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Abstract. Flood-damage prediction models are essential
building blocks in flood risk assessments. So far, little re-
search has been dedicated to damage from small-scale urban
floods caused by heavy rainfall, while there is a need for re-
liable damage models for this flood type among insurers and
water authorities.

The aim of this paper is to investigate a wide range
of damage-influencing factors and their relationships with
rainfall-related damage, using decision-tree analysis. For
this, district-aggregated claim data from private property in-
surance companies in the Netherlands were analysed, for the
period 1998-2011. The databases include claims of water-
related damage (for example, damages related to rainwa-
ter intrusion through roofs and pluvial flood water entering
buildings at ground floor). Response variables being mod-
elled are average claim size and claim frequency, per district,
per day. The set of predictors include rainfall-related vari-
ables derived from weather radar images, topographic vari-
ables from a digital terrain model, building-related variables
and socioeconomic indicators of households.

Analyses were made separately for property and content
damage claim data. Results of decision-tree analysis show
that claim frequency is most strongly associated with maxi-
mum hourly rainfall intensity, followed by real estate value,
ground floor area, household income, season (property data
only), buildings age (property data only), a fraction of home-
owners (content data only), a and fraction of low-rise build-
ings (content data only). It was not possible to develop sta-
tistically acceptable trees for average claim size. It is rec-
ommended to investigate explanations for the failure to de-
rive models. These require the inclusion of other explanatory
factors that were not used in the present study, an investiga-

tion of the variability in average claim size at different spatial
scales, and the collection of more detailed insurance data that
allows one to distinguish between the effects of various dam-
age mechanisms to claim size. Cross-validation results show
that decision trees were able to predict 22-26 % of variance
in claim frequency, which is considerably better compared to
results from global multiple regression models (11-18 % of
variance explained). Still, a large part of the variance in claim
frequency is left unexplained, which is likely to be caused by
variations in data at subdistrict scale and missing explanatory
variables.

1 Introduction

A key aspect of flood risk management is the analysis of
flood-damage data and the development of flood-damage
prediction models. A considerable amount of literature on
this topic is associated with catastrophic river floods that in-
volve large catchments (Merz et al., 2010; Jongman et al.,
2012). Comparatively little research has focused on dam-
age of small-scale floods in urban areas that are a result of
localised heavy rainfall (e.g. Ten Veldhuis, 2011; Hurford
et al., 2012; Blanc et al., 2012; Zhou et al., 2012). One pos-
sible explanation for this is that the adverse consequences
on the scale of river catchments are possibly larger than on
the urban scale. Moreover, information and data on impacts
from urban flooding are rare, as well as appropriate meth-
ods to analyse these. Meanwhile, reliable damage models for
this type of flood can help insurers and water authorities to
respond more adequately to rainfall extremes.
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Severe pluvial floods in the UK in 2004, 2006 and 2007
(Pitt, 2008; Coulthard and Frostick, 2010; Douglas et al.,
2010) have demonstrated that local high-intensity rainfall
can have large impacts on society. Another example is the
heavy rainfall event of 1998 in the Netherlands, which caused
around 410 million euros (1998 values) to private buildings
and agriculture (Jak and Kok, 2000). Recent figures, related
to building damage due to heavy rainfall, show that the Dan-
ish insurance industry has compensated around 300 million
euros per year between the years 2009 and 2011 (Garne et al.,
2013).

The objective of a damage model is to predict damage that
is related to single objects (e.g. buildings) or spatially aggre-
gated units (e.g. postal districts, neighbourhoods), based on
a set of explanatory variables. In particular, building dam-
age and the factors contributing to damage has been object
of research in many natural hazard sciences, such as building
damage due to landslides (e.g. Chiocchio et al., 1997), hail-
storms (e.g. Hohl et al.,, 2002), and coastal flooding (e.g. An-
dré et al., 2013). For river flooding, traditional building dam-
age models usually consider flood depth and building class as
the primary damage-influencing factors (Merz et al., 2010).
In recent years, an increasing number of studies have shown
that flood depth alone cannot sufficiently explain damage
variability (Merz et al., 2004; Thieken et al., 2005; Pistrika
and Jonkman, 2009; Merz et al., 2010; Freni et al., 2010)
and that many other factors play an important role, such as
the level of precaution and socioeconomic status of house-
holds (Kreibich et al., 2005; Thieken et al., 2005; Merz et al.,
2013). In particular, for pluvial flooding, uncertainties in ur-
ban drainage models are not yet understood well enough
(Deletic et al., 2012) to make reliable flood depth calcula-
tions. A source of uncertainty relates to incomplete knowl-
edge of failure mechanisms that lead to flooding. For exam-
ple, blockages of sewer inlets contribute largely to pluvial
flooding (Ten Veldhuis et al., 2011), but this process is usu-
ally ignored in urban drainage models.

Instead, Merz et al. (2013) argue that “there is a need
for multi-variate statistical analyses of comprehensive flood-
damage data to quantify the interaction and influence of var-
ious factors and to further develop reliable damage models”.
They successfully applied tree-based data-mining techniques
on a comprehensive damage data set related to building dam-
age after major river floods in Germany. Through this ap-
proach, they were able to investigate a large variety of poten-
tial damage-influencing characteristics, beyond the ones that
are used in traditional flood-damage models, and identify pa-
rameters with strong explanatory value, such as floor area,
building value, flood return period, contamination, flood du-
ration and level of precaution.

The use of tree-based models, or decision trees, is also ex-
plored in the present paper in the context of modelling dam-
ages related to heavy rainfall. Decision trees have proved to
be useful for exploring the structure of complex data sets. De-
cision trees have been applied in a large variety of fields, such

Nat. Hazards Earth Syst. Sci., 14, 2531-2547, 2014

M. H. Spekkers et al.: Rainfall damage analysis

as ecology (e.g. Rejwan et al., 1999; De’ath and Fabricius,
2000) and medicine (e.g. Hess et al., 1999), but the study by
Merz et al. (2013) was the first to explore the concepts for
flood-damage modelling.

In this paper, results of decision-tree analysis are presented
based on a large insurance database of district-aggregated
damage data. The data represent water-related damages to
residential buildings, for the period of 1998-2011, covering
the whole of the Netherlands. In exploratory studies based on
the same database, relationships between various character-
istics of rainfall events and various damage variables were in-
vestigated (Ririassa and Hoen, 2010; Spekkers et al., 2013a,
b). These studies found that rainfall characteristics explain
only part of the variance in water-related damage data. Simi-
lar conclusions were drawn by Cheng (2012); Einfalt et al.
(2012); Zhou et al. (2013), and the Climate Service Cen-
ter (2013), who also analysed water-related insurance claim
data in relation to rainfall data. There may be two reasons for
the variance that is left unexplained. Firstly, global regression
models were used in the aforementioned studies, but, given
the complexity of the problem, they may not be the most ap-
propriate model choice. Secondly, the analyses were limited
to rainfall-related factors only, while, in reality, many more
factors are relevant for damage.

