clients had:

1. fewer total preferred travel days;

2. higher total entertainment values; and

3. a higher ratio of outer days (1 and 4) to inner (2 and 3) in preferred trip intervals.

Based on these significant measures, the games in the finals could be handicapped based
on each agents’ aggregate client profiles. Doing so indicated that livingagents’ clients were
much easier to satisfy than those of ATTac-2001, giving ATTac-2001 the highest handicapped
score. The final scores, as well as the handicapped scores, are shown in Table 10. Complete
results and affiliations are available from http://tac.eecs.umich.edu.

Agent Mean Handicapped score
ATTac-2001 3622 4154
livingagents 3670 4094
whitebear 3513 3931
Urlaub01 3421 3909
Retsina 3352 3812
CaiserSose 3074 3766
SouthamptonTAC 3253 3679
TacsMan 2859 3338

Table 10: Scores during the finals. Each agent played 24 games. Southampton’s score was
adversely affected by a game in which their agent crashed after buying many
flights but no hotels, leading to a loss of over 3000 points. Discarding that game
results in an average score of 3531.

6.2 TAC-02 Competition

A year after the TAC-01 competition, ATTac-2001 was re-entered in the TAC-02 competition
using the models trained at the end of TAC-01. Specifically, the price predictors were left
unchanged throughout (no learning). The seeding round included 19 agents, each playing
440 games over the course of about 2 weeks. ATTac-2001 was the top-scoring agent in this
round, as shown in Table 11. Scores in the seeding round were weighted so as to emphasize
later results over earlier results: scores on day n of the seeding round were given a weight
of n. This practice was designed to encourage experimentation early in the round. The
official ranking in the competitions was based on the mean score after ignoring each agent’s
worst 10 results so as to allow for occasional program crashes and network problems.

231



Stone, Schapire, Littman, Csirik, & McAllester

Agent Mean Weighted, dropped worst 10
ATTac-2001 3050 3131
SouthamptonTAC 3100 3129
UMBCTAC 2980 3118
livingagents 3018 3091
cuhk 2998 3055
Thalis 2952 3000
whitebear 2945 2966
RoxyBot 2738 2855

Table 11: Top 8 scores during the seeding round of TAC-02. Each agent played 440 games,
with its worst 10 games ignored when computing the rankings.

On the one hand, it is striking that ATTac-2001 was able to finish so strongly in a field
of agents that had presumably improved over the course of the year. On the other hand,
most agents were being tuned, for better and for worse, while ATTac-2001 was consistent
throughout. In particular, we are told that SouthamptonTAC experimented with its ap-
proach during the later days of the round, perhaps causing it to fall out of the lead (by
weighted score) in the end. During the 14-game semifinal heat, ATTac-2001, which was
now restored with its learning capability and retrained over the data from the 2002 seeding
round, finished 6th out of 8 thereby failing to reach the finals.

There are a number of possible reasons for this sudden failure. One relatively mun-
dane explanation is that the agent had to change computational environments between the
seeding rounds and the finals, and there may have been a bug or computational resource
constraint introduced. Another possibility is that due to the small number of games in
the semifinals, ATTac-2001 simply got unlucky with respect to clients and the interaction
of opponent strategies. However, it is also plausible that the training data from the 2002
qualifying and seeding round data was less representative of the 2002 finals than the was the
training data from 2001; and/or that the competing agents improved significantly over the
seeding round while ATTac-2001 remained unchanged. The TAC team at the University of
Michigan has done a study of the price predictors of several 2002 TAC agents that suggests
that the bug hypothesis is most plausible: the ATTac-2001 predictor from 2001 outperforms
all other predictors from 2002 on the data from the 2002 semifinals and finals; and one other
agent that uses the 2002 data did produce good predictions based on that data (Wellman,
Reeves, Lochner, & Vorobeychik, 2003b).8

6.3 Controlled Experiments

ATTac-2001’s success in the TAC-01 competition demonstrates its effectiveness as a com-
plete system. However, since the competing agents differed along several dimensions, the

8. Indeed, in the TAC-03 competition, ATTac-2001 was entered using the trained models from 2001, and it
won the competition, suggesting further that the failure in 2002 was due to a problem with the learned
models that were used during the finals in 2002.
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competition results cannot isolate the successful approaches. In this section, we report con-
trolled experiments designed to test the efficacy of ATTac-2001’s machine-learning approach
to price prediction.

