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Preface

Goals

The goal of this book is to give an overview of fundamental ideas and results about
rational decision making under uncertainty, highlighting the implications of these
results for the philosophy and practice of statistics. The book grew from lecture
notes from graduate courses taught at the Institute of Statistics and Decision Sci-
ences at Duke University, at the Johns Hopkins University, and at the University of
Washington. It is designed primarily for graduate students in statistics and biostatis-
tics, both at the Masters and PhD level. However, the interdisciplinary nature of the
material should make it interesting to students and researchers in economics (choice
theory, econometrics), engineering (signal processing, risk analysis), computer sci-
ence (pattern recognition, artificial intelligence), and scientists who are interested in
the general principles of experimental design and analysis.

Rational decision making has been a chief area of investigation in a number of
disciplines, in some cases for centuries. Several of the contributions and viewpoints
are relevant to both the education of a well-rounded statistician and to the develop-
ment of sound statistical practices. Because of the wealth of important ideas, and
the pressure from competing needs in current statistical curricula, our first course in
decision theory aims for breadth rather than depth. We paid special attention to two
aspects: bridging the gaps among the different fields that have contributed to ratio-
nal decision making; and presenting ideas in a unified framework and notation while
respecting and highlighting the different and sometimes conflicting perspectives.

With this in mind, we felt that a standard textbook format would be too con-
straining for us and not sufficiently stimulating for the students. So our approach has
been to write a “tour guide” to some of the ideas and papers that have contributed to
making decision theory so fascinating and important. We selected a set of exciting
papers and book chapters, and developed a self-contained lecture around each one.
Some lectures are close to the source, while others stray far from their original inspi-
ration. Naturally, many important articles have been left out of the tour. Our goal
was to select a set that would work well together in conveying an overall view of the
fields and controversies.

We decided to cover three areas: the axiomatic foundations of decision theory;
statistical decision theory; and optimal design of experiments. At many universities,
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these are the subject of separate courses, often taught in different departments and
schools. Current curricula in statistics and biostatistics are increasingly emphasizing
interdisciplinary training, reflecting similar trends in research. Our plan reflects this
need. We also hope to contribute to increased interaction among the disciplines by
training students to appreciate the differences and similarities among the approaches.

We designed our tour of decision-theoretic ideas so that students might emerge
with their own overall philosophy of decision making and statistics. Ideally that phi-
losophy will be the result of contact with some of the key ideas and controversies
in the different fields. We attempted to put the contributions of each article into
some historical perspective and to highlight developments that followed. We also
developed a consistent unified notation for the entire material and emphasized the
relationships among different disciplines and points of view. Most lectures include
current-day materials, methods, and results, and try at the same time to preserve the
viewpoint and flavor of the original contributions.

With few exceptions, the mathematical level of the book is basic. Advanced
calculus and intermediate statistical inference are useful prerequisites, but an enter-
prising student can profit from most of the the book even without this background.
The challenging aspect of the book lies in the swift pace at which each lecture
introduces new and different concepts and points of view.

Some lectures have grown beyond the size that can be delivered during a 1 1
2

hour
session. Some others merge materials that were often taught as two separate lectures.
But for the most part, the lecture–session correspondence should work reasonably
well. The style is also closer to that of transcribed lecture notes than that of a treatise.
Each lecture is completed by worked examples and exercises that have been helpful
to us in teaching this material. Many proofs, easy and hard, are left to the student.

Acknowledgments

We have intellectual debt to more people than we can list, but a special place in this
list is occupied by courses we took and lecture notes we read. Giovanni’s course at
Duke was initially developed from two main sources. The first is the lectures from
Teddy Seidenfeld’s course on the Foundations of Statistics. Giovanni only took it five
times—he will firmly hold he did not choose the stopping rule: left to his own devices
he would have taken that class forever. The second is the lectures from Schervish’s
course on Advanced Statistics, from which his book on the theory of statistics would
ultimately develop. We also had access to a very insightful bootleg of Charles Stein’s
lecture notes at Stanford, from an edition of the course taught by Persi Diaconis.