Building upon the research by Merz et al. (2013), this pa-
per aims to investigate a wide range of damage-influencing
factors, defined by the scale of districts and their relation-
ships with average size and frequency of insurance dam-
age claims, using decision-tree analysis. The set of explana-
tory variables includes rainfall-related variables derived from
weather radar data sets, topographic variables from a dig-
ital terrain model, building-related variables, and variables
related to the socioeconomic status of households. Variables
related to functioning of urban drainage systems (e.g. stor-
age capacity, sewer type) were not included because these
were not available on a nationwide basis. Separate analyses
were made for property and content damage data. The pa-
per is structured as follows. First of all, an overview of the
data sources and a description of how response and explana-
tory variables were derived from the data is given (Sect. 2).
In Sect. 3, more background is given on the various choices
that were made to construct decision trees. Results of the
decision-tree analysis and a comparison between results from
a global multiple-regression model are presented in Sect. 4,
followed by a discussion in Sect. 5. Finally, Sect. 6 sum-
marises conclusions and recommendations.

2 Data
2.1 Damage variables
Insurance damage data were provided by the Dutch Associ-

ation of Insurers, an organisation that represents the interests
of private insurance companies operating in the Netherlands
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(Table 1). The data include daily records of water-related
damage claims related to residential buildings and building
contents in the Netherlands from a number of large private
insurance companies. The database covers policy data of on
average 22 % of all households in the Netherlands, in the pe-
riod 1998-2011 (Fig. 1). In the Netherlands, almost all pri-
vately owned buildings are insured for property damage that
may result from a wide range of risks, such as fire, hail, rain-
fall, and storms. Such insurance is commonly obliged in the
case of a mortgage. The data are aggregated at the level of 4-
digits postal districts, i.e. neighbourhood level. The Nether-
lands has around 4000 districts, with surface areas varying
between 1km? and 50 km?.

Water-related damage can have a wide range of causes,
such as rainwater intrusion through roofs, and pluvial flood
water that enters buildings through doors and wall openings.
Cases of fluvial flooding are not included in the data, as these
are not commonly covered by property and content insurance
policies in the Netherlands (Seifert et al., 2013). Insurers typ-
ically compensate for the costs of cleaning, drying and re-
placing materials and objects, and the costs of temporarily
rehousing people.

Damage values before 2002 were converted from guilder
to euros using the conversion ratio 1 guilder = 0.454 euros.
All values are in 2011 euros. Every value associated with
a year before 2011 was adjusted for inflation according to the
correction indices in Table 3. Extensive checks on missing or
incorrect values (e.g. blanks, zeros, and incorrect dates) and
inconsistencies in the data are discussed in Spekkers et al.
(2013a). Figure 2 shows that property insurance is well rep-
resented in the database in most regions of the Netherlands
(insurance density of > 10 %), but poorly represented in parts
of the northern provinces (insurance density of < 10 %). This
is mainly the case for property insurance, as almost all dis-
tricts have content insurance density of > 10 %.

The response data being modelled are of average claim
size and claim frequency, per district, per day (see Table 2
for definitions). The next section discusses the explanatory
variables.

2.2 Subsetting data

A case (i.e. a row in the data table) is a unique combination
of a day and a district. Cases were filtered out for a number of
reasons. Cases with fewer recorded claims are often not re-
lated to rainfall, but to other causes of water-related damage,
such as bursts of water supply pipes and leakages of washing
machines (Spekkers et al., 2013a). These non-rainfall-related
claims occur throughout the year, whereas rainfall-related
claims are clustered on wet days. Cases were therefore se-
lected based on a statistically higher number of claims than
expected on dry days. For this, a filter approach proposed in
Spekkers et al. (2013a) was applied. A binomial probability
law was applied to dry days in the data set to derive the prob-
ability of y claims at least as extreme as k;, the number of
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Figure 1. Insurance density per year: the number of insured house-
holds in the database from the Dutch Association of Insurers per
year, divided by the total number of households in the Netherlands
per year. Light bars represent property insurance, and dark bars rep-
resent content insurance. The dashed horizontal line (= 22 %) rep-
resents the average insurance density for the period 1998-2011 (the
same percentage for content and property insurance).

claims observed for case i, given K;, the number of insured
households for case i (i.e. p value):

e
Pr(yzk,»|K»=1—Z(y‘);m—c)’“—y, (1)

y=0

where ¢ is the probability of a non-rainfall-related claim on
a day for an individual, insured household. Figure 4 shows
the estimated ¢ per year for content and property claims,
based on cases for which no rainfall was recorded. The vari-
ations of ¢ between years may be related to annual changes
in the participating insurers; among insurers, there may be
different policies towards claim compensation. Additionally,
there can be changes in people’s claiming behaviour. Cases
were selected if the p value (according to Eq. 1) was below
a significance level of 0.01 (1 %), with a minimum of two
claims per case. This implies that relationships between vari-
ables are investigated given a likelihood of 99 % of rainfall-
related damage.

Furthermore, cases were discarded if insurance density
was less than 10 %, the value of claim frequency was unre-
alistically large (> 0.1), or the number of policyholders was
less than 100. The last rule was applied to reduce the risk of
cases with few policyholders to show high claim frequencies
just by chance. The final subsets related to property data and
content data contain around 6000 cases (& 15500 claims)
and around 6300 cases (=~ 19 000 claims) respectively. Fig-
ure 3 shows the distributions of the response variables for the
subsets; the distributions are skewed to the right.
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Table 1. Overview of data sources used in this study.
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# Data source Temporal Spatial Period Related
resolution resolution references
1 Databases from Dutch Association of Insurers Ririassa and Hoen (2010)
Property damage claims By day District level 1998-2011
Content damage claims By day District level 1998-2011
2 C-band weather radar data set from the Royal 1scan/Smin 2.5kmx2.5km  1998-2008 Overeem et al. (2009)
Netherlands Meteorological Institute pixels
I scan/Smin  1km x 1km 2009-2011 See Sect. 2.3 in Overeem
pixels etal. (2011).
3 Databases from Statistics Netherlands
Real estate values By year Per object 1998-2011
Housing stock register By year Per object 2006-2011
Integrated household income data By year Per household 2003-2011
Highest level of education achieved data By year Per person 1999-2010
Demographic background of persons data By year Per person 1995-2011
4 National Building Register By day Per object Dynamic Online viewer:
http://bagviewer.pdok.nl/.
5 Digital terrain model of the Netherlands 1 scan Smx5mpixels Obtained in the  Online viewer:

period of 2007—  http://ahn.geodan.nl/ahn/.
2012. More background: Van der
Sande et al. (2010); Van der
Zon (2013).

