
DECISION-TREE-BASED MULTICLASS SUPPORT VECTOR MACHINES

Fumitake Takahashi, Shigeo Abe

Graduate School of Science and Technology, Kobe University, Kobe, Japan
(E-mail: abe@eedept.kobe-u.ac.jp)

ABSTRACT

In this paper, we propose decision-tree-based multiclass sup-
port vector machines. In training, at the top node, we deter-
mine the hyperplane that separates a class (or some classes)
from the others. If the separated classes include plural classes,
at the node connected to the top node, we determine the hy-
perplane that separates the classes. We repeat this proce-
dure until only one class remains in the separated region.
This can resolve the unclassifiable regions that exist in the
conventional SVMs, but a new problem arises. Namely,
the division of the feature space depends on the structure
of a decision tree. To maintain high generalization ability,
the most separable classes should be separated at the upper
nodes of a decision tree. For this, we propose four types
of decision trees based on separability measured by the Eu-
clidean distances between class centers and Mahalanobis-
distance-based classifiers. We demonstrate the effectiveness
of our methods over conventional SVMs using benchmark
data sets.

1. INTRODUCTION

Support vector machines (SVM) [1] are the classifiers which
are formulated for a two-class problem. Though SVMs are
known to have a high generalization ability for two-class
problems, for N(> 2)-class problems, we must determine
N hyperplanes, each of which separates one class from the
others, and this leads to the existence of unclassifiable re-
gions. To resolve this problem, some methods, for example,
pairwise SVMs [2] and fuzzy SVMs [3], have been devel-
oped.

In this paper, we propose decision-tree-based SVMs. In
training, at the top node, we determine the hyperplane that
separates a class (or some classes) from the others. If the
separated classes include plural classes, at the node con-
nected to the top node, we determine the hyperplane that
separates the classes. We repeat this procedure until only
one class remains in the separated region.

When training is finished, the feature space is divided
by N − 1 hyperplanes and there is no unclassifiable region
in the feature space. Therefore, this method can resolve
the problem of conventional SVMs. But since the region

of each class depends on the structure of a decision tree,
we must determine the structure of the decision tree so that
the classification error is minimized. If the classification
performance is not good at the upper node of the decision
tree, the overall classification performance becomes worse.
Therefore, more separable classes should be separated at the
upper node of the decision tree. We propose four types of
decision trees based on separability measured by Euclidean
distances between class centers and Mahalanobis-distance-
based classifiers.

This paper is organized as follows. In Section 2, we
briefly describe the theory of conventional SVMs. In Sec-
tion 3, we propose the decision-tree-based SVMs to resolve
the problem of conventional SVMs for a multiclass problem
and Section 4 demonstrates the effectiveness of our methods
by computer experiments.

2. SUPPORT VECTOR MACHINES

In this section, we review the theory of SVMs for a two-
class problem and discuss a problem of the conventional
SVMs for a multiclass problem.

2.1. SVMs for a two-class problem

Let x1, . . . , xM be the training data, and y1, . . . , yM be
the associated class labels. Here if xi belongs to Class 1,
yi = 1, and to Class 2, yi = −1. In SVMs, we first map the
input space x into a high dimensional feature space Φ(x) in
order to enhance separability. Our aim is to obtain a linear
decision function f(Φ(x)) = wtΦ(x) + b in the high di-
mensional feature space. Here w is a weight vector whose
dimension is the dimension of the feature space, and b is a
bias term. Mapping function Φ needs to satisfy the follow-
ing equation:

K(xi, xj) = Φ(xi)tΦ(xj), (1)

where K(xi, xj) is called kernel function. The Euclidean
distance from a training data x to a hyperplane f(Φ(x)) =
0 is given by |f(Φ(x))|/||w||. The optimal hyperplane in
SVMs is realized by maximizing this distance from the near-
est datum. So we impose the condition on the numerator,

min |f(Φ(x))| = 1 and the optimal hyperplane can be ob-
tained by solving the following optimization problem:

minimize 1
2 ||w||2 (2)

subject to yi(wtΦ(xi) + b) ≥ 1
for i = 1, ...,M.

We cannot solve this problem with the infinite feature space.
Therefore, we convert this problem to a dual problem using
Lagrange multipliers αi, and get the following quadratic op-
timization problem:

maximize
M∑
i=1

αi − 1
2

M∑
i,j=1

αiαjyiyjK(xi, xj) (3)

subject to
M∑
i=1

yiαi = 0.