Dennis Lindley reviewed an early draft and gave very constructive comments and
encouragement. Other anonymous reviewers gave helpful feedback. Bruno Sansó
used our notes to teach his class at the University of California at Santa Cruz, and
gave us detailed comments. We have used our notes in teaching for over a decade.
Many students braved earlier drafts, gave useful feedback through questions, con-
versations, solutions to problems, and sometimes highly informative puzzled looks.
Martin McIntosh shared his precious correspondence with Herman Chernoff.



PREFACE xv

Both of us are grateful to Hedibert Lopes, with whom our long journey to writing
this book had started back in the mid 1990s. His notes from Giovanni’s classes were
used extensively in early versions of this book, and some figures, problems, and
examples still carry his hallmark.

Lurdes is thankful to Sergio Wechsler who opened the door to new ways of think-
ing about statistics and introducing her to decision theory. She thanks Giovanni for
inviting her on this journey, which through bumps and laughter has been a life-
time experience. She cannot wait for the next one (well, give and take some time
off for her recovery from the thrill!). She wishes to thank the loving support from
her brothers Roberto, Carlos, and Silvio and from her uncles Masao, Olinda, and
Tadazumi. Finally, her loving gratitude goes to her parents, Satie and Kasuo, and her
grandmother Matta, for the inspiring memories and lessons that guide Lurdes.

Giovanni still has mixed feelings about the day Marco Scarsini handed him a
copy of Wald’s book on decision functions, with the assignment of reporting on it to
an undergraduate discussion group. Later Michele Cifarelli, Guido Consonni, Morrie
DeGroot, Jay Kadane, Teddy Seidenfeld, Mark Schervish, Nick Polson, Don Berry,
Pietro Muliere, Peter Müller, and David Matchar fueled his intellectual passion for
rational decision making. Giovanni’s wife Francesca is a statistician who, despite
her impact on national policy making at various levels, is a bit bored by the kind of
decision theory her husband favors, and perhaps baffled by the scant influence all
the talking about rationality has had on his personal behavior. Nevertheless, she has
been fully supportive of this never-ending project, in more ways than one can list.
Giovanni thinks working with Lurdes has been absolutely fantastic. He has not told
her yet, but he is already thinking about notation changes for the second edition . . .

Giovanni Parmigiani, Lurdes Y. T. Inoue





Acknowledgments

1. Page 15; Extracted from Savage LJ (1981a). A panel discussion of personal
probability, The writings of Leonard Jimmie Savage – A memorial Selec-
tion, American Statistical Association, Alexandria, VA, pp. 508–513, American
Statistical Association.

2. Pages 16, 22; Extracted from de Finetti, B. (1937). Foresight: its logical laws,
its subjective sources, in H. E. Kyburg and H. E. Smokler (eds.), Studies in
Subjective Probability, Krieger, New York, pp. 55–118.

3. Pages 24–25; Extracted from Goldstein, M. (1983). The prevision of a previ-
sion, Journal of the American Statistical Association 78: 817–819, American
Statistical Association.

4. Pages 36–37, 48, 82–83, 88, 115–116; Extracted from Savage, L. J. (1954). The
foundations of statistics, John Wiley & Sons, Inc., New York.

5. Page 38; Extracted from Bonferroni, C. (1924). La media esponenziale in
matematica finanziaria, Annuario del Regio Istituto Superiore di Scienze Eco-
nomiche e Commerciali di Bari, Vol. 23–24, pp. 1–14, Regio Istituto Superiore
di Scienze Economiche e Commerciali di Bari.

6. Pages 61, 63; Extracted from Pratt, J. (1964). Risk aversion in the small and in
the large, Econometrica 32: 122–136, The Econometric Society.

7. Page 93; Extracted from Ellsberg, D. (1961). Risk, ambiguity and the savage
axioms, Quarterly Journal of Economics 75: 643–669, The MIT Press.