6.3.1 Varying the Predictor

In the first set of experiments, we attempted to determine how the quality of ATTac-2001’s
hotel price predictions affects its performance. To this end, we devised seven price prediction
schemes, varying considerably in sophistication and inspired by approaches taken by other
TAC competitors, and incorporated these schemes into our agent. We then played these
seven agents against one another repeatedly, with regular retraining as described below.

Following are the seven hotel prediction schemes that we used, in decreasing order of
sophistication:

• ATTac-2001s: This is the “full-strength” agent based on boosting that was used during
the tournament. (The s denotes sampling.)

• Cond’lMeans: This agent samples prices from the empirical distribution of prices from
previously played games, conditioned only on the closing time of the hotel room (a
subset of of the features used by ATTac-2001s). In other words, it collects all historical
hotel prices and breaks them down by the time at which the hotel closed (as well as
room type, as usual). The price predictor then simply samples from the collection of
prices corresponding to the given closing time.

• SimpleMeans: This agent samples prices from the empirical distribution of prices from
previously played games, without regard to the closing time of the hotel room (but
still broken down by room type). It uses a subset of the features used by Cond’lMeans.

• ATTac-2001ev, Cond’lMeanev, SimpleMeanev: These agents predict in the same way
as their corresponding predictors above, but instead of returning a random sample
from the estimated distribution of hotel prices, they deterministically return the ex-
pected value of the distribution. (The ev denotes expected value, as introduced in
Section 2.1.)

• CurrentBid: This agent uses a very simple predictor that always predicts that the hotel
room will close at its current price.

In every case, whenever the price predictor returns a price that is below the current price,
we replace it with the current price (since prices cannot go down).

In our experiments, we added as an eighth agent EarlyBidder, inspired by the livingagents
agent. EarlyBidder used SimpleMeanev to predict closing prices, determined an optimal set
of purchases, and then placed bids for these goods at sufficiently high prices to ensure that
they would be purchased ($1001 for all hotel rooms, just as livingagents did in TAC-01)
right after the first flight quotes. It then never revised these bids.

Each of these agents require training, i.e., data from previously played games. However,
we are faced with a sort of “chicken and egg” problem: to run the agents, we need to
first train the agents using data from games in which they were involved, but to get this
kind of data, we need to first run the agents. To get around this problem, we ran the
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Agent Relative Score
Phase I Phase II Phase III

ATTac-2001ev 105.2 ± 49.5 (2) 131.6 ± 47.7 (2) 166.2 ± 20.8 (1)
ATTac-2001s 27.8 ± 42.1 (3) 86.1 ± 44.7 (3) 122.3 ± 19.4 (2)
EarlyBidder 140.3 ± 38.6 (1) 152.8 ± 43.4 (1) 117.0 ± 18.0 (3)
SimpleMeanev −28.8 ± 45.1 (5) −53.9 ± 40.1 (5) −11.5 ± 21.7 (4)
SimpleMeans −72.0 ± 47.5 (7) −71.6 ± 42.8 (6) −44.1 ± 18.2 (5)
Cond’lMeanev 8.6 ± 41.2 (4) 3.5 ± 37.5 (4) −60.1 ± 19.7 (6)
Cond’lMeans −147.5 ± 35.6 (8) −91.4 ± 41.9 (7) −91.1 ± 17.6 (7)
CurrentBid −33.7 ± 52.4 (6) −157.1 ± 54.8 (8) −198.8 ± 26.0 (8)

Table 12: The average relative scores (± standard deviation) for eight agents in the three
phases of our controlled experiment in which the hotel prediction algorithm was
varied. The relative score of an agent is its score minus the average score of all
agents in that game. The agent’s rank within each phase is shown in parentheses.

agents in phases. In Phase I, which consisted of 126 games, we used training data from
the seeding, semifinals and finals rounds of TAC-01. In Phase II, lasting 157 games, we
retrained the agents once every six hours using all of the data from the seeding, semifinals
and finals rounds as well as all of the games played in Phase II. Finally, in Phase III, lasting
622 games, we continued to retrain the agents once every six hours, but now using only
data from games played during Phases I and II, and not including data from the seeding,
semifinals and finals rounds.