Solving this problem, we obtain the following decision func-
tion:

f(x) =
M∑
i=1

αiyiK(x, xi) + b. (4)

Usually, most of αi are 0, and only the data associated with
non-zero αi affect the hyperplane. These data are called
support vectors. From (4), we can see that by using kernel
function given by (1), we can easily treat a high dimensional
feature space without using mapping functions. We classify
the datum x as follows:

f(x)
{

> 0 for Class 1,
< 0 for Class 2.

(5)

In the above discussion, we assumed that the training
data are linearly separable. If not linearly separable, we use
a soft margin technique, introducing slack variables. By
the discussion similar to the separable case, the following
quadratic optimization problem is derived:

maximize
M∑
i=1

αi − 1
2

M∑
i,j=1

αiαjyiyjK(xi, xj) (6)

subject to
M∑
i=1

yiαi = 0, 0 ≤ αi ≤ C.

Here C is the upper bound that determines the tradeoff be-
tween the maximization of margin and minimization of clas-
sification error and is set to a large value.

2.2. Problem of SVMs for a multiclass classification

As seen in Section 2.1, SVMs are originally formulated for a
two-class problem, so we must convert an N -class problem

into N two-class problems. In the ith two-class problem,
class i is separated from the remaining classes. Namely, in
the ith problem, the class labels of data which belongs to
class i are set as y = 1, and the class labels of remaining
data are set as y = −1. In classification, if only the value of
fi(x) is positive and all the values for the remaining deci-
sion functions are negative, x is classified into class i. But
in this method, plural decision functions may be positive or
all the decision functions may be negative. Fig. 1 shows an
example of the unclassifiable regions for a three-class prob-
lem. The data in the shaded regions cannot be classified.
This leads to the degradation of generalization ability.

f 1 (x) =0

f
2
(x) =0

f 3 (x) =0

Class1

Class2

Class3

Figure 1: The existence of unclassifiable regions

3. SVMS BASED ON THE DECISION TREE

To solve the problem discussed in Section 2.2, we propose
SVMs based on the decision tree formulation. In training,
at the top node of the decision tree, we determine the hy-
perplane that separates one or some classes from remain-
ing classes in the feature space. If plural classes are in the
separated subspace, at the node connected to the top node,
we determine the hyperplane that separates the classes. We
repeat this procedure until there are one-class data in the
separated regions.

In classification, starting from the top of the decision
tree, we calculate the value of the decision function for in-
put data x and according to the sign of the value we deter-
mine which node to go to. We iterate this procedure until
we reach a leaf node and classify the input into the class
associated with the node.

For an N -class problem, the number of hyperplanes to
be calculated is N − 1. It is less than that of the conven-
tional method, N . And as learning proceeds, the number of
data needed for learning becomes smaller, so we can expect
shorter training time. In classification, in the conventional
method, the values for all the decision functions need to be
calculated. On the contrary, in the proposed method, though
it depends on the structure of the decision tree, the values of
all the decision functions are not necessarily calculated.

Fig. 2 shows the example of the division of the feature
space, and Fig. 3 expresses this by the decision tree. In

f (x)
1

=0

f (x)
2

=0

Class3

Class1

Class2

Figure 2: The example of the division of feature space
{1, 2, 3}

{1}

{2} {3}

{2, 3}

f (x)
1

=0

f (x)
2

=0

+

+ -

-

Figure 3: Expression by decision tree

the training step, in this example, at first, the hyperplane
f1(x) which separates Class 1 from Classes 2 and 3 is cal-
culated. Secondly, for remaining classes (Classes 2 and 3),
the hyperplane f2(x) which separates Class 2 from Class
3 is calculated. In the classification step, for input datum
x, we first calculate a value of f1(x). If it is positive, x is
classified into Class 1, and if negative, calculate a value of
f2(x). If it is positive, x is classified into Class 2, but if
negative, classified into Class 3. So we can see the testing
time can be reduced. From this example, we can see that
there is no unclassifiable region in the feature space.

But a problem is how to determine the structure of the
decision tree. Figs. 4 and 5 are the examples of a four-class
problem. In Fig. 4, at first the hyperplane which separates
Class 1 from Classes 2, 3, 4 is calculated. Next, the hy-
perplane which separates Class 4 from Classes 2, 3 is cal-
culated and finally the hyperplane which separates Class 3
from Class 2 is calculated. In Figure 5, the separating order
is Classes 4, 1, 2. As seen from this example, the region of
each class depends on the structure of a decision tree.