2.3 Damage-influencing variables + Insurance density < 10% or NA

s | Insurance density >10% ? o

” OFae
2.3.1 Rainfall-related variables o -pr

8 St < f’,,;
For each case in the subset, rainfall volume, rainfall duration, o . Wi i
and maximum and mean rainfall intensity were extracted 57 o .,.x\) }' iy
from weather radar data (Table 2). Definitions of these vari- E Ji e o et
ables can be found in Table 2. A database of C-band weather > 84 aSSmat g
radar images was used, provided by the Royal Netherlands e
Meteorological Institute (Table 1). The images are compos- s | ) et
ites based on two C-band Doppler radars, which have been . . T 7
adjusted for various biases using data from manual and auto- -
matic rain gauges (Overeem et al., 2009). The rainfall-related s i
variables were obtained using the following steps, as is also .
described in Spekkers et al. (2013b). 8 ‘ ‘ ‘ ‘ ‘ ‘ ‘

Firstly, rainfall time series are processed at individual pixel 0 50 100 150 200 250 300

level. Rainfall data were extracted for claim days (i.e. the « [km]

days related to the cases) and for one previous day. Then,
independent rainfall events were selected based on an inter-
mediate dry period of at least 12 h, with “dry” being defined
as < 0.083 mm for a 5 min time step. The dry period of a 12h
interval relates to the time a sewer system takes to restore to
equilibrium state (i.e. a state with only dry weather flow) af-
ter a rainfall event. Dutch sewers are designed to restore to an
equilibrium state in around 10 to 24 h (Stichting RIONED.,
2008). Only rainfall events that coincide with a claim day for
at least one time step are kept. This results in either zero, one,
or two independent rainfall events that can be associated with
a claim day. In the case of zero events, all rainfall character-
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Figure 2. Property insurance density: the percentage of homeown-
ers included in the database from Dutch Association of Insurers,
averaged over the years 1998-2011. Dark areas denote districts that
have an insurance density of less than 10 % or where values are
not available. Note that this figure is slightly different for individual
years.

istics are assigned zero values. In the case of two events, the
maximum value out of the two events is taken.
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http://bagviewer.pdok.nl/
http://ahn.geodan.nl/ahn/

M. H. Spekkers et al.: Rainfall damage analysis

2535

Table 2. Model variables and variable definitions. Value ranges (column 3) are related to subsets of property and content claim data respec-

tively.
Variable name Definition Min-Max (median) Min-Max (median) Source
Property data Content data

Response variables

Claim frequency (cf) Number of claims per day per district divided by num-  0.0007-0.0933 0.0006-0.0812 1
ber of policyholders per district (0.0039) (0.0026)

Average claim size (acs) Total damage per day per district divided by number of ~ 43-80 520 (1024) 12-28282 (674) 1
claims per day per district (euros)

Rainfall-related variables

Maximum rainfall intensity (rmax) ~ Maximum intensity of rainfall event at the building- 0-97 (4) 0-97 (8) 2
weighted centroid of a district, using an 1 h moving time
window (mmh~1)

Mean rainfall intensity (rmean) Mean intensity of rainfall event at the building- 0-38 (1) 0-46 (1) 2
weighted centroid of a district (mm h_l)

Rainfall volume (rvol) Volume of rainfall event at the building-weighted cen-  0-149 (12) 0-154 (17) 2
troid of a district (mm)

Rainfall duration (rdur) Duration of rainfall event at the building-weighted cen-  0-48 (10) 048 (11) 2
troid of a district (h)

Socio-economic variables

Household income (inc) Median disposable household income per district, ad-  1-10 (5) 1-10 (3) 3
justed for inflation according to Table 3 and classified
in 10-percentile groups: 1= lowest 10 % of data, 10=
highest 10 % of data

Education of breadwinner (edu) Mean level of highest education obtained by main 2.6-5.3 (3.9) 2.6-5.2(3.7)
breadwinner per district, according to Dutch education
index: 1 = lowest: e.g. kindergarten, 7 = highest: e.g.
degree in medicine

Age of breadwinner (agel) Median age of main breadwinner per district (yr) 24-68 (51) 27-72 (50) 3

Fraction of homeowners (own) Number of owner-occupied buildings per district di-  0.08-0.95 (0.62) 0-0.98 (0.52) 3
vided by the total number of residential buildings per
district

Building-related variables

Real estate value (rev) Median real estate value of residential buildings per dis-  39371-1 068 136 34132-773468 3
trict, adjusted for inflation according to Table 3 (euros) (184 508) (145774)

Fraction of low-rise buildings (low)  Number of residential addresses that have their entrance  0-1 (0.91) 0-1 (0.85) 4
at ground level divided by the total number of residen-
tial addresses per district

Building age (age2) Median age of residential buildings per district (yr) 2-251 (41) 1-253 (42) 4

Ground floor area (floor) Mean area of the ground floor of a building per district ~ 7-385 (63) 17-263 (62) 4
(m?)

Topographic variables

Slope (slope) Median slope at building pixels (°) per district, accord-  0.29-7.29 (0.62) 0.29-6.48 (0.65) 5
ing to Horn (1981)

Position index, 25 m (tpil) Median topographic position index at building pixels —0.02-0.16 (0.04) —0.01-0.16 (0.04) 5
(m) per district, according to Weiss (2001) using 25m x
25 m window

Position index, 255 m (tpi2) Median topographic position index at building pix- —1.55-0.95(0.11) —0.73-1.24 (0.11) 5
els (m) per district, according to Weiss (2001) using
255m x 255 m window

Position index, 1005 m (tpi3) Median topographic position index at building pix- —16.76-7.20 (0.14) —9.85-7.2(0.12) 5
els (m) pre district, according to Weiss (2001) using
1005m x 1005 m window

Others

Season (seas) Season of the year: winter = Dec—Feb, spring = Mar— NA NA NA

May, summer = Jun—Aug, autumn = Sep—Nov
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Figure 3. Histograms of response variables in subset data: (a)
claim frequency of property-related cases, (b) average claim size of
property-related cases, (c) claim frequency of content-related cases
and (d) average claim size of content-related cases. Histograms of
claim frequency and average claim size have a bin size of 0.0005
and 250 euros respectively.

Secondly, the radar pixel value at the building-weighted
centroid of a district is selected. The weighting was based
on the locations of residential buildings in the district ac-
cording to the National Building Register (see Sect. 2.3.4).
The building-weighted centroid better links radar data to ur-
banised areas compared to the geometric centroid, particu-
larly for larger districts with spatial variation of urban density
(Fig. 5).

2.3.2 Topographic variables

A digital terrain model (DTM) of the Netherlands was used
to characterise districts in terms of their steepness (Table 1).
Steep catchments are prone to depression filling, where rain-
water runs down a slope and fills up depressions at the bot-
tom if no drainage facilities are available (Ten Veldhuis et al.,
2011). The DTM used is a representation of the natural ter-
rain, excluding semi-permanent objects like vegetations and
buildings. The spatial resolution of the DTM was aggregated
to Sm x 5 m tiles (Van der Zon, 2013). Data gaps in the DTM
were filled using linear interpolation. More background on
the laser scanning campaign and data quality can be found in
Van der Sande et al. (2010) and Van der Zon (2013).

