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Abstract

Background: Although previous research showed that telehealth services can reduce the misuse of resources and
urban–rural disparities, most healthcare insurers do not include telehealth services in their health insurance schemes.
Therefore, no target variable exists for the classification approaches to learn from or train with. The problem of
identifying the potential recipients of telehealth services when introducing telehealth services into health welfare or
health insurance schemes becomes an unsupervised classification problem without a target variable.

Methods: We propose a HDTTCA approach, which is a systematic approach (the main process of HDTTCA
involves (1) data set preprocessing, (2) decision tree model building, and (3) predicting and explaining of the
most important attributes in the data set for patients who qualify for telehealth service) to identify those who
are eligible for telehealth services.

Results: This work uses data from the NHIRD provided by the NHIA in Taiwan in 2012 as our research scope,
which consist of 55,389 distinct hospitals and 653,209 distinct patients with 15,882,153 outpatient and 135,775
inpatient records. After HDTTCA produces the final version of the decision tree, the rules can be used to
assign the values of the target variables in the entire NHIRD. Our data indicate that 3.56% (23,262 out of 653,
209) of the patients are eligible for telehealth services in 2012. This study verifies the efficiency and validity of
HDTTCA by using a large data set from the NHI of Taiwan.

Conclusion: This study conducts a series of experiments 30 times to compare the HDTTCA results with the logistic
regression findings by measuring their average performance and determining which model addresses the telehealth
patient classification problem better. Four important metrics are used to compare the results. In terms of sensitivity, the
decision trees generated by HDTTCA and the logistic regression model are on equal grounds. In terms of accuracy,
specificity, and precision, the decision tree generated by HDTTCA provides a better performance than that of the
logistic regression model. When HDTTCA is applied, the decision tree model generates a competitive performance and
provides clear, easily understandable rules. Therefore, HDTTCA is a suitable choice in solving telehealth service
classification problems.
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Background

The concept of telehealth, which first appeared in the

1900s when physicians began discussing diseases by tele-

phone and has evolved to such a sophisticated level of per-

forming robotic surgery, regardless of the geographical

restrictions, is possible at present [19]. Telehealth uses elec-

tronic information and communication technology to de-

liver health and medical information and services over large

and small distances [11, 19]. The U.S. Health Resources

and Services Administration defines telehealth as “the use

of electronic information and telecommunications tech-

nologies to support long-distance clinical health care, pa-

tient and professional health-related education, public

health, and health administration” [7]. For chronically ill pa-

tients and people with disability who require frequent up-

dates of health parameters, telehealth services can provide

convenience, mobility, and ease of use. As the aging popu-

lation and people with disability increase, teleassistance and

telemonitoring platforms play increasingly significant roles
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in delivering efficient and low-cost remote care in assisted

living environments [22].

The emergence of wireless technologies and the advance-

ments in on-body sensor design can facilitate changes in

the conventional healthcare system by replacing it with

wearable healthcare systems centered on individuals [21].

For example, devices and techniques in monitoring blood

pressure, blood glucose level, cardiac activity, and respira-

tory activity are recent advances in noninvasive monitoring

technologies for chronic disease management. Patients can

improve or maintain their health states by using telecom-

munication and information technology without the need

to schedule in-person healthcare visits. However, designing

a telemetry system for health monitoring is complicated

and expensive, and insurance providers must carefully con-

sider and calculate who will benefit most from it.

A new concept called elderly welfare, which incorporates

health welfare and the development of a telehealth system

for the aging population, also has emerged. The telecare in-

dustry has expanded worldwide. Many countries, such as

Japan, the United Kingdom, the United States, and Canada,

have developed long-term care assistance policies to utilize

telehealth systems [5, 6, 18]. Previous studies [2, 10, 13]

summarized the benefits of adopting telehealth systems for

three stakeholders namely, (1) cost-saving for patients and

health care facilities, (2) far-reaching care for patients, (3)

reduced delays in medical treatment for chronic patients,

(4) reductions in healthcare facility admission rates and

duration of outpatient visits, and (5) improved quality of life

for countries as a whole.

If patients must pay their own expenses for telehealth

services without insurance reimbursement, then extremely

few patients will have motivation to use these services [12,

15]. However, an elderly patient who lives alone in a remote

village may spend more than 8 h in transit to see a phys-

ician in a healthcare facility, which can actually worsen a

patient’s chronic disease condition. For example, patients

with diabetes or hypertension may be unaware of an abnor-

mality and miss the crucial time to see a physician. Tele-

health services can reduce the urban–rural gap in allowing

for patients in remote areas to medical resources without

long transport time [12, 15].

When Taiwan introduced its National Health Insurance

(NHI) plan in 1995, the Department of Health also intro-

duced a pilot project in providing telehealth services [12].

Nevertheless, a review of the government plan in 2013 [16]

showed that the number of cumulative applicants is only

9606 with up to 343,000 times of services at the end of

2011. Researchers have identified several main reasons why

patients in Taiwan seldom use telehealth services. First, pa-

tients are willing to pay less than 1000 New Taiwan Dollars

(NTD) monthly on the average for a telehealth service, but

renting remote physiological monitoring equipment costs

at least 3000 NTD monthly, excluding service fees [12].

Second, outpatients prefer receiving medical advice in per-

son, and they are not accustomed to use the telehealth ser-

vices [20]. Third, because telehealth services are excluded

in NHI coverage, paying for prevention is not an attractive

option compared with the deductibles in medical treatment

[6]. Despite these reasons, researchers [3, 4, 9, 11] still

found numerous social benefits of using telehealth services,

including reductions in hospitalization frequency, health-

care facility medical costs, and caregiver’s burden.

Given that health insurance policy has not officially rec-

ognized telehealth services as an efficient treatment, we

have no information to compute the cost and benefit of

using them if they are reimbursed by health insurances. All

patients must be classified into two groups, namely, “need

telehealth service” and “do not need telehealth service”

which will be a time-consuming task without computer aid.

Thus, a proper classification algorithm developed with tele-

health experts’ assistance is necessary. Among the many

classification algorithms, decision trees are the most suit-

able one because they are simpler to understand and inter-

pret than association rules or logistic regression. Decision

trees also require a simple data preparation stage and can

handle categorical data.