8. Page 93; Extracted from Gärdenfors, P. and Sahlin, N.-E. (1988). Decision,
Probability and Utility, Cambridge University Press, Cambridge.

9. Pages 97–98; Extracted from Savage, L. J. (1981a). A panel discussion of
personal probability, The writings of Leonard Jimmie Savage – A memo-
rial selection, American Statistical Association, Alexandria, VA, pp. 508–513,
American Statistical Association.

10. Page 99; Extracted from Anscombe, F. J. and Aumann, R. J. (1963). A defini-
tion of subjective probability, Annals of Mathematical Statistics 34: 199–205,
Institute of Mathematical Statistics.

11. Page 103; Extracted from Schervish, M. J., Seidenfeld, T. and Kadane, J. B.
(1990). State-dependent utilities, Journal of the American Statistical Association
85: 840–847, American Statistical Association.

12. Page 111; Extracted from Edgeworth, F. Y. (1887). The method of measuring
probability and utility, Mind 12 (47): 484–488, Oxford University Press.



xviii ACKNOWLEDGMENTS

13. Page 113; Extracted from Wald, A. (1939). Contributions to the theory of sta-
tistical estimation and testing hypotheses, Annals of Mathematical Statistics 10:
299–326, Institute of Mathematical Statistics.

14. Page 115; Extracted from Chernoff, H. (1954). Rational selection of a decision
function, Econometrica 22: 422–443, The Econometric Society.

15. Page 133; Extracted from Neyman, J. and Pearson, E. S. (1933). On the problem
of the most efficient test of statistical hypotheses, Philosophical Transaction of
the Royal Society (Series A) 231: 286–337, Springer-Verlag, New York.

16. Pages 150–151; Extracted from Lindley, D. V. (1968b). Decision making, The
Statistician 18: 313–326, Blackwell Publishing.

17. Pages 153–154; Extracted from Birnbaum, A. (1962). On the foundations of
statistical inference (Com: P307-326), Journal of the American Statistical Asso-
ciation 57: 269–306. (From Pratt’s comments to Birnbaum 1962, pp. 314–315),
American Statistical Association.

18. Pages 114, 283; Extracted from Savage, L. J. (1951). The theory of statistical
decision, Journal of the American Statistical Association 46: 55–67, American
Statistical Association.

19. Page 171; Extracted from Schervish, M. J. (1995). Theory of Statistics,
Springer-Verlag, American Statistical Association.

20. Page 175; Extracted from Robert, C. P. (1994). The Bayesian Choice, Springer-
Verlag.

21. Pages 191–192; Extracted from Brier, G. (1950). Verification of forecasts
expressed in terms of probability, Monthly Weather Review 78: 1–3, American
Meterological Society.

22. Page 199; Extracted from Good, I. J. (1952). Rational decisions, Journal of
the Royal Statistical Society, Series B, Methodological 14: 107–114, Blackwell
Publishing.

23. Page 200; Extracted from DeGroot, M. H. and Fienberg, S. E. (1983). The com-
parison and evaluation of forecasters, The Statistician 32: 12–22, Blackwell
Publishing.

24. Page 207; Extracted from Dawid, A. (1982). The well-calibrated Bayesian, Jour-
nal of the American Statistical Association 77: 605–613, American Statistical
Association.

25. Page 224; Extracted from Nemhauser, G. (1966). Introduction to Dynamic
Programming, John Wiley & Sons, Inc., New York.

26. Page 225; Extracted from Lindley, D. (1961). Dynamic programming and
decision, Applied Statistics, Blackwell Publishing.

27. Pages 226, 228–229; Extracted from Lindley, D. V. (1985). Making Decisions,
second ed., John Wiley & Sons, Ltd, Chichester.

28. Pages 251–253; Extracted from French, S. (1988). Decision theory: an intro-
duction to the mathematics of rationality, Ellis Horwood, Chichester, Horwood
Publishing Ltd.