There is a wide range of techniques to calculate topo-
graphic variables from raster data. For example, see Wil-
son et al. (2007) for an extensive review. This study fo-
cused on two variables: topographic position index (TPI) and

Nat. Hazards Earth Syst. Sci., 14, 2531-2547, 2014
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Figure 4. Average probability of a non-rainfall-related claim per
day per policyholder for the years 1998-2011. The white dots are
related to property claim data, the black dots to content claim data.

slope (Table 2). TPI compares the elevation of a cell to the
mean elevation of a specified neighbourhood around that cell
(Weiss, 2001). A positive TPI value means that the cell is
a locally high point within the analysis window, whereas
a negative TPI value corresponds with a locally low point.
TPI was calculated using three sizes of analysis windows, i.e.
a25mx25m,255m x 255 m, and 1005m x 1005 m window.
Slope was assessed according to the procedure discussed in
Horn (1981), where the maximum rate of change in value
from the cell to its eight neighbours was calculated.

Values of the topographic variables were assigned to resi-
dential buildings, based on the pixel in which the geometric
centroid of the building was located. Building locations were
derived from the National Building Register (Table 1) using
the reference data of 31 December 2011. The derived val-
ues were then spatially aggregated to obtain median variable
values per district. Median values, rather than mean values,
were used to reduce the effect of outliers. Although there may
be changes in the housing stock between years, it was as-
sumed that the district-aggregated topographic variables are
constant for the entire study period.

2.3.3 Socioeconomic variables

Previous studies have shown socioeconomic data of house-
holds, such as ownership structure, to be significantly corre-
lated to property and content damage (e.g. Thieken et al.,
2005). The relationships between socioeconomic variables
and the damage may be weaker when studied at the level
of districts (compared to that of individual households), in

www.nat-hazards-earth-syst-sci.net/14/2531/2014/
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Figure 5. An example map showing postal districts (polygons),
their geometric centroid (crosses), and their building-weighted cen-
troids (dots). The grey dots are residential areas used in the weight-
ing.

particular when districts are heterogeneous. For example,
when there is a large variance in household incomes.

Databases of Statistics Netherlands were used to derive
a number of basic socioeconomic variables (Table 1 and
2). The variables are district-aggregated statistics. Median
values were used instead of mean values for variables that
showed strong variance within districts (i.e. age of bread-
winner and household income) to reduce the influence of
outliers. Because only homeowners can take property insur-
ance, the variable “fraction of homeowners” is only relevant
for content-related response variables.

2.3.4 Building-related variables

Building-related variables were based on the National Build-
ing Register (NBR), a geodatabase of all buildings and ad-
dresses in the Netherlands (Table 1), except for real estate
values, which are based on databases of Statistics Nether-
lands. The NBR contains many building attributes, such as
construction year, type of use, and ground floor area. The
database effectively tracks changes in the housing stock; i.e.
new buildings are added, old buildings are marked “not in
use”. For any historic point in time, subsets of the housing
stock can be made. Subsets of the data were made for each
year (reference data: 31 December) of objects with a resi-
dential function, possibly combined with a shopping or busi-
ness function, for which the building status was marked “in
use”. From each case, three variables were derived: fraction
of low-rise buildings, building age, and ground floor area
(Table 2). Fraction of low-rise buildings was indirectly de-
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Table 3. Inflation adjustment according to the online database of
Statistics Netherlands (http://statline.cbs.nl). The average inflation
per year for the Netherlands is used (second column), based on the
consumer price index. Every damage value associated with a year
before 2011 was multiplied with a correction index (third column).

Year Inflation [%] Correction
1998 2.0 1.31
1999 2.2 1.28
2000 2.6 1.25
2001 4.5 1.19
2002 3.4 1.16
2003 2.1 1.13
2004 1.2 1.12
2005 1.7 1.10
2006 1.1 1.09
2007 1.6 1.07
2008 2.5 1.04
2009 1.2 1.03
2010 1.3 1.02
2011 2.3 1.00

termined from the data; overlapping points (i.e. points repre-
senting addresses at different storeys of a flat) were removed
and residual points were then counted and compared to orig-
inal point data. In the cases where multiple addresses were
sharing the same building polygon, the ground floor area was
adjusted by dividing the total polygon area by the number of
addresses.

2.3.5 Other

For each case, the season of the year was included to account
for seasonal effects, such as occurrence of snow and hail and
blockages of rain gutters or sewer inlets due to leaf fall.

3 Methods
3.1 Decision trees and splitting criteria

The two response variables, claim frequency and average
claim size, are separately modelled as a function of the can-
didate explanatory variables (Table 2), using decision trees.
The advantages of tree models are that they “can deal with
non-linear relationships, high-order interactions and missing
data” (De’ath and Fabricius, 2000).

The philosophy of this approach is to learn a tree by
finding an explanatory variable that splits the data into two
groups, or nodes, such that variance of the response vari-
able is minimised. A data set is split into two groups by
a chosen reference value of an explanatory variable: a group
for which values are lower than the chosen reference value
and a group for which values are higher than or equal to
the chosen reference value. From all possible splits of all
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explanatory variables, the one that minimises the variance of
the response variable in the resulting groups, is selected. This
process is recursively repeated on each subgroup until a large
tree is learned. Trees are trained based on the complete data
set.

An important aspect in learning trees is the choice of the
splitting criterion. A general expression of a goodness-of-
split measure is the difference between the within-node de-
viance of the response data in the parent group, Dp, and the
sums of within-node deviance of the response data in the left
and right child group, Dy, and Dr (Therneau and Atkinson,
2014):

¢ = Dp— Dr, — DR ()

A split that maximises Eq. (2) is sought out. The expression
of the within-node deviance is specified depending on the
type of response data. For continuous data, as is the case of
average claim size, the within-node deviance is commonly
defined as the sum of squares about the group mean (Table 4).
The class of trees that are based on this deviance function are
referred to as regression trees (Breiman et al., 1984). The
summary statistic, or model outcome, that is given at each
terminal node is the group mean.

Similar to ordinary least-square regression, the variance
of the response variable needs to be constant for any
group mean, otherwise greater weight is given to groups
with higher variations (De’ath and Fabricius, 2000; Moisen,
2008). The average claim size was therefore log-transformed
to stabilise variance. Note that there is no need to trans-
form explanatory variables, as regression trees are invari-
ant to monotonic transformations of explanatory variables
(Breiman et al., 1984). To make analysis more robust for out-
liers, the numbers of claims on which average claim size is
based were used as case weights.