This study aims to address the problem of identifying

the patients who are the best candidates in receiving tel-

ehealth services subsidized by health insurance reim-

bursements. Specifically, patients with certain chronic

diseases can benefit from noninvasive monitoring de-

vices such as those evaluating blood pressure, blood glu-

cose levels, and cardiac activity [21]. However, designing

a telehealth system with professional health care staff to

operate these noninvasive devices is complicated and

costly. To prevent overburdening the telehealth system

before insurers implement a telehealth reimbursement

policy, researchers must identify the best qualified pa-

tients in receiving telehealth services to ensure that the

neediest patients are assisted, instead of simply those

who able can pay for them.

Although previous research showed that telehealth ser-

vices can reduce the misuse of resources and urban–rural

disparities [2], most healthcare insurers do not include tel-

ehealth services in their health insurance schemes [6, 12].

Therefore, no target variable exists for the classification

approaches to learn from or train with. Thus, the problem

of identifying the potential recipients of telehealth services

when introducing telehealth services into health welfare

or health insurance schemes becomes an unsupervised

classification problem without a target variable.

The first challenge of this study is to generate the target

variable for the unsupervised telehealth classification prob-

lem. The type of target variable (interval, ordinal, or nom-

inal) determines which data-mining techniques can be

used. In classifying patients into recipients and nonrecipi-

ents, the target variable is generally the patient’s status (e.g.,
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unqualified or qualified). The target variable can also be de-

fined according to different classes in matching their vari-

ous meanings. For example, we can classify all patients into

several classes, such as “necessary”, “maybe necessary in the

long term”, and “unnecessary”. However, having many clas-

ses, leads to frequent misclassification, because the indi-

viduality of each class becomes diluted, which results in

misclassification for similar classes. This condition also can

lead to an overfitting problem caused by the excess number

of predictor variables for a multiclass target variable but in-

sufficient data points. Consequently, this study limits the

number of target variable’s classes into two as binary. Thus,

the target variable can be transformed into a 0/1 code and

the telehealth service classification problem can be applied

easily in many data-mining techniques, including decision

trees and logistic regression.

The second challenge of this study involves generating

the required information from the existing attributes for

the insurance providers to determine whether the applicant

is a suitable recipient of telehealth services. In a telehealth

classification problem, the attributes are the patients’ per-

sonal and outpatient information they provided when they

submit telehealth service applications. However, applying

these attributes directly from the data set to a data classifi-

cation technique may be inappropriate. For example, the

decision tree–building algorithm does not handle numeric

attributes uniformly. When applying the numeric attributes

to generate the decision tree, numeric attributes may be

used more than once with different thresholds. Some im-

portant attributes are excluded in the data set; thus, this at-

tributed need to be derived from other attributes. For

example, the patient’s traveling distance or transportation

time to the hospital is generally not included in the health-

care data set. Thus, these data need to be generated. Solv-

ing this challenge can ensure that insurance providers

receive the patients’ detailed medical-related data that can

be used to generate the telehealth service classifier and ap-

plied directly in the classifier in determining the status of

an applicant.

Third challenge is building a classifier to solve the prob-

lem of identifying candidates in receiving health insurance

reimbursement for telehealth services. In this study, we

choose decision trees in generating the classifier because

the rules they generate are simple to interpret, such that

the results can be easily understood for both medical pro-

fessionals and patients. Constructing a decision tree–based

classifier involves three main steps, namely, variable selec-

tion, node splitting, and tree pruning [17]. Generally, re-

searchers use entropy and information gains for the first

step and then obtain the local maximum information by

splitting the data according to a variable. Given that this

method requires the data to be categorical, researchers have

developed various methods for interval data, such as ID3,

C4.5 and CART. Building a decision tree–based classifier

also involves applying appropriate feature selection and fea-

ture extraction to enhance classification performance. Fea-

ture selection is a process of selecting representative

attributes; meanwhile, feature extraction transforms the ori-

ginal attributes to some other forms in decreasing the di-

mensions of the data set. For the current study, we must

determine which node-splitting approach together with fea-

ture selection and feature extraction, is most suitable to

build the classifier. After splitting nodes to generate a tree,

the next step is pruning the tree if it has extremely many

levels or nodes in avoiding an overfitting problem. Two

pruning approaches have been developed, as follows [14];

pre-pruning stops the tree from growing before the entire

training data set is classified and post-pruning prunes the

tree after the decision tree is finished. For the current study,

we must determine which pruning approach is most suit-

able to build the classifier.

Finally, a fourth challenge is selecting a validation

method. Validation is the process of assessing how well

the classification models perform against the validation

data (real data) by verifying whether the models’ mis-

classification rates meet the established requirements.

The validation techniques consider the probability of

the worst-case scenario, wherein a model’s complexity

is high. For example, the widely used k-fold validation

technique divides a data set into k subsets and takes k

– 1 subsets as the training data, with the remainder as

the validation data set. Then, the model is trained for k

times, and each iteration uses the subset i one at a time.

However, the problem considered herein has a rela-

tively small training data set for the experts to classify

the patients as candidates in receiving telehealth ser-

vices. Given that the training data set is extremely

small, we will not split (k-fold validation) or cross-

validate the training set in the validation step. We need

to develop a new validation method suitable for an un-

supervised classification problem with an extremely

small training set and an exceedingly large test data set.

In summary, this study aims to solve the unsupervised

classification problem of identifying the patients who are

the best candidates in receiving telehealth services. Four

challenges, such as (1) generating the target variable, (2)

generating the needed information from the existing at-

tributes, (3) building a classifier, and (4), selecting a val-

idation method, are addressed.

Methods

To classify candidates to receive telehealth services through

health insurance reimbursements, we propose a new deci-

sion tree approach, that is, heuristic decision tree telehealth

classification approach (HDTTCA), which consists of three

major steps, namely, (1) data analysis and preprocessing,

(2) decision tree model building, and (3) prediction and ex-

planation, as shown in Fig. 1.
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As mentioned before, four challenges are addressed in

HDTTCA: step 1 tackles challenges 1, 2 and 4, while step

2 tackles challenges 3 and 4. Finally, in step 3, HDTTCA

predicts and explains incoming data by using the decision

tree classification model that was chosen previously in

step 2. In other words, after building the decision tree

model, we use this model to predict the applicability of

telehealth services. In the following subsection, we explain

the details of steps 1 and 2 and then clarify the time com-

plexity of HDTTCA.