29. Page 291; Extracted from Grundy, P., Healy, M. and Rees, D. (1956). Eco-
nomic choice of the amount of experimentation, Journal of The Royal Statistical
Society. Series B. 18: 32–55, Blackwell Publishing.



ACKNOWLEDGMENTS xix

30. Pages 297–298; Extracted from Lee, S. and Zelen, M. (2000). Clinical trials and
sample size considerations: another perspective, Statistical Science 15: 95–110,
Institute of Mathematical Statistics.

31. Page 324–325; Extracted from Wald, A. (1945). Sequential tests of statisti-
cal hypotheses, Annals of Mathematical Statistics 16: 117–186, Institute of
Mathematical Statistics.

32. Page 324; Extracted from Wallis,W. A. (1980). The Statistical Research Group,
1942-1945 (C/R: p331–335), Journal of the American Statistical Association
75: 320–330, American Statistical Association.

33. Page 339; Extracted from Berger, J. and Berry, D. (1988). The relevance
of stopping rules in statistical inference (with discussion), in J. Berger and
S. Gupta (eds.), Statistical Decision Theory and Related Topics IV, Vol. 1,
Springer-Verlag, New York, pp. 29–72.

34. Page 341; Extracted from Kadane, J. B., Schervish,M. J. and Seidenfeld, T.
(1996). Reasoning to a foregone conclusion, Journal of the American Statistical
Association 91: 1228–1235, American Statistical Association.





1

Introduction

We statisticians, with our specific concern for uncertainty, are even more liable
than other practical men to encounter philosophy, whether we like it or not.

(Savage 1981a)

1.1 Controversies

Statistics is a mature field but within it remain important controversies. These con-
troversies stem from profoundly different perspectives on the meaning of learning
and scientific inquiry, and often result in widely different ways of interpreting the
same empirical observations.

For example, a controversy that is still very much alive involves how to evalu-
ate the reliability of a prediction or guess. This is, of course, a fundamental issue
for statistics, and has implications across a variety of practical activities. Many are
captured by a case study on the evaluation of evidence from clinical trials (Ware
1989). We introduce the controversy with an example. You have to guess a secret
number. You know it is an integer. You can perform an experiment that would yield
either the number before it or the number after it, with equal probability. You know
there is no ambiguity about the experimental result or about the experimental answer.
You perform this type of experiment twice and get numbers 41 and 43. What is the
secret number? Easy, it is 42. Now, how good an answer do you think this is? Are
you tempted to say “It is a perfect answer, the secret number has to be 42”? It turns

Decision Theory: Principles and Approaches G. Parmigiani, L. Y. T. Inoue
c© 2009 John Wiley & Sons, Ltd
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out that not all statisticians think this is so easy. There are at least two opposed
perspectives on how to go about figuring out how good our answer is:

Judge an answer by what it says. Compare the answer to other possible
answers, in the light of the experimental evidence you have collected,
which can now be taken as a given.

versus

Judge an answer by how it was obtained. Specify the rule that led you
to give the answer you gave. Compare your answer to the answers that
your rule would have produced when faced with all possible alternative
experimental results. How far your rule is from the truth in this collection
of hypothetical answers will inform you about how good your rule is.
Indirectly, this will tell you how well you can trust your specific answer.

Let us go back to the secret number. From the first perspective you would com-
pare the answer “42” to all possible alternative answers, realize that it is the only
answer that is not ruled out by the observed data, and conclude that there is no ambi-
guity about the answer being right. From the second perspective, you ask how the
answer was obtained. Let us consider a reasonable recipe for producing answers:
average the two experimental results. This approach gets the correct answer half the
time (when the two experimental results differ) and is 1 unit off the remainder of
the time (when the two experiments yield the same number). Most measures of error
that consider this entire collection of potential outcomes will result in a conclusion
that will attribute some uncertainty to your reported answer. This is in sharp con-
trast with the conclusion reached following from the first perspective. For example,
the standard error of your answer is 1/

√
2. By this principle, you would write a

paper reporting your discovery that “the secret number is 42 (s.e. 0.7)” irrespective
of whether your data are 41 and 43, or 43 and 43. You can think of other recipes, but
if they are to give you a single guess, they are all prone to making mistakes when the
two experimental results are the same, and so the story will have the same flavor.