For event rate data, as is the case of claim frequency,
a more appropriate goodness-of-split measure is one that is
based on the deviance function of Poisson distributed data
(Table 4) (Therneau and Atkinson, 2014). Note that claim
frequency is calculated by dividing the number of claims
by the number of policyholders, where the number of pol-
icyholders may vary from district to district. The summary
statistic that is given at each terminal node is the Poisson
mean. Trees of this class are referred to as Poisson trees, fol-
lowing the naming convention by Lee and Jin (2006). From
a theoretical point-of-view, the deviance function of a zero-
truncated Poisson distribution gives a better description of
the within-node deviance (Table 4), because only non-zero
counts are considered here. Parameter estimation of this de-
viance function has the disadvantage of requiring an itera-
tive process that is computationally much more demanding
than the Poisson deviance function. For this reason, results
are based on the splitting criterion that uses the Poisson de-
viance function. More details on this issue can be read in the
discussion section (Sect. 5).
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The main source of missing data was rainfall data, due to
weather radars not being operational. To deal with missing
data, a common approach in decision-tree learning is to im-
pute missing data using surrogate variables (Breiman et al.,
1984). Surrogate variables are variables that would split data
into two groups similar to the split by the original, or pri-
mary, splitting variable. This method is, however, not appro-
priate for missing rainfall data, because none of the other ex-
planatory variables considered in the present study can act
as a suitable surrogate. Alternatively, we discarded the cases
without rainfall data (8—11 % of the cases). Still, surrogate
variables were recorded at each node for the purpose of cal-
culating variable importance (see Sect. 3.2).

A total number of four trees were generated for the vari-
ous responses: property claim frequency, content claim fre-
quency, average property claim size, and average content
claim size. For all trees, explanatory variables listed in Ta-
ble 2 were used as model input, except for a fraction of home-
owners in the case of property claim data.

3.2 Determining size of tree and variable importance

The large tree is then trimmed back to a simpler tree that
still contains most of the predictive power of the large tree
(De’ath and Fabricius, 2000; Therneau and Atkinson, 2014).
The right size of tree is determined using 10-fold cross-
validation. The following explanation of this procedure is
based on the papers by De’ath and Fabricius (2000) and Moi-
sen (2008): the data is randomly divided into ten mutually
exclusive subsets of equal size. Then, 10 trees are built us-
ing nine subsets each time, dropping out one subset in turn.
The fitted trees are used to predict the omitted subset, such
that the average error of all trees can be estimated. The error
of a tree is defined as the amount of variance in the terminal
nodes that is left unexplained compared to the variance of the
undivided data. This is repeated for each tree size. In contrast
to the error of a tree that is fitted on training data, the average
error of cross-validation trees will eventually reach a plateau
(a tree size where a next split does not add any value to the
prediction). Because of the imprecision of determining the
exact tree size at which the plateau is reached, the 1 SE rule
is applied (Breiman et al., 1984); the smallest tree is taken,
such that the average error is within one standard deviation
of the minimum error of the cross-validation trees. This tree
is referred to as the “pruned tree”.

Decision trees can also be used to identify important vari-
ables. Variable importance is defined as the sum of the
goodness-of-split measure (Eq. 2) of each split for which the
variable was the primary or the surrogate splitting variable,
scaled to sum to one.

Various softwares are available for decision-tree analysis.
The Recursive Partitioning and Regression Trees (RPART)
library for R 2.15.3 was used for this study, developed by
Therneau and Atkinson (2014).
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Table 4. Within-node deviance functions. Symbols: k; = number of claims per day per district, K; = number of policyholders per day per

district, w; = case weight, n = number of cases.

Response variable Distribution Within-node deviance Parameter estimation
log(Average claim size) =y;  Normal (u; o) D= Z[wi (yi — ,&)2] n :M
n
k; ki N A > ki
Claim frequency = — Poisson (1 D=2 [k~ lo <A—) —k;i + )»K'] A= :
q y K, *) Z i 10g AK; i i K,

D =2Z[k,~ log(h ™ (k) — k™ (kp)

Truncated Poisson (1)

where h(x) =

—log(1 —exp(—=h ™' (k;))) — ki log(AK;)
+AK; +log(1 — exp(—iK,»))],

A using maximum likelihood
estimation

1 —exp(—x)

Note: h~!(x) needs to be calculated numerically, which is inconvenient for decision-tree learning where deviance needs to be evaluated for every split.

3.3 Comparison with global multiple-regression model

Results of decision-tree analysis were compared to results
of global multiple-regression analysis. A Poisson regression
model was used to explain claim frequency as a function of
various combinations of explanatory variables, which yields:

log(k;) =1og(K;) + Bo + P1x1i + ... + BuXni, 3)

where k; is the number of claims observed for case i, K; is
the number of insured households for case i, and By, ...c, B,
is the regression coefficients. Regression coefficients are es-
timated using maximum likelihood estimation. A linear re-
gression model was used to explain claim size, using a log-
transformed response variable:

log(yi) = Po+ B1x1i + -+ Buxui +&i, 4

where y; is the average claim size for case i, and ¢; is the er-
ror term of case i. Tree models and global regression models
were compared in terms of variance explained by the models.
Since the only interest here is to quantify the performance of
an entire set of explanatory variables in predicting claim fre-
quency, and not the individual contributions of the variables,
it is safe to ignore any correlation that may exist between
the explanatory variables. Note that the categorical variable
“season” was not included in the models.

4 Results

4.1 Explorative analysis

To explore data, pairwise correlations between explanatory
and response variables were analysed (Table 5). Spearman’s
correlation coefficients were calculated to account for the
non-normal distributions of response data (Fig. 3). Note that
the categorical variable “season” is not listed in Table 5. In
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Table 5. Spearman’s pairwise correlation coefficients. Non-
significant relationships (p < 0.001) are denoted with a hyphen.

Property claims Content claims

Variable Frequency Average  Frequency Average

size size
rmax 0.32 0.07 0.40 0.12
rmean 0.30 0.04 0.35 0.09
rvol 0.29 - 0.31 0.10
rdur 0.18 - 0.14 -
inc —0.21 - 0.24 -
edu —0.10 0.07 0.12 0.11
agel - - 0.15 -
own n/a n/a 0.35 -
rev —0.20 0.14 0.24 0.13
low - - 0.22 —0.06
age2 0.17 - - -
floor 0.09 - 0.26 -
slope 0.10 - - 0.05
tpil - - - -
tpi2 - - 0.10 -
tpi3 0.05 - 0.14 -

general, there is no explanatory variable with strong predic-
tive power. The strongest relationships were found between
rainfall-related variables, except for rainfall duration and
claim frequency (o = 0.29-0.40). Other significant factors
associated with claim frequency (with |p| > 0.20) include
household income, real estate value, a fraction of homeown-
ers (content data only), a fraction of low-rise buildings (con-
tent data only), and ground floor area (content data only). In-
terestingly, household income and real estate value are neg-
atively correlated with claim frequency for property-related
data (p = —0.21 and p = —0.20 respectively), but positively
correlated for content-related data (both have p =0.24).
This is probably because data sets contain different groups
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of households: property-related data involves homeowners
only, whereas content-related data include tenants and home-
owners. As a consequence, the data sets cover different vari-
able value ranges; content-related data are associated with
lower household incomes and real estate values (see Table 2).
Another explanation could be that more expensive houses
are better maintained or have better construction quality, and
they are therefore less prone to flooding. Moreover, income
is probably related to better maintenance, thereby indirectly
affecting the claim frequency.