Step 1: data analysis and preprocessing

As discussed previously, the target variable and some

important attributes are excluded in the original data

set. Therefore, HDTTCA first needs to derive some at-

tributes from the current data set and then used them in

determining the value of target variable. To validate the

performance of the decision tree classification model,

HDTTCA divides the data set into several subsets.

Step 1.1 generating derivative attributes

Given that the raw data containing the critical attributes

are often collected from different sources, these data

should be integrated into a single data set first. We focus

on the two primary actors involved in healthcare activity,

namely, patients and hospitals. The patient-related data

sets describe the information about those who have seen

physicians and contain two types of information, namely,

basic information (patients’ important attributes, includ-

ing gender, age, address, and health history) and clinical

information (all medical activities the patients received,

including medical treatments and physician visits). We

retain only the important attributes of patient-related

data sets for telehealth services, such as the hospital

where a patient seeks treatment, the code for the inter-

national classification of diseases, and the number of

days of prescription. The hospital-related data sets de-

scribe the information about hospitals that patients visit

to see their physicians. For our purposes, we only need

the hospital’s location and size.

To reduce the numbers of age categories and balance the

percentages among them, we use an attribute, that is, age

group (FAge), to represent the age of ≤30 years as young, 30

years ≤ age ≤ 70 years as middle-aged and age of ≥70 years

as elderly. Similarly, we transcode the monthly insurance

amount into an attribute, that is, insurance level (FIL),

which is categorized as low, middle, and high with the sug-

gested percentages of 20, 60 and 20%, respectively. We also

mark the situations when patients are not required to pay

the copayments with an attribute, that is, copayment ex-

emptions (FCEM) mark as Y and N.

We summarize the number of times in a year that

each patient visits a hospital (outpatient) or is hospital-

ized (inpatient) into op_time and ip_time, respectively.

We use an attribute, that is, outpatient frequency (Fop)

to categorized op_time into none when its value is 0,

low for 1 ≤ op_time ≤ 12, middle for 13 ≤ op_time ≤ 36,

and high when its value ≥37. We also denote an attri-

bute, that is, inpatient frequency (Fip), as 0 for ip_time =

0, 1 for ip_time = 1, 2 for ip_time = 2, and 3+ for ip_

time ≥ 3.

Some diseases are inapplicable for telehealth services

(e.g., a car accident victim that went to the emergency

room for treatment for the injury and then rests in chronic

care for rehabilitation). Therefore, we differentiate the total

number of days that a patient uses an emergency bed (EB

day) and a chronic bed (CB day). We use an attribute, that

is, chronic bed rate (FCBR), which is the number of CB days

divided by EB day + CB day, to distinguish those whose

symptoms cannot be helped by telehealth services and

eliminate the patients with FCBR = 0. We also summarize

the number of drug prescription days as drug day and the

total amount of the medical fees as total amount.

In previous studies, the critical influence factors for

adopting telehealth services include the patient’s traveling

distance or transportation time to the hospital, health sta-

tus, and financial status [5, 6, 20]. However, these attri-

butes are not recorded directly in the data sets; thus, they

need to be derived from existing attributes. Given that tel-

ehealth services are more beneficial for patients who live

further away from the hospitals, transportation time

should be determined when a patient travels from home

to the hospital. We can generate the distance of a patient

travelling from home to hospital [1], that is, distance

(FDis), by combining the zip codes of the hospital location

and the patient’s residence location and the assistance of

Google Maps. We use the great-circle distance to estimate

the shortest distance between two points on the surface of

a sphere, which is calculated as follows:

FDis ¼ r cos�1½ sin φ1 � sin φ2 þ cos φ1

� cos φ2 � cosj λ1 � λ2j� km

where (φ1, λ1) and (φ2, λ2) denote the latitudes and lon-

gitudes of points 1 and 2 (in radians), respectively; and r

is the mean earth radius (approximately 6371 km). For

example, the longitude and latitude of the zip codes 100

and 700 are (121.5199, 25.0324) and (120.1929,

22.99594), respectively. Therefore, the distance between

the two points is calculated as follows:

FDis ¼ 6371� cos�1½ sin 25:0324π=180ð Þ
� sin 22:9959π=180ð Þ þ cos 25:0324π=180ð Þ
� cos 22:9959π=180ð Þ � cos 121:5199� 120:1929ð Þπ=180�
¼ 263:5161 km

Telehealth services are beneficial for the patients with

chronic diseases because the administration period is > 7

days. We create a special attribute, that is, drug duration
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(FDD) to record whether a drug is administered for an ex-

tended period of time. We use the attribute economic pri-

ority (FEco), to distinguish patients with special conditions,

such as low income or disability. Telehealth services are

mostly needed by patients living in rural areas, even if their

traveling distances to the hospitals are shorter than those of

the other patients. Given that remote area is undefined, we

use an attribute, that is, remoteness (FR), to distinguish pa-

tients residing in rural areas by changing their addresses.

As mentioned previously, telehealth equipment can

monitor only some physiological values, such as blood pres-

sure, blood glucose level, and cardiac activity, at present

[21]. Thus, telehealth equipment is mostly useful for target

diseases, such as diabetes, hypertension, and hyperlipid-

emia. We highlight the disease codes in a special attribute,

that is, target disease (FTD), with Y indicating suitability and

N indicating unsuitability for telehealth services, respect-

ively. Another way to mark the potential telehealth users

is differentiating the treatment that a patient receives. We

create an attribute, that is, target treatment (FTT), to rec-

ord the specific treatments for diabetes, hypertension, and

hyperlipidemia symptoms, with telehealth-applicable as A,

other chronic diseases as B, and nonchronic treatment as

N. For special cases that do not fit in the preceding cat-

egories, we create an attribute, that is, Reim_Spe (FRS), to

record these special telehealth applicable cases, with ap-

plicable denoted as Y and nontelehealth-applicable as N.