Table 12 shows how the agents performed in each of these phases. Much of what we
observe in this table is consistent with our expectations. The more sophisticated boosting-
based agents (ATTac-2001s and ATTac-2001ev) clearly dominated the agents based on sim-
pler prediction schemes. Moreover, with continued training, these agents improved markedly
relative to EarlyBidder. We also see the performance of the simplest agent, CurrentBid, which
does not employ any kind of training, significantly decline relative to the other data-driven
agents.

On the other hand, there are some phenomena in this table that were very surprising
to us. Most surprising was the failure of sampling to help. Our strategy relies heavily
not only on estimating hotel prices, but also taking samples from the distribution of hotel
prices. Yet these results indicate that using expected hotel price, rather than price samples,
consistently performs better. We speculate that this may be because an insufficient number
of samples are being used (due to computational limitations) so that the numbers derived
from these samples have too high a variance. Another possibility is that the method of using
samples to estimate scores consistently overestimates the expected score because it assumes
the agent can behave with perfect knowledge for each individual sample—a property of our
approximation scheme. Finally, as our algorithm uses sampling at several different points
(computing hotel expected values, deciding when to buy flights, pricing entertainment tick-
ets, etc.), it is quite possible that sampling is beneficial for some decisions while detrimental
for others. For example, when directly comparing versions of the algorithm with sampling
used at only subsets of the decision points, the data suggests that sampling for the hotel
decisions is most beneficial, while sampling for the flights and entertainment tickets is neu-
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tral at best, and possibly detrimental. This result is not surprising given that the sampling
approach is motivated primarily by the task of bidding for hotels.

We were also surprised that Cond’lMeans and Cond’lMeanev eventually performed worse
than the less sophisticated SimpleMeans and SimpleMeanev. One possible explanation is
that the simpler model happens to give predictions that are just as good as the more
complicated model, perhaps because closing time is not terribly informative, or perhaps
because the adjustment to price based on current price is more significant. Other things
being equal, the simpler model has the advantage that its statistics are based on all of the
price data, regardless of closing time, whereas the conditional model makes each prediction
based on only an eighth of the data (since there are eight possible closing times, each equally
likely).

In addition to agent performance, it is possible to measure the inaccuracy of the eventual
predictions, at least for the non-sampling agents. For these agents, we measured the root
mean squared error of the predictions made in Phase III. These were: 56.0 for ATTac-2001ev,
66.6 for SimpleMeanev, 69.8 for CurrentBid and 71.3 for Cond’lMeanev. Thus, we see that
the lower the error of the predictions (according to this measure), the higher the score
(correlation R = −0.88).

6.3.2 ATTac-2001 vs. EarlyBidder

In a sense, the two agents that finished at the top of the standings in TAC-01 represented
opposite ends of a spectrum. The livingagents agent uses a simple open-loop strategy,
committing to a set of desired goods right at the beginning of the game, while ATTac-2001
uses a closed-loop, adaptive strategy.

The open-loop strategy relies on the other agents to stabilize the economy and create
consistent final prices. In particular, if all eight agents are open loop and place very high bids
for the goods they want, many of the prices will skyrocket, evaporating any potential profit.
Thus, a set of open-loop agents would tend to get negative scores—the open-loop strategy
is a parasite, in a manner of speaking. Table 13 shows the results of running 27 games
with 7 copies of the open-loop EarlyBidder and one of ATTac-2001. Although motivated
by livingagents, in actuality it is identical to ATTac-2001 except that it uses SimpleMeanev

and it places all of its flight and hotel bids immediately after the first flight quotes. It bids
only for the hotels that appear in G∗ at that time. All hotel bids are for $1001. In the
experiments, one copy of ATTac-2001s is included for comparison. The price predictors are
all from Phase I in the preceding experiments. EarlyBidder’s high bidding strategy backfires
and it ends up overpaying significantly for its goods. As our experiments above indicate,
ATTac-2001 may improve even further if it is allowed to train on the games of the on-going
experiment as well.

The open-loop strategy has the advantage of buying a minimal set of goods. That is, it
never buys more than it can use. On the other hand, it is susceptible to unexpected prices
in that it can get stuck paying arbitrarily high prices for the hotel rooms it has decided to
buy.