There are a larger number of significant links between ex-
planatory variables and claim frequency than between ex-
planatory variables and average claims size. In general, re-
lationships between explanatory variables and average claim
size were weak or non-existent. Maximum and mean rain-
fall intensity (and rainfall volume for content-related claims)
were significant rainfall-related variables. Moreover, educa-
tion and a fraction of homeowners were significantly cor-
related with average claim size for property-related and
content-related claims.

Note that correlations reflect relationships based on the en-
tire data set. Variables that turn out not to be important glob-
ally may therefore still be important locally.

4.2 Decision-tree analysis

In contrast to pairwise correlation analysis, decision-tree
analysis allows to investigate relationships that exist locally
within subgroups of data. The Poisson tree in Fig. 6 explains
the property-related claim frequency, by dividing the original
data into 14 subgroups (i.e. terminal nodes). The tree uses
eight variables for splitting: two variables related to rain-
fall (maximum rainfall intensity and rainfall volume), three
variables related to buildings (real estate value, building age
and ground floor area), slope, season, and household income.
Maximum rainfall intensity is the top splitting variable and
also the variable that makes the second split to the right.
As a consequence, the data space is effectively split into
three rainfall intensity levels: 0—15 mm h=1, 1537 mmh~!,
and > 37mmh~!, with most claims (67 %) falling into the
lowest rainfall intensity group. Figure 7 illustrates the split-
ting method for the top split; the claim frequency is plot-
ted against maximum rainfall intensity (see top of Fig. 7),
and a split value for maximum rainfall intensity that max-
imises the goodness-of-split measure is sought (see bottom
of Fig. 7). For cases associated with rainfall intensities larger
than 37 mmh~!, no further subgroups were found. The next
splits down in the tree are related to real estate value. Real es-
tate value correlates negatively with claim frequency; higher
claim frequencies are associated with less expensive build-
ings. Building age only appears to be significant for cases
with low rainfall intensities (node 4, rmax < 15mmh~1). At
two nodes (node 5 and 12), season was the best splitting vari-
able, but both splits were not consistent; autumn and win-
ter were found to be either associated with relative low or
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high claim frequencies. Ground floor area correlates posi-
tively with claim frequency at nodes 25: larger buildings re-
ceive around 60 % more claims compared to small buildings.
The tree explains 32 % of the variance in training data (i.e.
R = | — sumotdevance sieminglnods 1, on average, 26 %
of the variance in cross-validation data sets (Fig. 8).

The regression tree, explaining content-related claim fre-
quency, has 12 terminal nodes and its splits are based on
four splitting variables: maximum rainfall intensity, a frac-
tion of homeowners, ground floor area, and a fraction of low-
rise buildings (Fig. 9). Similar to the previous tree, maxi-
mum rainfall intensity is the top splitting variable and the
value of the split (16mmh~! vs. 15mmh~!) is also con-
sistent between trees. Maximum rainfall intensity appears
two more times lower down in the tree (node 4 and 6),
which emphasises the importance of this variable in ex-
plaining claim frequency. For low-intensity rainfall events
(rmax < 16 mmh~"), a fraction of homeowners is a signif-
icant variable; districts with relatively many owner-occupied
buildings (own > 0.52) receive more claims than districts
with relatively many rented buildings (own < 0.52). Highest
claim frequencies are observed for cases with high rainfall
intensities (rmax > 16 mmh~"), relatively large and mostly
low-rise buildings (floor > 86 m2, low > 0.59, 3.3% of all
claims). The splits at node 15 and 22 (both having “ground
floor area” as splitting variable) only reduce the deviance of
the undivided data by less than 1 %. Thus, an even smaller
tree can be proposed by considering these nodes terminal,
without loosing much of the explained variance. The tree ex-
plains 30 % of the variance in training data and 22 % of the
variance in validation data (not shown here), which means
that claim frequency of content-related damage is slightly
less predictable than claim frequency of property-related
damage.

It was not possible to develop statistically acceptable trees
for average claim size. The only meaningful splitting variable
that was found for property-related average claim size was
the real estate value. Cases with real estate values smaller
than 97 000 euros were associated with an average claim size
of 820 euros (11 % of the claims), whereas cases with real
estate values larger than or equal to 97 000 euros had an av-
erage claim size of 1152 euros (89 % of the claims). Thus,
rainfall-related variables were not used as a splitting variable.
No splits were found for content-related average claim size.

4.3 Variable importance

The importance of variables in predicting claim frequency
are listed in Table 6. Variables that correlate positively with
claim frequencies are denoted with a plus sign, and nega-
tive correlations with a minus. For education of breadwin-
ner, the direction of the correlation is different from node to
node (including surrogate nodes). For both content-related
and property-related claim frequency, the most important
variables are maximum rainfall intensity (importance score:
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Table 6. Variable importance for predicting claim frequency. The variable importance is the sum of the goodness-of-split measure of each
split for which the variable was the primary or surrogate variable, scaled to sum to one. Surrogate variables are variables that split data most

similar to the primary variable. Values smaller than 0.02 are omitted.

Property claim frequency

Content claim frequency

Variable  Importance Type of Variable Importance Type of
relationship relationship

rmax 0.38 + rmax 0.38 +
rmean 0.15 + rmean 0.14 +
rvol 0.13 + rvol 0.12 +
rev 0.08 - floor 0.11 +
seas 0.05 n/a own 0.08 +
inc 0.05 — low 0.06 +
age?2 0.04 + inc 0.05 +
slope 0.03 + rev 0.03 +
edu 0.03 + edu 0.02 +
floor 0.02 +

rdur 0.02 +

0.0041
100%
1

yes]-rmax < 15 no

0.0034
67%
0.48

rev >= 181e+3

0.0030
34%

0.0040
33%
0.24

0.0067
33%
0.37

0.22
age2 < 32 L] seas = aut,spr,win
0.0034 0.0035
24% 19%
0.14 0.1
rmax < 2.8 73] rvol < 47
0.0040
1%
0.08
slope < 1.2
27 7
0.0024 0.0030 0.0038 0.0077 0.0034 0.0059 0.0049
10% 13% 10% 0.98% 17% 2% 14%
0.06 0.05 0.07 0.01 0.08 0.01 0.13

& rmax < 37
0.0063
29%
0.28
rev >= 124e+3
0.0057 0.0083
20% 8.3%
0.2 0.07
seas = spr rvol < 39
0.0060
19%
0.18
floor < 84
0.0057
16%
0.14
inc>=4.5
24 26 27]
0.0031 0.0049 0.0068 0.0090 0.0055 0.0095 0.0134
1.1% 8.3% 8% ¥/ 1.6% 6.6% 3.9%
0.01 0.07 0.07 0.03 0.01 0.06 0.05

Figure 6. Pruned Poisson tree explaining the property claim frequency as a function of rainfall-related, building-related, socioeconomic and
topographic variables (tree size = 14). The values at nodes are, from top to bottom: (1) node index, (2) claim frequency (i.e. Poisson group
mean), (3) percentage of claims falling into the group and 4) remaining deviance relative to the deviance of the undivided data.