Table 1 lists the attributes used to consult with the experts

and generate the decision tree for each expert in the fol-

lowing discussion.

The decision tree–building algorithm does not handle nu-

meric attributes uniformly. When applying these attributes

to generate the final decision tree, numeric attributes may

be used more than once with different thresholds, and these

numerical attributes should be transferred to categorical

ones. First, for the numeric attributes that are already con-

verted (e.g., age group), we remove the numeric attributes.

Second, we can use mean and standard deviation to com-

pute the thresholds and categorize the attributes (e.g., age).

Table 2 presents the formula to convert numeric attributes

into categorical ones. For example, distance is numeric;

hence, we convert it into a categorical attribute FDis_C by

Table 1 Attributes Used to Consult with the Experts

Attributes Data Type Attributes Data Type

Insurance Amount (FIns_amt) numeric Gender category

Age numeric Reim_Spe (FRS) category

outpatient frequency (Fop) category Economic Priority (FEco) category

inpatient frequency (Fip) category Age Group (FAge) category

No. of outpatient times (op_time) numeric Insurance Level (FIL) category

No. of inpatient times (ip_time) numeric Drug Duration (FDD) category

No. of days in an emergency bed (EB day) numeric Chronic Bed Rate (FCBR) numeric

No. of days in a chronic bed (CB day) numeric Target Disease (FTD) category

No. of drug prescription days (drug day) numeric Copayment Exemption Mark (FCEM) category

Remoteness (FR) category Distance (FDis) numeric

the amount of medical fees (Total amount) numeric Target Treatment (FTT) category

Fig. 1 Flow Chart of HDTTCA
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using the formula in Table 2. Then, the converted attributes

together with the categorical attributes in Table 1 are used

to build the final decision tree classifier.

Step 1.2 target variable generation

This study aims in classifying potential chronic patients

who are suitable to receive telehealth services subsidized by

health insurance reimbursements. This target variable does

not exist in most healthcare data set. Thus, HDTTCA gen-

erates the target variable, that is, adoptability first. This ap-

proach involves asking experts to assign a value for the

variable. However, because the data set is extremely large,

HDTTCA samples a comparatively small data set as the

training data set for experts’ opinions. To solve the problem

of this study, we interview three experts in the telehealth-

related fields (i.e., a physician, a social worker, and a man-

ager of a care centers) in identifying the target variable, that

is, adoptability (labeling the adoptability Y or N for each

record) in the sampled data. Then, the experts reveal the

criteria and rules they used in their decisions during the

interview by showing all the attributes for all records in the

sampled data in Table 2.

The experts label only a comparatively small data set.

Therefore, HDTTCA generates a decision tree for each

expert independently after collecting their opinions. The

possible values of the target variable are “yes”, “no”, or

“in consideration”. Given the importance of telehealth

services in monitoring the physiological values and elim-

inating the urban–rural gap and socioeconomic gaps, we

combine “no” and “in consideration” into one group.

HDTTCA uses the attributes in Table 2 to generate the

decision tree for each expert independently. Then, each

decision tree is used to determine the value of the target

variable for the entire data set. However, because expert

opinions may not be consistent in some records,

HDTTCA integrates the outcomes of each record by

using the following rules: adoptability = Y if more than

or equal to half of the experts labeled it as Y and adopt-

ability = N if less than half of the experts labeled it as Y.

Step 1.3 data sampling and partitioning

Although patients suffering from chronic diabetes, hyper-

tension, and heart diseases increase, our potential target

population is still comparatively rare, accounting for 10%

or less of the total population. These imbalance character-

istic may reduce the predictability of a decision tree

model; over- and undersampling are helpful techniques to

overcome this problem. Oversampling resamples the

existing minority data with slight modifications to be close

to the proportion of majority, whereas undersampling

abandons some existing majority data and keep all minor-

ity data. These techniques balance the data set distribu-

tion. We also adopt stratified sampling to increase the

proportion of our target.

After sampling, we divided the data sets into training

and validating subsets. We use the former to build the

classification model and the latter in validating the overfit-

ting problem and compare the prediction rate of different

models. The overfitting problem occurs when the model

used extremely many attributes to generate a decision tree

and fit the data with extremely few objects. We may find

overfitting clues in the model prediction step. If the deci-

sion tree’s accuracy is high in the training data set (i.e.,

due to the classifier’s objective in maximizing accuracy)

but comparatively low in the validation data set, then an

overfitting problem occurs. Therefore, we need to decide

the proportion of training and validation data sets care-

fully. Given that HDTTCA samples a comparatively small

Table 3 Different Classification Results

Predicted / Actual Actual Positive (yi = 1) Actual Negative (yi = 0)

Predicted as Positive (ŷi ¼ 1) True Positive (TP) False Positive (FP)

Predicted as Negative (ŷ i ¼ 0) False Negative (FN) True Negative (TN)

Table 2 Conversion Formula for Numeric Attributes in the Decision Tree Algorithm

Attribute Conversion Formula

FIns_amt_C IF(FIns_amt <mean, 0, IF(FIns_amt <mean + standard deviation, 1, 2))

op_time_C IF(op_time <mean, 0, IF(op_time <mean + standard deviation, 1, 2))

ip_time_C IF(ip_time <mean, 0, 1)

EB day_C IF(EB day < mean, 0, 1)

CB day_C IF(CB day < mean, 0, 1)

drug day_C IF(drug day < mean, 0, IF(drug day < mean + standard deviation, 1, 2))

Total amount_C IF(Total amount <mean, 0, IF(Total amount <mean + standard deviation, 1, 2))

FCBR_C IF(FCBR <mean, 0, 1)

FDis_C IF(FDis <mean, 0, IF(FDis <mean + standard deviation, 1, 2))
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data set similar to the training data set for experts’ opin-

ions, we use all the experts’ opinions as the training data

set and randomly took additional samples from the

remaining data set as the validation data sets.