Notice in Table 13 that the average utility of the EarlyBidder’s clients is significantly
greater than that of ATTac-2001’s clients. Thus, the difference in score is accounted for
entirely by the cost of the goods. EarlyBidder ends up paying exorbitant prices, while
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Agent Score Utility
ATTac-2001 2431 ± 464 8909 ± 264
EarlyBidder(7) −4880 ± 337 9870 ± 34

Table 13: The results of running ATTac-2001 against 7 copies of EarlyBidder over the course
of 27 games. EarlyBidder achieves high utility, but overpays significantly, resulting
in low scores.

ATTac-2001 generally steers clear of the more expensive hotels. Its clients’ utility suffers,
but the cost-savings are well worth it.

Compared to the open-loop strategy, ATTac-2001’s strategy is relatively stable against
itself. Its main drawback is that as it changes its decision about what goods it wants and as
it may also buy goods to hedge against possible price changes, it can end up getting stuck
paying for some goods that are ultimately useless to any of its clients.

Table 14 shows the results of 7 copies of ATTac-2001 playing against each other and
one copy of the EarlyBidder. Again, training is from the seeding round and finals of TAC-
01: the agents don’t adapt during the experiment. Included in this experiment are three
variants of ATTac-2001, each with a different flight-lookahead parameter (from the section
on “cost of postponing flight commitments”). There were three copies each of the agents
with flight-lookahead set to 2 and 3 (ATTac-2001(2) and ATTac-2001(3), respectively), and
one ATTac-2001 agent with flight-lookahead set to 4 (ATTac-2001(4)).

Agent Score Utility
EarlyBidder 2869 ± 69 10079 ± 55
ATTac-2001(2) 2614 ± 38 9671 ± 32
ATTac-2001(3) 2570 ± 39 9641 ± 32
ATTac-2001(4) 2494 ± 68 9613 ± 55

Table 14: The results of running the EarlyBidder against 7 copies of ATTac-2001 over the
course of 197 games. The three different versions of ATTac-2001 had slightly
different flight-lookaheads.

From the results in Table 14 it is clear that ATTac-2001 does better when committing
to its flight purchases later in the game (ATTac-2001(2) as opposed to ATTac-2001(4)). In
comparison with Table 13, the economy represented here does significantly better overall.
That is, having many copies of ATTac-2001 in the economy does not cause them to suffer.
However, in this economy, EarlyBidder is able to invade. It gets a significantly higher utility
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for its clients and only pays slightly more than the ATTac-2001 agents (as computed by
utility minus score).9

The results in this section suggest that the variance of the closing prices is the largest
determining factor between the effectiveness of the two strategies (assuming nobody else
is using the open-loop strategy). We speculate that with large price variances, the closed-
loop strategy (ATTac-2001) should do better, but with small price variances, the open-loop
strategy could do better.

7. Discussion

The open-loop and closed-loop strategies of the previous section differ in their handling of
price fluctuation. A fundamental way of taking price fluctuation into account is to place
“safe bids.” A very high bid exposes an agent to the danger of buying something at a
ridiculously high price. If prices are in fact stable then high bids are safe. But if prices
fluctuate, then high bids, such as the bids of the stable-price strategy, are risky. In TAC,
hotel rooms are sold in a Vickrey-style nth price action. There is a separate auction for
each day of each hotel and these auctions are done sequentially. Although the order of the
auctions is randomized, and not known to the agent, when placing bids in one of these
auctions the agent assumes that auction will close next. We assumed in the design of our
agent that our bids in one auction do not affect prices in other auctions. This assumption
is not strictly true, but in a large economy one expects that the bids of a single individual
have a limited effect on prices. Furthermore, the price most affected by a bid is the price
of the item being bid on; the effect on other auctions seems less direct and perhaps more
limited. Assuming bids in one auction do not affect prices in another, the optimal bidding
strategy is the standard strategy for a Vickrey auction—the bid for an item should be equal
to its utility to the bidder. So, to place a Vickrey-optimal bid, one must be able to estimate
the utility of an item. The utility of owning an item is simply the expected final score
assuming one owns the item minus the expected final score assuming one does not own the
item. So, the problem of computing a Vickrey-optimal bid can be reduced to the problem
of predicting final scores for two alternative game situations. We use two score prediction
procedures, which we call the stable-price score predictor (corresponding to Equation 5)
and the unstable-price score predictor (Equation 4).