0.38), mean rainfall intensity (0.14-0.15), and rainfall vol-
ume (0.12-0.13). Although mean rainfall intensity did not
show up in any of the trees, it was used as a surrogate vari-
able for maximum rainfall intensity most of the time. Real
estate value is ranked high for property-related claim data
(0.08), but is less important for content-related claim data
(0.03). For content-related claim data, ground floor area, and
a fraction of homeowners are important (0.08-0.11) after the
rainfall-related variables, which is in line with the ordering
of splitting variables in the tree of Fig. 9.
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4.4 Comparison with global regression models

Table 7 summarises the regression results after fitting vari-
ous global regression models to the same data that were used
to learn the decision trees. Various combinations of explana-
tory variables were attempted to explain claim frequency and
average claim size.

Best fits were found for the Poisson regression models for
claim frequency that were based on the combination of vari-
ables, which were actually used in the decision trees (variant
3 in Table 7): r2, = 0.18 and r2, = 0.11 for property-related
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Table 7. Results of global regression and decision-tree analyses. Response variables are modelled as a function of (1) the maximum rainfall
intensity, (2) all rainfall-related variables, (3) the variables actually used in the decision-tree, and (4) the variables with importance score >
0.02 (for claim frequency) or all variables (for average claim size). For the global regression models, the cross-validated coefficient of

determination, r,

, I'&y» 1s calculated using a similar approach, as discussed in Sect. 3.2.

Global model  Tree model
Response variable ~ Explanatory variables r? r2, r? g
Property claim frequency ~
1: rmax 0.18 0.09 - -
2: rmax + rmean + rvol 4 rdur 0.19 0.10 - -
3: rmax + rev + age2 + slope + seas + rvol 4 floor + inc 0.27 0.18 0.32  0.26

4: rmax + rmean + rvol +rev + seas + inc + age2 + slope +edu+rdur  0.28  0.18 - -

Content claim frequency ~

1: rmax

2: rmax + rmean + rvol + rdur
3: rmax 4 own + floor + low

0.19  0.08 - -
0.20 0.10 - -
025 0.11 0.30 0.22

4: rmax + rmean + rvol 4+ own + floor + low + inc + rev + edu 026 0.12 — —
Property average claim size ~

1: rmax 0.01 0.01 - -

2: rmax + rmean + rvol + rdur 0.01 0.01 - -
3:rev 0.02 0.02 0.02 0.00
4: all variables 0.04 0.03 - -
Content average claim size ~

1: rmax 0.02 0.02 - -

2: rmax + rmean + rvol + rdur 0.02 0.02 - -

4: all variables 0.05 0.05 - -

and content-related data respectively. Adding more variables
(variant 4 in Table 7) hardly improves the predictive power of
the models. The variance explained by the Poisson regression
models (11-18 %) is considerably less than the variance ex-
plained by the cross-validated Poisson trees (22-26 %). Al-
though linear regression models for average claim size were
found to be significant, all models show weak explanatory
power.

5 Discussion

The results of the tree analyses relate to correlations between
variables, which does not necessarily imply causal relation-
ships between variables. The results, therefore, need to be
interpreted with caution. For future research, variable im-
portance (i.e. Table 6) may give hints on variables that are
closely connected to the mechanisms that generate damage.
For instance, maximum hourly rainfall intensity was found
to be the rainfall characteristic that best explains claim fre-
quencies, which suggests that the process that causes damage
is most sensitive to high-intensity rainfall events. For exam-
ple, roofs may start to leak if rainfall exceeds the capacity of
the system that drains rainwater from roofs. Similarly, real
estate value, which ranked high on variable importance af-
ter rainfall-related variables, may be associated with better,
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more waterproof materials and constructions. More research
is needed here to understand the actual damage process.

Topographic variables were not found to be important fac-
tors. There may be several explanations for this. One expla-
nation relates to the aggregation of the topographic variables.
Within a district, presence of buildings at locally higher, as
well as lower, elevations may have averaged out topographic
variability. Another explanation may be that buildings and/or
sewers in hilly areas have been more adapted to floods, i.e.
people retrofitting their houses after severe floods.

The findings of this study are relevant for insurers. They
contribute to the development of damage assessment tools
that can be used to improve customer services. For example,
a damage model that is able to spatially map expected dam-
ages based on weather forecasts or nowcasts, makes it pos-
sible to send out damage experts to customers more quickly
and efficiently. Moreover, knowledge on customer groups as-
sociated with high claim frequencies may give hints on where
damage prevention programmes are most likely to have im-
pact. Insights into damage-influencing factors may also be
helpful for meteorologists to improve weather-alert services.
Rather than relying solely on meteorological thresholds,
weather alerts may be enhanced by also taking into account
district-specific thresholds (Parker et al., 2011; Priest et al.,
2011).
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Figure 7. Scatter plot of claim frequency against maximum rainfall
intensity, for the undivided data (top figure). The dashed vertical
line represents splitting value that maximises the goodness-of-split
measure (bottom figure).

Using decision trees, 22-26 % of the variance in claim fre-
quency can be explained. Still, a large part of the variance is
left unexplained, for which there are several possible expla-
nations. A possible explanation might be that variations in
data on a subdistrict scale lead to unexplained variance. The
postal districts used here are specially designed for postal
services; they are not necessarily statistically homogeneous
units in terms of socioeconomics, topography, and buildings.
For instance, some districts clearly show two distinct modes
of the household income distribution. This makes it diffi-
cult to capture characteristics of districts in single variable
values. Similarly, the spatial resolution of radar images (1—
2.5km) may be too coarse to capture the spatial variability
of rainfall at the subpixel scale (Jaffrain and Berne, 2012;
Peleg et al., 2013). Consequently, rainfall peaks of convec-
tive cells are underestimated. Another possible explanation
is that important explanatory variables are missing. As men-
tioned in the introduction, variables related to urban drainage
systems (e.g. sewer storage capacity, sewer type, soil type,
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Figure 8. Performance of the Poisson tree for property claim fre-
quency: the fraction of variance explained by the tree as a function
of tree size, based on training data (black dashed line) and valida-
tion data (black solid line). The error bars represent one standard
deviation of uncertainty. To determine the optimal size of the tree
(indicated by the vertical red line), the smallest tree is taken, such
that the explained variance is within one standard deviation of the
maximum explained variance of the cross-validation trees, i.e. the
intersection of the black solid line and red horizontal line.

and percentage of impervious surface) may be important, but
were not included because these were not available on a na-
tionwide basis. Another variable that may be associated with
rainfall-related damage, but was not included, is wind speed.
Strong winds, in combination with precipitation, may cause
damage to roofs, resulting additionally in rainwater intrusion.
It is unlikely, however, that additional explanatory variables
will have strong predictive power, given that none of the cur-
rent variables have it. Finally, a source of unexplained vari-
ance may be related to data errors, in particular errors in in-
surance data, such as incorrect claim dates or policyholder
counts. The insurance databases used in the present study
lack a consistent classification system, making it hard to sub-
set data that is solely related to flood causes. A better clas-
sification of damage causes can give more accurate subsets
and likely better model fits. Moreover, it was not possible
to link content and property databases to individual policy-
holders. As a consequence, models could not be developed
describing total damage per policyholder.