Step 2: decision tree model building

In this step, we build a decision tree classifier, on the basis

of the training data set and validate the classifier by using

the validation data set. However, the telehealth service

classification problem we consider the involved > 20 attri-

butes, which are not all essential to identify the character-

istics of the target variable. Correlations among the

attributes can also cause multicollinearity and inaccuracy

in some data-mining models. Thus, HDTTCA uses an at-

tribute selection mechanism to choose the most discrim-

inative attributes when building a decision tree classifier.

Step 2.1 attribute selection

Before detailing the construction of a classifier, we define

T as the data set, which was constructed by m attributes

and had n records, x1, x2, …, and xn. The target variable,

which was denoted as yi = {0, 1} where 1 ≤ i ≤ n, was

“adoptability for telehealth service”. Therefore, a record

can be expressed as xi = [xi1, xi2, …, xim, yi] and T = {xi |

1 ≤ i ≤ n}. Decision tree algorithms classify records by con-

junctive rules (e.g. age group = elder and distance ≥60).

Several decision tree algorithms, such as ID3 and C4.5,

apply information theory to separate data by iteratively

calculating the entropy, which was denoted as H(T) and

the information gain, which was denoted as IG(T, a), from

splitting data on the basis of the attribute a. Entropy,

which was denoted as H(T), is the expected value of the

information contained and can be defined as H(T) =

−Σp(b)log(b), where T is the training data set, Y is the tar-

get variable in T, b is a classified value in Y, and p(b) is the

probability that an object in T is classified as b.

Information gain is the amount of uncertainty reduced

due to the split, which can be defined as IG(T, a) =H(T) –

Σp(a)H(a), where A is an attribute for which a split has oc-

curred, p(a) is the probability that an object in T exhibits

attribute A = a, and H(a) is the entropy of the subset of T,

where attribute A = a. The decision tree selects the locally

best attribute (i.e., highest information gain) as a splitting

criterion. After calculating the information gain of each at-

tribute, the decision tree algorithm selects the attribute with

the maximum information gain to be a node, which splits

the data set into two or more subsets. The process itera-

tively proceeds until a full decision tree is built.

Step 2.2 decision tree classifier building

A well-fitted decision tree model can predict the training

data set with the least misclassification cost or the highest

accuracy. The advantages of decision trees over other clas-

sification algorithms are their coherent and consistent

rules from the tree root to the leaves and the ease of inter-

pretation. We use J48 in Weka [8], which is an open-

source Java implementation of C4.5, as our decision tree–

Table 4 Distribution of the Attributes Used in Oversampling

Attributes Distribution of each class

Remoteness (FR) 1 2 3

90.59% 7.32% 2.1%

Economic Priority (FEco) N Y

97.6% 2.4%

Age Group (FAge) Elder Middle-aged Young

9.72% 79.86% 10.42%

Insurance Level (FIL) High Middle Low

24.74% 55.86% 19.4%

Drug Duration (FDD) N Y

87.76% 12.24%

Chronic Bed Rate (FCBM) = 0 > 0

99.84% 0.16%

Target Disease (FTD) N Y

91.38% 8.62%

Target Treatment (FTT) N Y

99.998% 0.002%

Copayment Exemption Mark (FCEM) N Y

95.28% 4.72%

Table 5 Distribution of Gender and Age Group of All Patients in
the entire Data Set

Attributes Age Group

Gender Elder Middle-aged Young Percentage

Female 4.45% 38.87% 5.82% 49.14%

Male 5.28% 40.99% 4.59% 50.86%

Percentage 9.72% 79.86% 10.42%

Table 6 Distribution of Gender and Age Group of All Patients in
the Sample Data Set

Attributes Age Group

Gender Elder Middle-aged Young Percentage

Female 10% 28% 5.5% 43.5%

Male 8% 40.5% 8% 56.5%

Percentage 18% 68.5% 13.5%

Table 7 Results of Physician’s Decision Tree on Training Data

Classified as

Actual Y N

Y 14 9

N 3 174

Sensitivity:
60.9%

Specificity:
98.31%

Precision:
82.35%

Accuracy:
94%
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building algorithm. The C4.5 approach, which is used to

calculate the difference in entropies among variables, is

based upon the information gain of each attribute. The al-

gorithm identified the attribute with the highest normalized

information gain, which we choose as the splitting node.

When using J48 in Weka [8], we must determine two

parameters, namely, the confidence factor and the mini-

mum number of objects per leaf. The smaller the confi-

dence factor is, the more pruning the algorithm will do.

However, pruning reduces the accuracy of the training

data while generally increasing the accuracy of unseen

data. We use the confidence factor and the minimum

number of objects per leaf in mitigating overfitting,

where the decision tree will achieve perfect accuracy on

training data, but the resulting decision tree is extremely

specific that it does not apply to anything other than the

training data. In general, if we reduce the confidence fac-

tor or increase the minimum numbers of objects per

leaf, then the accuracy of the training set will decrease.

In Weka [8], J48 offers two settings to improve the esti-

mation of sensitivity and accuracy, namely, training/test

split and cross validation. However, the telehealth service

classification problem needs input from human experts

for the target variable, which leads to a small training data

set and a large independent testing data set. In this case,

neither option is appropriate for HDTTCA to adopt. We

use different confidence factor levels and the minimum

number of objects per leaf to discover the best location

for the pruning confidence factor and the minimum num-

ber of objects per leaf, in which it prunes enough to make

the learned decision tree sufficiently accurate on test data

but does not sacrifice excess training data accuracy. The

location where this spot of the pruning confidence factor

and the minimum number of objects per leaf locate will

depend upon the problem, and the only way to determine

them reliably is performing an experiment.

An appropriate model should be able to predict future

data sets consistently and effectively. Different perspec-

tives and criteria are available to identify the performance

across different settings of the confidence factor and the

minimum number of objects per leaf. The validation tech-

niques in J48 in Weka can assess the performances of

various settings. Considering that the training data set is

small, HDTTCA will not split or cross-validate the train-

ing set. Instead, HDTTCA asks J48 in Weka to randomly

produce 30 data sets from the test data set and apply val-

idation and evaluation on these data sets. If the error be-

tween the training and validation data is high, then

overfitting or underfitting needs to be considered.