The reasons why this controversy exists are complicated and fascinating. When
things are not as clear cut as in our example, and multiple answers are compati-
ble with the experimental evidence, the first perspective requires weighing them in
some way—a step that often involves judgment calls. On the other hand the second
perspective only requires knowing the probabilities involved in describing how the
experiments relate to the secret number. For this reason, the second approach is per-
ceived by many to be more objective, and more appropriate for scientific inquiry.
Objectivity, its essence, worthiness, and achievability, have been among the most
divisive issues in statistics. In an extreme simplification the controversy can be
captured by two views of probability:

Probability lives in the world. Probability is a physical property like
mass or wavelength. We can use it to describe stochastic experimental
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mechanisms, generally repeatable ones, like the assignments of exper-
imental units to different conditions, or the measurement error of a
device. These are the only sorts of probabilistic considerations that
should enter scientific investigations.

versus

Probability lives in the mind. Probability, like most conceptual con-
structs in science, lives in the context of the system of values and theories
of an individual scientist. There is no reason why its use should be
restricted to repeatable physical events. Probability can for example be
applied to scientific hypotheses, or the prediction of one-time events.

Ramsey (1926) prefaced his fundamental paper on subjective probability with a
quote from poet William Blake: “Truth can never be told so as to be understood, and
not be believed.”

These attitudes define a coordinate in the space of statisticians’ personal philoso-
phies and opinions, just like the poles of the previous controversy did. These two
coordinates are not the same. For example, there are approaches to the secret num-
ber problem that give different answers depending on whether data are 41 and 43,
or 43 and 43, but do not make use of “subjective” probability to weigh alternative
answers. Conversely, it is common practice to evaluate answers obtained from sub-
jective approaches, by considering how the same approaches would have fared in
other experiments.

A key aspect that both these dimensions have in common is the use of a stochas-
tic model as the basis for learning from data. In the secret number story, for example,
the starting point was that the experimental results would fall to the left or right of
the secret number with equal probability. The origin of the role of probability in
interpreting experimental results is sampling. The archetype of many statistical the-
ories is that experimental units are sampled from a larger population, and the goal of
statistical inference is to draw conclusions about the whole population. A statistical
model describes the stochastic mechanism based on which samples are selected from
the population. Sometimes this is literally the case, but more often samples and pop-
ulations are only metaphors to guide the construction of statistical procedures. While
this has been the model of operation postulated in most statistical theory, in practical
applications it is only one pole of yet another important controversy:

Learning requires models. To rigorously interpret data we need to
understand and specify the stochastic mechanism that generated them.
The archetype of statistical inference is the sample-population situation.

versus

Learning requires algorithms. To efficiently learn from data, it is crit-
ical to have practical tools for exploring, summarizing, visualizing,
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clustering, classifying. These tools can be built with or without explicit
consideration of a stochastic data-generating model.

The model-based approach has ancient roots. One of the relatively recent land-
marks is Fisher’s definition of the likelihood function (Fisher 1925). The algorithmic
approach also goes back a long way in history: for example, most measures of
dependence, such as the correlation coefficient, were born as descriptive, not infer-
ential tools (Galton 1888). The increasing size and complexity of data, and the
interface with computing, have stimulated much exploratory data analysis (Tukey
1977, Chambers et al. 1983) and statistical work at the interface with artificial intel-
ligence (Nakhaeizadeh and Taylor 1997, Hastie et al. 2003). This controversy is well
summarized in an article by Breiman (2001).