Although not researched in detail within this paper, the ex-
plained variance may be underestimated as a result of the
function that was applied to calculate the within-node de-
viance. The Poisson deviance function that was used allows
responses to be zero (i.e. no claim). However, only cases
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0.0051
40%
0.41

own < 0.52 floor < 56
(6]
0.0020 0.0030 0.0039 0.0058
29% 31% 12% 28%
0.14 0.25 0.11 0.28
rmax < 7.2 floor < 60 rmax < 34 low < 0.59
0.0034 0.0064
21% 21%
0.2 0.21
low < 0.96 floor < 86
0.0031 0.0049
16% 5.3%
0.11 0.08
floor < 96 own < 0.64
(8] [9)
0.0018 0.0026 0.0023 0.0029 0.0063 0.0035 0.0066 0.0034 0.0090 0.0046 0.0060 0.0096
20% 9.4% 9.3% 15% 1.4% 2.1% 3.2% 9.2% 2.8% 7% 18% 3.3%
0.07 0.06 0.04 0.01 0.02 0.04 0.07 0.02 0.06 0.18 0.03

Figure 9. Pruned Poisson tree explaining the content claim frequency (tree size = 12). The values at nodes are, from top to bottom: (1) node
index, (2) claim frequency (i.e. Poisson group mean), (3) percentage of claims falling into the group and (4) remaining deviance relative to

the deviance of the undivided data.

with claims were considered in this study. A splitting crite-
rion based on a deviance function of a distribution that does
not allow the response value to be zero, such as the trun-
cated Poisson distribution, can probably give a better descrip-
tion of the within-node deviance. An attempt was made to
learn trees based on an alternative splitting criterion, using
the deviance function of a zero-truncated Poisson distribu-
tion (Table 4). Parameters of this deviance function cannot
be estimated explicitly and requires an iterative process. As
a consequence, computational times to learn trees increased
tremendously (~ days on a 8-core 2.5 GHz processor), which
became even longer when cross-validation runs needed to
be performed (time increases proportional to the number of
runs). Preliminary results, based on trees only showing the
first few splits, show that splits are almost similar to the ones
presented in this paper and are slightly better in reducing the
deviance at nodes related to smaller claim frequencies. Given
the long computational times, the alternative approach is not
favourable unless advanced processors are available.

Claim frequency was calculated by dividing the number of
claims per day and per district by the number of policyhold-
ers per district, thereby assuming that every policyholder in
a district is equally likely to generate claims as a result of
rainfall. This assumption, however, may not always hold. In
the case of a convective rainfall cell hitting a district whose
size is smaller than the rainfall cell, it is safe to assume that
every policyholder is exposed to rainfall, while in a district
much larger than the rainfall cell only part of the policyhold-
ers is exposed. Thus, claim frequencies may be underesti-
mated in the case of localised rainfall in large districts.
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The structure of a tree is sensitive to a number of aspects.
First of all, it is sensitive to the filtering rules that were ap-
plied to subset data (Sect. 2.2). Moreover, the choice of split-
ting criterion effects the way data is partitioned. There may
be more appropriate splitting criteria for event rate data than
the ones tested in the present paper; for example, splitting
criteria based on other distributions for count data, such as
the binomial or the negative binomial distribution. Further-
more, trees are sensitive to small changes in the learning
data; for instance, when one of the explanatory variables is
left out. Although not explored here, bagging and boosting
approaches may be considered to overcome this problem, as
was done in the study by Merz et al. (2013). With such ap-
proaches, results are aggregated over an ensemble of trees,
where each tree is based on random but realistic changes in
the training data (Elith et al., 2008; Borisov, 2009; Strobl
et al., 2009).

It was not possible to develop statistically acceptable trees
for average claim size. Attempts were made to build trees for
average claim size and log-transformed average claim size.
The latter was done to approximate normal distribution as
distributions of average claim size are skewed to the right.
Median, instead of average claim sizes, were not considered.
In many insurance schemes, deductibles may affect claiming
behaviour of people and cause censoring of small claim sizes.
However, insurance policies related to the present database
(i.e. water-related risks) do not have deductibles. There may
be other changes in insurance policies (e.g. changes in dam-
age causes that are covered) that may have affected claim
sizes over time and caused failures to derive models. These
were not accounted for in the present study, because this type
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of information was not readily available for all insurers in
the database. Another possible explanation for failure to de-
rive models for average claim size is that the costs to clean
and dry walls and goods may be independent of the amount
of rainwater that enters a building, i.e. a wet carpet has to
replaced in any case, regardless of flood depth. Moreover,
damage assessments are inherently uncertain, because of in-
terpretation errors of insured and damage experts, which are
difficult to capture in a model.

Similar to the conclusions by Merz et al. (2013), this study
shows that decision-tree models perform better than global
regression models in terms of variance in damage data that is
explained. This implies that decision-tree models are better
able to capture non-linear relationships in the data. For prop-
erty damage, the decision-tree reveals that maximum rainfall
intensity effectively splits the data into three branches, each
of them describing different relationships between explana-
tory variables and claim frequency.

This study investigated tree models for claim frequency
and average claim size given a likelihood of 99 % of rainfall-
related damage. It did not consider tree models for the prob-
ability of occurrence of rainfall-related damage, while it is
worthwhile to study this, too, as part of a wider, risk-based
approach.

6 Conclusions and recommendations

In this paper, a wide range of factors associated with
rainfall-related damage were investigated using decision-
tree analysis. For this, district-aggregated claim data from
private-property insurance companies in the Netherlands
were analysed, considering claim frequency and average
claim size per day. Analyses were made separately for prop-
erty and content damage claim data. This study has found
that claim frequency is most strongly associated with maxi-
mum hourly rainfall intensity, followed by real estate value,
ground floor area, household income, season (property data
only), buildings age (property data only), a fraction of home-
owners (content data only), and a fraction of low-rise build-
ings (content data only). It was not possible to develop sta-
tistically acceptable trees for average claim size. It is rec-
ommended to investigate explanations for the failure to de-
rive models. These require the inclusion of other explanatory
factors that were not used in the present study, an investiga-
tion of the variability in average claim size at different spatial
scales and the collection of more detailed insurance data that
allows to distinguish between the effects of various damage
mechanisms to claim size. Cross-validation results show that
decision trees were able to predict 22-26 % of variance in
claim frequency, which is considerably better compared to
results from global multiple-regression models (11-18 % of
variance explained). Therefore, decisions trees are better able
to capture local characteristics of claim data. Still, a large
part of the variance in claim frequency is left unexplained,
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which is likely to be caused by variations in data at subdistrict
scale and missing explanatory variables. The findings of this
study have an important implication for insurance practice:
for damage assessments, more detailed, high-quality damage
data are required to sufficiently improve predictive power of
damage models. There is, therefore, a definite need to im-
prove insurance databases and to collect explanatory data on
scales much closer to that of individual buildings.
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