The Stable-Price Score Predictor. The stable-price score predictor first estimates
the expected prices in the rest of the game using whatever information is available in the
given game situation. It then computes the value achieved by optimal purchases under the
estimated prices. In an economy with stable prices, this estimate will be quite accurate—
if we make the optimal purchases for the expected price then, if the prices are near our
estimates, our performance will also be near the estimated value.

The Unstable-Price Score Predictor. Stable-price score prediction does not take
into account the ability of the agent to react to changes in price as the game progresses. Sup-
pose a given room is often cheap but is sometimes expensive. If the agent can first determine
the price of the room, and then plan for that price, the agent will do better than guessing

9. We suspect that were the agents allowed to retrain over the course of the experiments, ATTac-2001 would
end up improving, as we saw in Phase III of the previous set of experiments. Were this to occur, it is
possible that EarlyBidder would no longer be able to invade.
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the price ahead of time and sticking to the purchases dictated by that price. The unstable
price predictor uses a model of the distribution of possible prices. It repeatedly samples
prices from this distribution, computes the stable-price score prediction under the sampled
price, and then takes the average of these stable-price scores over the various price samples.
This score prediction algorithm is similar to the algorithm used in Ginsberg’s (2001) quite
successful computer bridge program where the score is predicted by sampling the possible
hands of the opponent and, for each sample, computing the score of optimal play in the case
where all players have complete information (double dummy play). While this approach
has a simple intuitive motivation, it is clearly imperfect. The unstable-price score predictor
assumes both that future decisions are made in the presence of complete price information,
and that the agent is free to change existing bids in auctions that have not yet closed. Both
of these assumptions are only approximately true at best. Ways of compensating for the
imperfections in score prediction were described in Section 5.

Buy Now or Decide Later. The trading agent must decide what airline tickets to buy
and when to buy them. In deciding whether to buy an airline ticket, the agent can compare
the predicted score in the situation where it owns the airline ticket with the predicted score
in the situation where it does not own the airline ticket but may buy it later. Airline tickets
tend to increase in price, so if the agent knows that a certain ticket is needed it should buy
it as soon as possible. But whether or not a given ticket is desirable may depend on the
price of hotel rooms, which may become clearer as the game progresses. If airline tickets
did not increase in price, as was the case in TAC-00, then they should be bought at the
last possible moment (Stone et al., 2001). To determine whether an airline ticket should be
bought now or not, one can compare the predicted score in the situation where one has just
bought the ticket at its current price with the predicted score in the situation where the
price of the ticket is somewhat higher but has not yet been bought. It is interesting to note
that if one uses the stable-price score predictor for both of these predictions, and the ticket
is purchased in the optimal allocation under the current price estimate, then the predicted
score for buying the ticket now will always be higher—increasing the price of the ticket can
only reduce the score. However, the unstable-price score predictor can yield an advantage
for delaying the purchase. This advantage comes from the fact that buying the ticket may
be optimal under some prices but not optimal under others. If the ticket has not yet been
bought, then the score will be higher for those sampled prices where the ticket should not
be bought. This corresponds to the intuition that in certain cases the purchase should be
delayed until more information is available.

Our guiding principle in the design of the agent was, to the greatest extent possible, to
have the agent analytically calculate optimal actions. A key component of these calculations
is the score predictor, based either on a single estimated assignment of prices or on a model of
the probability distribution over assignments of prices. Both score predictors, though clearly
imperfect, seem useful. Of these two predictors, only the unstable-price predictor can be
used to quantitatively estimate the value of postponing a decision until more information is
available. The accuracy of price estimation is clearly of central importance. Future research
will undoubtedly focus on ways of improving both price modeling and score prediction based
on price modeling.
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8. Related and Future Work

Although there has been a good deal of research on auction theory, especially from the
perspective of auction mechanisms (Klemperer, 1999), studies of autonomous bidding agents
and their interactions are relatively few and recent. TAC is one example. FM97.6 is
another auction test-bed, which is based on fishmarket auctions (Rodriguez-Aguilar, Martin,
Noriega, Garcia, & Sierra, 1998). Automatic bidding agents have also been created in this
domain (Gimenez-Funes, Godo, Rodriguez-Aguiolar, & Garcia-Calves, 1998). There have
been a number of studies of agents bidding for a single good in multiple auctions (Ito,
Fukuta, Shintani, & Sycara, 2000; Anthony, Hall, Dang, & Jennings, 2001; Preist, Bartolini,
& Phillips, 2001).