The premise of this book is that it is useful to think about these controversies, as
well as others that are more technical in statistics, from first principles. The principles
we will bring to bear are principles of rationality in action. Of course, this idea is in
itself controversial. With this regard, the views of many statisticians distribute along
another important dimension of controversy:

Statisticians produce knowledge. The scope of statistics is to rigor-
ously interpret experimental results, and present experimental evidence
in an unbiased way to scientists, policy makers, the public, or whoever
may be in charge of drawing conclusions or making decisions.

versus

Statisticians produce solutions to problems. Understanding data
requires placing them in the context of scientific theories, which allow
us to sort important from ancillary information. One cannot answer the
question “what is important?” without first considering the question
“important for what?”

Naturally, producing knowledge helps solving problems, so these two positions
are not in contrast from this standpoint. The controversy is on the extent to which
the goals of an experiment should affect the learning approaches, and more broadly
whether they should be part of our definition of learning.

The best known incarnation of this controversy is the debate between Fisher and
Neyman about the meaning of hypothesis tests (Fienberg 1992). The Neyman–Fisher
controversy is broader, but one of the key divides is that the Neyman and Pearson
theory of hypothesis testing considers both the hypothesis of interest and at least one
alternative, and involves an explicit quantification of the consequences of rejecting or
accepting the hypothesis based on the data: the type I and type II errors. Ultimately,
Neyman and Pearson’s theory of hypothesis testing will be one of the key elements
in the development of formal approaches to rationality-based statistical analysis. On
the other hand Fisher’s theory of significance test does not require considering an
alternative and incarnates a view of science in which hypotheses represent working
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approximations to natural laws, that serve to guide experimentation, until they are
refuted with sufficient strength that new theories evolve.

A simple example challenges theories of inference that are based solely on
the evidence provided by observation, regardless of scope and context of the
theory. Let x1 and x2 be two Bernoulli trials. Suppose the experimenter’s proba-
bilities are such that P(x1 = 0) = P(x2 = 0) = 0.5 and P(x1 + x2 = 0) = 0.05. Then,
P(x1 +x2 = 1) = 0.9 and P(x1 +x2 = 2) = 0.05. Let e be the new evidence that x1 = 1,
let h1 be the hypothesis that x1 + x2 = 2, and h2 be the hypothesis that x2 = 1. Given
e, the two hypotheses are equivalent. Yet, probability-wise, h1 is corroborated by the
data, whereas h2 is not. So if one is to consider the change in probability as a measure
of support for a theory, one would be left with either an inconsistent measure of evi-
dence, or the need to defend the position that the two hypotheses are in some sense
different even when faced with evidence that proves that they are the same. This and
other similar examples seriously question the idea that inductive practice can be ade-
quately represented by probabilities alone, without relation to their rational use in
action.

There can be disagreements of principle about whether consideration of con-
sequences and beliefs belongs to scientific inquiry. In reality, though, it is our
observation that the vast majority of statistical inference approaches have an implicit
or explicit set of goals and values that guide the various steps of the construction.
When making a decision as simple as summarizing a set of numbers by their median
(as opposed to, say, their mean) one is making judgments about the relative impor-
tance of the possible oversimplifications involved. These could be made formal, and
in fact there are decision problems for which each of the two summaries is optimal.
Our view is that scientific discussion is more productive when goals are laid out
in the open, and perhaps formalized, than when they are hidden or unappreciated.
As the old saying goes, “there are two types of statisticians: those who know what
decision problem they are solving and those who don’t.”

Despite the draconian simplifications we have made in defining the dimensions
along which these four controversies unfold, one would be hard pressed to find two
statisticians that live on the same point in this four-dimensional space. One of the
goals of this book is to help students find their own spot in a way that reflects their
personal intellectual values, and serves them best in approaching the theoretical and
applied problems that are important to them.