Model assessment

Then, we compared the final decision tree results against

the results obtained from a logistic regression model

that was constructed by Weka [8]. We first compute the

Spearman coefficients of correlation (rs) among these at-

tributes and eliminate the coefficient with rs > .7 to avoid

the multicollinearity problem. Then, we perform step-

wise logistic regression to select the significant attributes

from the remaining attributes. We remove unrelated at-

tributes according to coefficient tests or p-value greater

than 5%, until all remaining attributes are significant.

Fig. 2 Physician’s Decision Tree

Table 8 Results of Social Worker’s Decision Tree on Training
Data

Classified as

Actual Y N

Y 16 4

N 4 176

Sensitivity:
80%

Specificity:
97.78%

Precision:
80%

Accuracy:
96%

Chern et al. BMC Medical Informatics and Decision Making          (2019) 19:104 Page 8 of 15



Finally, the predictive capability of the decision tree is

a potential issue. HDTTCA compares the prediction,

which is denoted as ŷ, with the actual result of the target

variable, y to test for predictive capability. Table 3 dem-

onstrates different classification results. Some common

measures in selecting the best decision tree classifier are

the misclassification rate, which is denoted as Err(T),

and the probability of being correct, which is denoted as

Accuracy(T). Here, Err(T) is computed as (FP + FN) /

(FP + TN + TP + FN), and Accuracy(T) is computed as 1

– Err(T) or (TP + TN) / (FP + TN + TP + FN), where FP

is the false positive count, FN indicates the false negative

count, TP is the true positive count, and TN reflects the

true negative count (Table 3).

Another important criterion is sensitivity or true

positive rate, which is denoted as Sensitivity(T), that

can be computed as TP/(TP + FN), such that the de-

nominator represents actual positive cases. Sensitivity

can identify the positive case of a model correctly.

Hence, high sensitivity implies that few Type-II errors

have occurred when applying the model. Low sensitivity

suggests a poor performance in identifying the wrong

patients for telehealth services. Specificity, which is

computed as Specificity(T) = TN/(FP + TN) = 1 – FP/

(FP + TN), is the true negative rate and indicated how

accurately our model will identify true negatives. Preci-

sion, which is computed as Precision(T) = TP/(TP + FP)

= 1 – FP/(TP + FP), is the exactness or percentage of

tuples that the classifier labeled as positive that are ac-

tually positive. Precision denoted the accuracy of our

model in identifying true positives.

In general, the misclassification rate or Accuracy(T) eval-

uates classification models. However, Accuracy(T) cannot

distinguish type-I/type-II error. For the telehealth service

classification problem in this study, type-II error is crucial.

Patients can suffer extensively if the model misidentified an

eligible patient as ineligible. Therefore, sensitivity is the

first criterion that we will apply in the evaluation process,

followed by accuracy, specificity and precision.

Results

Real-world health insurance research data set

We acquired a data set from the NHIRD provided by

the NHIA, Ministry of Health and Welfare in Taiwan,

which contains data from 1996, when Taiwan first in-

troduced NHI, to 2012 in demonstrating the applicabil-

ity of HDTTCA. For calculative convenience, we use

the 2012 data as our research scope, which consists of

55,389 distinct hospitals and 653,209 distinct patients

with 15,882,153 outpatient and 135,775 inpatient re-

cords. After HDTTCA’s generating derivative attribute

step, the size of the data set decreases to approximately

100MB compared with the 4.45 GB size of the original

data set. This study (REC no: 20141HS007) has been

approved by the Research Ethics Committee of Na-

tional Taiwan University and classified as exempt on

November 14, 2014 in accordance with the Social and

Behavioral Research Ethical Principles and Regulation

Fig. 3 Social Worker’s Decision Tree

Table 9 Results of Manager’s Decision Tree on Training Data

Classified as

Actual Y N

Y 18 4

N 1 177

Sensitivity:
81.81%

Specificity:
99.44%

Precision:
94.74%

Accuracy:
97.5%
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of National Taiwan University and governmental laws

and regulation of Taiwan.

After Step 1.1, HDTTCA has derived 22 attributes

(Table 1). Table 4 shows the distributions of the nine

telehealth-related attributes. Approximately 91% of the

patients live in nonremote area, and 98% of the patients

are not socioeconomically disadvantaged, which indi-

cates that they possessed considerable access to medical

resources. Over 91% of the patients have the target dis-

eases that are suitable for telehealth services.

To ensure that the sampling training data set is closely

representative of the actual patients’ distribution, we use

stratified sampling on the basis of two basic attributes, that

is, gender and age group. However, the nature of our prob-

lem indicated possible unbalanced distribution of the tar-

get variable is. Therefore, sufficient telehealth-applicable

patients should be sampled into the training data set.

Therefore, we adopt the oversampling technique on the

basis of telehealth-related attributes. We obtain 200 sam-

ples out of 653,209 records. Table 5 shows the patients’ dis-

tributions of gender and age groups, and Table 6 shows the

distribution in the sample.

Given that, elderly is more likely to be eligible for tele-

health services, the sample size of elderly patients is two-

fold larger than those of other samples. HDTTCA also

used other attributes, such as remoteness and economic

priority (Table 4) to perform oversampling. The sample

contained more male patients than female ones because

the target diseases are more common in male population

than in female ones.

Generating a decision tree for each expert and final

target variable

In this part, we describe our interviews with three experts

in telehealth-related fields, namely, a physician in a medical

center as Expert 1, a social worker in a remote area as Ex-

pert 2, and a manager in a long-term care center as Expert

3, to identify the target variable of adoptability in the sam-

ple data set. During each interview, we first spend 10min

to introduce our research objective and gave each expert an

outline of the data set. Afterward, each expert used 30min

to label the adoptability of each record with Y or N. Finally,

the experts explained the criteria they used to make their

decisions. Then, we use adoptability as the criteria from

each expert to generate the decision tree. Given that the

sample size of the training data set is only 200 records, we

set the minimum number of records per leaf to be 1, which

indicates that it contained 0.5% of the data set. Then, using

J48 in Weka as the decision tree-building algorithm, we

build the decision tree for each expert and discuss the per-

formance and the rules of each decision tree. Finally, we

generate the final target variable by using these decision

trees for the testing data set.