A notable auction-based competition that was held prior to TAC was the Santa Fe
Double Auction Tournament (Rust, Miller, & Palmer, 1992). This auction involved several
agents competing in a single continuous double auction similar to the TAC entertainment
ticket auctions. As analyzed by Tesauro and Das (2001), this tournament was won by a
parasite strategy that, like livingagents as described in Section 6.3, relied on other agents
to find a stable price and then took advantage of it to gain an advantage. In that case, the
advantage was gained by waiting until the last minute to bid, a strategy commonly known
as sniping.

TAC-01 was the second iteration of the Trading Agent Competition. The rules of TAC-
01 are largely identical to those of TAC-00, with three important exceptions:

1. In TAC-00, flight prices did not tend to increase;

2. In TAC-00, hotel auctions usually all closed at the end of the game;

3. In TAC-00, entertainment tickets were distributed uniformly to all agents

While minor on the surface, the differences significantly enriched the strategic complexity
of the game. In TAC-00, most of the designers discovered that a dominant strategy was
to defer all serious bidding to the end of the game. A result, the focus was on solving
the allocation problem, with most agents using a greedy, heuristic approach. Since the
hotel auctions closed at the end of the game, timing issues were also important, with
significant advantages going to agents that were able to bid in response to last-second price
quotes (Stone & Greenwald, 2005). Nonetheless, many techniques developed in 2000 were
relevant to the 2001 competition: the agent strategies put forth in TAC-00 were important
precursors to the second year’s field, for instance as pointed out in Section 5.1.

Predicting hotel clearing prices was perhaps the most interesting aspect of TAC agent
strategies in TAC-01, especially in relation to TAC-00 where the last-minute bidding created
essentially a sealed-bid auction. As indicated by our experiments described in Section 6.3,
there are many possible approaches to this hotel price estimation problem, and the approach
chosen can have a significant impact on the agent’s performance. Among those observed
in TAC-01 are the following (Wellman, Greenwald, Stone, & Wurman, 2002), associated in
some cases with the price-predictor variant in our experiments that was motivated by it.

1. Just use the current price quote pt (CurrentBid).

2. Adjust based on historic data. For example, if ∆t is the average historical difference
between clearing price and price at time t, then the predicted clearing price is pt +∆t.
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3. Predict by fitting a curve to the sequence of ask prices seen in the current game.

4. Predict based on closing price data for that hotel in past games (SimpleMeanev,
SimpleMeans).

5. Same as above, but condition on hotel closing time, recognizing that the closing
sequence will influence the relative prices.

6. Same as above, but condition on full ordering of hotel closings, or which hotels are
open or closed at a particular point (Cond’lMeanev, Cond’lMeans).

7. Learn a mapping from features of the current game (including current prices) to closing
prices based on historic data (ATTac-2001s, ATTac-2001ev).

8. Hand-construct rules based on observations about associations between abstract fea-
tures.

Having demonstrated ATTac-2001’s success at bidding in simultaneous auctions for mul-
tiple interacting goods in the TAC domain, we extended our approach to apply it to the
U.S. Federal Communications Commission (FCC) spectrum auctions domain (Weber, 1997).
The FCC holds spectrum auctions to sell radio bandwidth to telecommunications compa-
nies. Licenses entitle their owners to use a specified radio spectrum band within a specified
geographical area, or market. Typically several licenses are auctioned off simultaneously
with bidders placing independent bids for each license. The most recent auction brought in
over $16 billion dollars. In a detailed simulation of this domain (Csirik, Littman, Singh, &
Stone, 2001), we discovered a novel, successful bidding strategy in this domain that allows
the bidders to increase their profits significantly over a reasonable default strategy (Reitsma,
Stone, Csirik, & Littman, 2002).

Our ongoing research agenda includes applying our approach to other similar domains.
We particularly expect the boosting approach to price prediction and the decision-theoretic
reasoning over price distributions to transfer to other domains. Other candidate real-world
domains include electricity auctions, supply chains, and perhaps even travel booking on
public e-commerce sites.
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