We definitely lean on the side of “judging answers by what they say” and believ-
ing that “probabilities live in the mind.” We may be some distance away along the
models versus algorithm dimension—at least judging by our approaches in appli-
cations. But we are both enthusiastic about the value of thinking about rationality
as a guide, though sometimes admittedly a rough guide, to science, policy, and
individual action. This guidance comes at two levels: it tells us how to formally
connect the tools of an analysis with the goals of that analysis; and it tells us how to
use rationality-based criteria to evaluate alternative statistical tools, approaches, and
philosophies.

Overall, our book is an invitation to Bayesian decision-theoretic ideas. While
we do not think they necessarily provide a solution to every statistical problem, we
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find much to think about in this comment from Herman Chernoff (from a personal
communication to Martin McIntosh):

Frankly, I am not a Bayesian. I go under the following principle. If you
don’t understand a problem from a Bayesian decision theory point of
view, you don’t understand the problem and trying to solve it is like
shooting at a target in the dark. Once you understand the problem, it is
not necessary to attack it from a Bayesian point of view. Bayesian meth-
ods always had the difficulty that our approximations to our subjective
beliefs could carry a lot more information than we thought or felt willing
to assume.

1.2 A guided tour of decision theory

We think of this book as a “tour guide” to the key ideas in decision theory. The
book grew out of graduate courses where we selected a set of exciting papers and
book chapters, and developed a self-contained lecture around each one. We make no
attempt at being comprehensive: our goal is to give you a tour that conveys an overall
view of the fields and its controversies, and whets your appetite for more. Like the
small pictures of great paintings that are distributed on leaflets at the entrance of
a museum, our chapters may do little justice to the masterpiece but will hopefully
entice you to enter, and could guide you to the good places.

As you read it, keep in mind this thought from R. A. Fisher:

The History of Science has suffered greatly from the use by teachers
of second-hand material, and the consequent obliteration of the circum-
stances and the intellectual atmosphere in which the great discoveries of
the past were made. A first-hand study is always useful, and often . . . full
of surprises. (Fisher 1965)

Our tour includes three parts: foundations (axioms of rationality); optimal data
analysis (statistical decision theory); and optimal experimental design.

Coherence. We start with de Finetti’s “Dutch Book Theorem” (de Finetti 1937)
which provides a justification for the axioms of probability that is based on a simple
and appealing rationality requirement called coherence. This work is the mathe-
matical foundation of the “probabilities live in the mind” perspective. One of the
implications is that new information is merged with the old via Bayes’ formula,
which gets promoted to the role of a universal inference rule—or Bayesian inference.

Utility. We introduce the axiomatic theory of utility, a theory on how to choose
among actions whose consequences are uncertain. A rational decision maker pro-
ceeds by assigning numerical utilities to consequences, and scoring actions by their
expected utility. We first visit the birthplace of quantitative utility: Daniel Bernoulli’s
St. Petersburg paradox (Bernoulli 1738). We then present in detail von Neumann and



INTRODUCTION 7

Morgenstern’s utility theory (von Neumann and Morgenstern 1944) and look at a
criticism by Allais (1953).

Utility in action. We make a quick detour to take a look at practical matters of
implementation of rational decision making in applied situations, and talk about how
to measure the utility of money (Pratt 1964) and the utility of being in good health.
For applications in health, we examine a general article (Torrance et al. 1972) and a
medical article that has pioneered the utility approach in health, and set the standard
for many similar analyses (McNeil et al. 1981).

Ramsey and Savage. We give a brief digest of the beautiful and imposing axiomatic
system developed by Savage. We begin by tracing its roots to the work of Ramsey
(1931) and then cover Chapters 2, 3, and 5 from Savage’s Foundations of statistics
(Savage 1954). Savage’s theory integrates the coherence story with the utility story,
to create a more general theory of individual decision making. When applied to sta-
tistical practice, this theory is the foundation of the “statisticians find solutions to
problems” perspective. The general solution is to maximize expected utility, and
expectations are computed by assigning personal probabilities to all unknowns.
A corollary is that “answers are judged by what they say.”