Since the more the data are misclassified at the upper
node of the decision tree, the worse the classification perfor-
mance becomes, the classes that are easily separated need
to be separated at the upper node of the decision tree. To
determine the decision tree, we use the fact that the physi-
cal relationship of data in input space is kept in the feature
space. We propose four types of decision trees as follows.

1. Type 1 decision tree. At each node one class is
separated from the remaining classes. The Euclidean

x

x

1

2
Class1

Class3
Class2

Class4

f (x)
1

=0
f (x)

2
=0

f (x)
3

=0

Figure 4: A four-class problem example 1

x

x

1

2 Class1

Class3

Class2

Class4

f (x)
1

=0
f (x)

2
=0

f (x)
3

=0

Figure 5: A four-class problem example 2

distance is used as a separability measure.

2. Type 2 decision tree. At each node some classes
are separated from the remaining classes. The Eu-
clidean distance is used as a separability measure.

3. Type 3 decision tree. At each node one class is
separated from the remaining classes. Classification
errors by the Mahalanobis distance is used as a sepa-
rability measure.

4. Type 4 decision tree. At each node some classes
are separated from the remaining classes. Classifica-
tion errors by the Mahalanobis distance is used as a
separability measure.

In the following, we discuss these algorithms in detail for
an N -class problem.

3.1. Type 1 decision tree

In this method, we calculate the Euclidean distances be-
tween the class centers, and recursively separate the farthest
class from the remaining classes.

Step 1 Calculate the class centers ci(i = 1, ..., N) by

ci =
1

|Xi|
∑

x∈Xi

x (7)

and the distance between class i and class j, dij(i, j =
1, ..., N), by

dij(= dji) = ||ci − cj ||. (8)

Here Xi is a set of training data included in class i,
and |Xi| is the number of elements included in Xi.

Step 2 Find the smallest value of dij for each class. Namely,
the smallest value of class i,

li = min
j=1,...,N,j �=i

dij , (9)

and regard the class which has the largest li as the far-
thest class and calculate a hyperplane which separates
this class. Namely, separate class k from the others.
Here k = arg max

i=1,..,N
li. If k exists for plural i, for

these classes, compare the next smallest distance l′i
and k = arg max

i
l′i.

Step 3 For the remaining classes, repeat Step 2.

3.2. Type 2 decision tree

Here using the distances between class centers as Section
3.1, repeat merging the two classes which are the nearest
until two clusters are obtained, and separate the clusters by
a hyperplane.

Step 1 Using (7), calculate the class centers, and calculate
the distances between class i and class j, dij(i, j =
1, ..., N) by (8). Here let all the classes belong to
different clusters.

Step 2 For the classes which belong to different clusters, cal-
culate the smallest value of distances by (9) and let
the associated two classes belong to the same cluster.

Step 3 Repeat Step 2 N − 2 times to merge to two clusters.

Step 4 Calculate a hyperplane which separates the clusters
generated in Step 3.

Step 5 If the separated cluster in Step 4 has N ′(> 2) classes,
regard the classes as belonging to different clusters
and repeat Step 3 N ′ − 2 times and go to Step 4. If
N ′ = 2, calculate a hyperplane which separate the
two classes.

3.3. Type 3 decision tree

First, we classify the training data using the Mahalanobis
distance and determine a hyperplane which separates the
class with the smallest misclassifications from the remain-
ing classes.

Step 1 For each class, calculate the covariance matrix Qi

(i = 1, ..., N) by

Qi =
1

|Xi|
∑

x∈Xi

(x − ci)(x − ci)t, (10)

where ci is a center vector of class i given by (7).
Calculate the Euclidean distance between class cen-
ters using (8). For all the data, calculate the Maha-
lanobis distance di(x)(i = 1, ..., N) and classify to
the nearest class. Here

di
2(x) = (x − ci)tQi

−1(x − ci). (11)

Step 2 Let eij be the number of misclassified data of class i
into class j.

Step 3 Calculate the number of misclassified data for class

i(i = 1, . . . , N) by
n∑

j=1, j �=i

(eij + eji) and the class

which has the smallest value is separated from the
others. If plural classes have the same value, separate
the class with the farthest Euclidean distance among
these classes.

Step 4 Repeat Steps 2, 3 for the remaining classes.

3.4. Type 4 decision tree

In this method, we at first classify the data using Maha-
lanobis distance as in Section 3.3, and repeat merging the
most misclassified two classes.

Step 1 Do Steps 1, 2 in Section 3.3.

Step 2 For the two classes in different clusters, find the largest
value of eij and regard classes i and j as belonging to
the same cluster. If plural classes have the same value,
similar to type 2 decision tree, merge the nearest two
classes.