Expert 1 focuses on the clinical record, such as the target

diseases, CB days and the frequency of inpatient admission.

Therefore, the first few branches in the decision tree are all

related to the clinical attributes. The physician also indi-

cates that telehealth services can reduce the time in the

hospital after the equipment detected abnormal values. The

Fig. 4 Manager’s Decision Tree

Table 10 Distributions of Adoptability in Different Versions of
the Sample Data Set

Adoptability Expert 1 Expert 2 Expert 3 Final Version

Applicable or “Y” 23 20 22 14

Not Applicable or “N” 177 180 178 186
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service provided a standard value for patients to reduce un-

expected outpatient times.

Table 7 shows the classification outcome and statistics

of Expert 1’s version. Figure 2 shows the full decision

tree of Expert 1’s version, which possessed eight leaves

with a tree size of 14 and a depth of four levels. For ex-

ample, one rule stated that if a middle-aged patient has

a target disease has been hospitalized chronically in bed

for > 2 days and lives > 14.91 km away from the hospital,

then the patient is qualified for telehealth services reim-

bursed by the medical insurance policy.

Expert 2 focuses on welfare-related attributes, such as

copayment exemptions and patients’ residence. Expert 2

thinks that telehealth services can reduce the urban-

rural gap and improve the life of rural residents.

Table 8 shows the classification outcome and statistics

of Expert 2’s version. Figure 3 shows the full decision tree,

which consisted of 9 leaves with a tree size of 17 and a

depth of 4 levels. For example, one rule states that if a

copayment-exempted patient that lives in a rural area does

not have target diseases and has a smaller than or equal to

43.88 km traveling distance between his residence and

hospital, then the patient is unqualified for telehealth ser-

vice reimbursed by the medical insurance policy.

Expert 3 emphasizes convenience and accessibility of

healthcare for patients and also encourages elderly pa-

tients to use telehealth equipment in her long-term care

center frequently. Therefore, the important attributes for

Expert 3 are distance and age.

Table 9 shows the classification outcome and statistics

of Expert 3’s version, and Fig. 4 shows her full decision

tree, which contains 11 leaves with a tree size of 20 and a

depth of six levels. For example, one rule states that if a

patient lives in a rural area, has more than 4 days of drug

prescription, has more than 18 days of outpatient time,

and has a > 54.61-km traveling distance between his resi-

dence and hospital, then the patient is qualified for tele-

health service reimbursed by the medical insurance policy.

Considering that the opinions from the three experts

are inconsistent, we need to generate the final value of

the target variable for each record in the training data

set using the following rules: labeling adoptability as Y if

two or more experts indicate its eligibility and N if one

or no expert says that it is eligible. Table 10 shows the

outcome distribution in each expert’s version and the

final version.

For the testing data set, we generate the opinions of

each expert for each record by using the decision tree of

each expert generated in Figs. 2, 3 and 4. The three ex-

perts’ opinions are inconsistent, and we need to generate

the final value of each record in the testing data set by

using the same rules. After obtaining the target variable,

we are ready to create a decision tree of the final version.

Building the final version decision tree and logistic

regression model

Given that the HDTTCA samples a comparatively small

data set (200 patients) for experts’ opinions, HDTTCA used

all experts’ opinions as the training set and took 30 random

samples of 20,000 patients each from the remaining data

set as the validation data sets when training the decision

tree. When using J48 in Weka [8], two parameters, such as

the confidence factor and the minimum number of objects

per leaf, need to be determined. We use six different set-

tings of the confidence factor and the minimum number of

objects per leaf, (i.e., 0.25, 0.5, and 0.75) versus (1, 2) in dis-

covering where it prunes enough to make the learned deci-

sion tree sufficiently accurate on testing the data but does

not sacrifice excess accuracy on the training data.

In total, J48 in Weka [8] generates six trees for the six

different settings of the confidence factor and the mini-

mum number of objects per leaf. However, tree (0.25, 1)

is the same as tree (0.25, 2) and tree (0.5, 1) is the same

as tree (0.5, 2). Therefore, we compare the performance

metrics of the 30 testing data sets for the four trees by

using ANOVA, as shown in Table 11. The ANOVA re-

sults reject all null hypotheses for the four metrics. We

also perform a pairwise t-test to compare the top two

trees, that is, (.25, 1 or 2) and (.75, 2), and the t statistics

and p-value for the sensitivity metric are 19.0614 and

Table 11 Performance Metrics and ANOVA Tests for the Four Trees

Tree Sensitivity ANOVA Accuracy ANOVA Specificity ANOVA Precision ANOVA

(0.5, 1 or 2) .7562 F = 8773.99 .9536 F = 17,067.17 .9656 F = 17,232.80 .5863 F = 13,619.86

(0.25, 1 or
2)

.9796 .9874 .9879 .8380

(0.75, 2) .9877 p_value = 7.8999E–
108

.9626 p_value = 2.282E–
120

.9610 p_value = 1.5E–
120

.6176 p_value = 4.0981E–
116

(0.75, 1) .8836 .9442 .9481 .5201

Table 12 Results of the Final Version (0.75, 2) Decision Tree on
Training Data

Classified as

Actual Y N

Y 11 2

N 1 186

Sensitivity:
91.17%

Specificity:
98.94%

Precision:
84.62%

Accuracy:
98.5%
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3.01E-18, respectively, which rejects the null hypothesis.

Thus, we can select the best trees by using the sensitivity

criterion, which is tree (.75, 2).

Table 12 shows the classification outcome and statis-

tics of the final tree version (.75, 2) and Fig. 5 shows the

full decision tree, which included 9 leaves with a tree

size of 15 and a depth of 4 levels. For example, one rule

states that if a patient lives in a rural area, has a traveling

distance greater than the population mean (i.e., 21 km),

has no target diseases, and has a middle-level insurance

policy, then the patient is unqualified for telehealth ser-

vice reimbursed by the medical insurance policy.