State independence. Savage’s theory relies on the ability to separate judgment of
probability from judgment of utility in evaluating the worthiness of actions. Here we
study an alternative axiomatic justification of the use of subjective expected utility
in decision making, due to Anscombe and Anmann (1963). Their theory highlights
very nicely the conditions for this separation to take place. This is the last chapter on
foundations.

Decision functions. We visit the birthplace of statistical decision theory: Wald’s
definition of a general statistical decision function (Wald 1949). Wald proposed a
unifying framework for much of the existing statistical theory, based on treating sta-
tistical inference as a special case of game theory, in which the decision maker faces
nature in a zero-sum game. This leads to maximizing the smallest utility, rather than a
subjective expectation of utility. The contrast of these two perspectives will continue
through the next two chapters.

Admissibility. Admissibility is the most basic and influential rationality require-
ment of Wald’s classical statistical decision theory. A nice surprise for Savage’s
fans is that maximizing expected utility is a safe way, and often, at least approx-
imately, the only way, to build admissible statistical decision rules. Nice. In this
chapter we also reinterpret one of the milestones of statistical theory, the Neyman–
Pearson lemma (Neyman and Pearson 1933), in the light of the far-reaching theory
this lemma sparked.

Shrinkage. The second major surprise from the study of admissibility is the fact that
x̄—the motherhood and apple pie of the statistical world—is inadmissible in esti-
mating the mean of a multidimensional normal vector of observations. Stein (1955)
was the first to realize this. We explore some of the important research directions
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that stemmed from Stein’s paper, including shrinkage estimation, empirical Bayes
estimation, and hierarchical modeling.

Scoring rules. We change our focus to prediction and explore the implications of
holding forecasters accountable for their predictions. We study the incentive systems
that must be set in place for the forecasters to reveal their information/beliefs rather
than using them to game the system. This leads to the study of proper scoring rules
(Brier 1950). We also define and investigate calibration and refinement of forecasters.

Choosing models We try to understand whether statistical decision theory can be
applied successfully to the much more elusive tasks of constructing and assessing
statistical models. The jury is still out. On this puzzling note we close our tour of
statistical decision theory and move to experimental design.

Dynamic programming. We describe a general approach for making decisions
dynamically, so that we can both learn from accruing knowledge and plan ahead to
account for how present decisions will affect future decisions and future knowledge.
This approach, called dynamic programming, was developed by Bellman (1957). We
will try to understand why the problem is so hard (the “curse of dimensionality”).

Changes in utility as information. In decision theory, the value of the information
carried by a data set depends on what we intend to do with the data once we have
collected them. We use decision trees to quantify this value (DeGroot 1984). We
also explore in more detail a specific way of measuring the information in a data set,
which tries to capture “generic learning” rather than specific usefulness in a given
problem (Lindley 1956).

Sample size. We finally come to terms with the single most common decision statisti-
cians make in their daily activities: how big should a data set be? We try to understand
how all the machinery we have been setting in place can help us and give some
examples. Our discussion is based on the first complete formalization of Bayesian
decision-theoretic approaches to sample size determination (Raiffa and Schlaifer
1961).

Stopping. Lastly, we apply dynamic programming to sequential data collection,
where we have the option to stop an experiment after each observation. We discuss
the stopping rule principle, which states that within the expected utility paradigm,
the rule used to arrive at the decision to stop at a certain stage is not informative
about parameters controlling the data-generating mechanism. We also study whether
it is possible to design stopping rules that will stop experimentation only when one’s
favorite conclusion is reached.

A terrific preparatory reading for this book is Lindley (2000) who lays out the philos-
ophy of Bayesian statistics in simple, concise, and compelling terms. As you progress
through the book you will find, generally in each chapter’s preamble, alternative texts
that dwell on individual topics in greater depth than we do. Some are also listed next.
A large number of textbooks overlap with ours and we make no attempt at being com-
prehensive. An early treatment of statistical decision theory is Raiffa and Schlaifer