Step 3 Repeat Step 2 until the number of clusters becomes
two, and calculate a hyperplane which separates these
two clusters.

Step 4 If the number of classes in a cluster separated in Step
3 is N ′ > 2, let these classes belong to different clus-
ters and repeat Step 2 N ′ − 2 times. And go to Step
3. If N ′ = 2, calculate a hyperplane which separates
these two classes.

4. SIMULATION EXPERIMENTS

To evaluate the performance of our methods, we simulated
using hiragana data for license plate recognition and the
blood cell data. Table 1 shows the numbers of inputs, classes,
training data, and test data. In simulation, we used a Pen-
tium III 1GHz PC to measure the number of misclassified
data for training and test data, training and testing time. To
see the effectiveness of our method, we compared our meth-
ods with a method, in which the class is separated in reverse

Table 1: Feature of benchmark data
Data Inputs Classes Train. Test

Hiragana 50 39 4610 4610
Blood cell 13 12 3097 3100

Table 2: Number of misclassified data for hiragana data

d = 2 d = 3 d = 4
Type 1 rev. 146 125 117

Type 1 104 92 89
Type 2 87 77 57
Type 3 108 103 98
Type 4 68 66 69
C-SVM 197 171 163

order of type 1 decision tree (type 1 rev.), and the conven-
tional SVMs. We use the polynomial kernels:

K(xi, xj) = [(xt
ixj) + 1]d. (12)

Table 2 shows the performance for the hiragana data.
For hiragana data, the performance for the training data is
100% and we show the result for the test data. The general-
ization ability by the proposed methods is superior to those
by the type 1 rev. and conventional SVMs. The best perfor-
mance for hiragana data is realized by the type 4 decision
tree for d = 2, 3, and the type 2 decision tree for d = 4. Ta-
ble 3 shows the executing time for training and testing, the
testing time is in the brackets. The executing time by the
proposed methods is shorter than that by the conventional
SVM.

Table 4 shows the performance for blood cell data. The
performance for training data is in the brackets. In regard
to the training data, the best performance was realized by
the proposed method, but the type 1 rev. shows the best
performance for the test data for d = 2, 3. All the pro-
posed methods are superior to the conventional SVM. Table
5 shows the executing time for training and testing. The ex-
ecuting time by the proposed methods is shorter than that

Table 3: Learning and testing time for hiragana data [sec]

d = 2 d = 3 d = 4
Type 1 84 (14) 86 (16) 97 (20)
Type 2 77 (12) 81 (14) 83 (14)
Type 3 100 (15) 101 (17) 104 (18)
Type 4 90 (12) 97 (13) 96 (14)
C-SVM 112 (18) 115 (18) 120 (20)

Table 4: Number of misclassified data for blood cell data

d = 2 d = 3 d = 4
Type 1 rev. 257 271 308

(59) (18) (3)
Type 1 284 272 288

(43) (20) (8)
Type 2 287 289 292

(27) (9) (0)
Type 3 296 299 292

(26) (4) (0)
Type 4 272 274 284

(33) (8) (0)
C-SVM 350 340 405

(191) (118) (65)

Table 5: Learning and testing time for blood data [sec]

d = 2 d = 3 d = 4
Type 1 16 (1.1) 12 (1.0) 12 (0.94)
Type 2 10 (0.72) 9.2 (0.69) 9.7 (0.70)
Type 3 8.4 (0.70) 8.8 (0.68) 8.9 (0.71)
Type 4 12 (0.91) 9.5 (0.69) 10 (0.73)
C-SVM 35 (3.5) 30 (3.0) 29 (2.8)

by the conventional SVM.

5. CONCLUSION

In this paper, we proposed new formulation of SVMs for a
multiclass problem. This method can resolve the existence
of unclassifiable regions and has higher generalization abil-
ity than that of the conventional method. And the executing
time was also shown to be shortened. Though the perfor-
mance of the four decision trees depends on the data, all the
algorithms realized high generalization ability.

6. REFERENCES

[1] V. N. Vapnik, Statistical Learning Theory, John Wiley
& Sons, 1998.

[2] U. H.-G. Kreßel, Pairwise Classification and Support
Vector Machines, Advances in Kernel Methods: Sup-
port Vector Learning (B. Schölkopf, C. J. C. Burges,
and A. J. Smola (Eds.)), pp. 255–268. The MIT Press,
1999.

[3] T. Inoue and S. Abe, Fuzzy Support Vector Machines
for Pattern Classification, Proc. IJCNN’01, pp. 1449–
1454, 2001.