In conclusion, three main dimensions influenced the de-

cision about using telehealth services. First, patients’ clinical

status is important because of the limitation of telehealth

equipment. Patients with diseases that do not need to be

monitored by physiological values are not recommended

for telehealth services. Second, telehealth services play im-

portant roles for patients who live in inconvenient areas or

who have long travel times to healthcare facilities. Third,

telehealth service benefits elderly and low socioeconomic

level patients. With telehealth service subsidized by insur-

ance, these patients can have a healthy quality of life.

After HDTTCA produces the final version of decision

tree, the rules can be used to assign the values of the target

variables in the entire NHIRD. Our data indicate that 3.56%

(23,262 out of 653,209) of the patients are eligible for tele-

health services in 2012. The following step is setting up dif-

ferent cases of experiments to compare the results of

HDTTCA with those of a logistic regression model.

Then, we then construct the logistic regression model

by Weka [8] as the baseline comparison model to the

final decision tree. Before generating the logistic regres-

sion model, we need to determine the subset of attri-

butes in Tables 1 and 2 that are suitable for the model.

We compute the rs among these attributes and eliminate

the coefficient with rs > .7 to avoid the multicollinearity

problem. We perform stepwise logistic regression to

Fig. 5 The Final Version

Table 13 Logistic Regression Model

Coefficients Estimate Std. Error z value Pr(>|z|) Signif. codes

(Intercept) −17.949 4.6122 −3.892 9.95E–05 ***

Distance_C (Fdis_C) 3.033 .9792 3.098 .001952 **

Remoteness (FR) 2.5578 1.1479 2.228 .025866 *

Age Group (FAge) 3.5081 1.2511 2.804 .005048 **

Copayment Exemption Mark (FCEM) 3.8109 1.5376 2.479 .013192 *

Target Disease (FTD) 8.0175 2.2871 3.506 .000456 ***

Ps. Signif. codes: ‘***’ for 0; ‘**’ for 0.001; ‘*’ for 0.01
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select significant attributes from the remaining 13 attri-

butes. The final logistic regression model consists of

only 5 significant attributes (p-value ≥5%), as shown in

Table 13. The coefficients of the five attributes are all

positive, which indicates that the patients traveling a

long distance toward the hospital, living in remote areas

in an elderly age group, with copayment exemption

mark, and those with target diseases are likely to qualify

for the insurance reimbursements of telehealth services.

Table 14 shows the classification of the outcomes and

statistics of the final logistic regression model.

Discussion

This study proposes HDTTCA to determine the eligibility

for the insurance reimbursements of telehealth services.

After finding the feasible combinations of factors, models,

and corresponding parameters in the Method Section, we

conduct a series of experiments 30 times to compare the

HDTTCA results with the results of the logistic regression

by measuring their average performances and determining

which model addresses the telehealth patient classification

problem better. As mentioned in the Method section, four

important metrics including sensitivity, accuracy, specificity,

and precision, are used to compare the results. These met-

rics reflect the usability and accuracy of a model. We also

discuss the interpretability of the result as a crucial criterion

when applying different classification methods in practice.

Then, we then perform the experiments 30 times by

taking 30 random samples of 20,000 patients each from

the remaining data, and we measure their average per-

formances. We set the decision tree of HDTTCA and

the previously mentioned logistic regression model in

Weka [8], which automatically searches for the final

solution for each sample in the testing data set. To com-

pare the results of the two models, we conduct pairwise

t-tests between the results classified by the decision tree

of HDTTCA (Table 12) and those classified by the logis-

tic regression model (Table 13).

Given that this data set is unbalanced (only 3.56% of the

patients are eligible for the telehealth services), HDTTCA

result shows extremely high sensitivity, accuracy, and spe-

cificity (all > .95%) but low precision. The results in

Table 15 reveal the average performances, and corre-

sponding variances and p-values, that is, P (T < =r), of the

pairwise t-tests between the decision tree generated by

HDTTCA and the logistic regression model. In terms of

sensitivity, the decision tree generated by HDTTCA and

the logistic regression model are on the equal ground. In

terms of accuracy, specificity, and precision, the decision

tree generated by HDTTCA provides a better perform-

ance than that of the logistic regression model. The deci-

sion tree model generates a competitive performance and

provides clear, easily understandable rules by applying

HDTTCA. Hence, HDTTCA is a suitable choice in solv-

ing telehealth service classification problems.

Conclusion

In conclusion, this study has three contributions. The first

contribution is confirming that the use of decision trees is a

good approach in identifying the potential receivers of tele-

health services. A decision tree telehealth service classifier

can produce clear and understandable rules within ex-

tremely fast training time by applying HDTTCA. The sec-

ond contribution indicates that HDTTCA determines the

three most important dimensions of reimbursing patient

for telehealth services, namely, clinical records, conveni-

ence, and social-economic status. The third contribution is

proving that HDTTCA is essentially applicable on a real

data set from NHIRD in Taiwan.

Two matters need to be illustrated in this study. First,

the ethical question of denying some people access to a

service because it is not covered by insurance or they live

extremely near the hospital or service provider has not

been addressed. That limitation indicates that the univer-

sal healthcare coverage is not universal if some cannot ac-

cess it. Second, HDTTCA involves human judgment to

Table 14 Logistic Regression Model on the Training Data

Classified as

Actual Y N

Y 10 2

N 4 184

Sensitivity:
83.33%

Specificity:
97.87%

Precision:
71.43%

Accuracy:
97.00%

Table 15 Pairwise t-tests for Performance Metrics

Metric Sensitivity Accuracy Specificity Precision

Model HDTTCA LR HDTTCA LR HDTTCA LR HDTTCA LR

Mean .9877 .9875 .9626 .9451 .9610 .9424 .6176 .5219

Variance 9.2187E–06 6.4638E–06 1.6201E–06 3.2124E–06 2.1E–06 3.856E–06 .00012 .0001293

DF 29 29 29 29

t −.7327 −81.5205 −79.4559 −88.2711

P(T < =r) .2348 4.1444E–36 8.69E–36 4.16E–37
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determine the target variable. In the future, the actual

value of the target variable may be acquired from the

NHIRD if the policy of reimbursing patients for telehealth

services is implemented. We can compare the HDTTCA

results and the attributes of actual applicants and modify

the classifier rules. Future work can also focus on building

the utility model of users and in designing an appropriate

billing mechanism of telehealth services.
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