
Decision Tree Ensemble: Small Heterogeneous Is Better Than Large
Homogeneous

Mike Gashler, Christophe Giraud-Carrier and Tony Martinez
Brigham Young University

Department of Computer Science
Provo, UT, U.S.A.

mikegashler@gmail.com,cgc,martinez@cs.byu.edu

Abstract

Using decision trees that split on randomly selected at-
tributes is one way to increase the diversity within an en-
semble of decision trees. Another approach increases di-
versity by combining multiple tree algorithms. The random
forest approach has become popular because it is simple
and yields good results with common datasets. We present a
technique that combines heterogeneous tree algorithms and
contrast it with homogeneous forest algorithms. Our results
indicate that random forests do poorly when faced with ir-
relevant attributes, while our heterogeneous technique han-
dles them robustly. Further, we show that large ensembles
of random trees are more susceptible to diminishing returns
than our technique. We are able to obtain better results
across a large number of common datasets with a signifi-
cantly smaller ensemble.

1 Introduction

Ensembles offer a simple yet effective technique for ob-
taining increased levels of predictive accuracy by combin-
ing the predictions of many different learning algorithm
instances [12, 17, 9, 19]. However, such improvements
are predicated upon there existing some form of diversity
among the elements of the ensemble [21, 15]. Indeed, if ev-
ery instance in the ensemble behaves nearly the same way,
little is achieved by combining their predictions.

Decision trees are particularly well-suited for ensem-
bles because they are fast and unstable. Hence, it is of-
ten possible to create synergy within decision tree ensem-
bles or forests. A popular technique for promoting vari-
ance in decision tree forests is to use trees that randomly
choose on which attributes to divide the data [13]. In suf-
ficiently large ensembles, this technique can yield better
accuracy than standard entropy-reducing decision trees on

many datasets because it creates more variance within the
models. Breiman showed that bagging is particularly ef-
fective with forests of random decision trees [4]. On the
downside, however, our results indicate that random trees
yield poor results on data with many irrelevant attributes.

In this paper, we contrast the random forest algorithm
with another ensemble technique that combines multiple
tree algorithms using cross-validation selection. We show
that this technique both has a higher ceiling of diminishing
returns and is more robust to irrelevant features than homo-
geneous tree ensembles. Heterogeneity in our ensembles
is achieved through a combination of entropy-reducing de-
cision trees, which build axis aligned decision boundaries,
and a new class of decision trees, known as mean mar-
gins decision trees (MMDT), which build oblique decision
boundaries.

The paper is organized as follows. Section 2 briefly re-
views significant related work. In section 3, we describe the
mean margins decision tree learning algorithm and the hy-
brid cross-validation decision tree learning algorithm which
may be obtained by combining the mean margins decision
tree learning algorithm with the standard entropy-reducing
decision tree learning algorithm. Section 4 presents a
thorough analysis of the resulting heterogeneous ensemble
learning algorithm. Finally, section 5 concludes the paper.

2 Related Work

The MMDT algorithm we introduce here uses linear
combinations of inputs to define the decision boundaries of
its induced model trees. Such trees were first discussed in
[5] and later implemented in a number of algorithms, such
as Multivariate Decision Trees [6], Oblique Decision Trees
[16], and Perceptron Decision Trees [22].

Linear combination trees offer significant flexibility over
trees that only divide data with axis-aligned boundaries.
Unfortunately, this flexibility tends to be a hindrance more

1

than a benefit. Training a perceptron tree, for example, in-
volves optimization in a very non-convex heuristic space.
Further, there is a strong tendency for perceptron trees to use
their extreme flexibility to overfit the training data. MMDT,
on the other hand, is asymptotically as efficient as the well-
known entropy-reducing decision tree learning algorithm. It
is also parameterless and tends to produce good results with
many datasets.

Although a complete review is outside the scope of this
paper, much of the research involving ensemble methods is
clearly relevant to our work (e.g., see [9, 7, 11, 10]). Of par-
ticular interest is work on diversity in ensembles. The need
for diversity in ensemble is well known and has been the ob-
ject of many studies. Many techniques have been proposed
from bagging [3] to stacking [23] to mixture of experts [14]
to random forests [4], to COD-based approaches [18], to
name only a few. A recent survey of techniques for creating
diversity in ensemble is in [7]. We use the term homoge-
neous to refer to techniques that use a single algorithm and
achieve diversity through some form of variability in the
data (e.g., randomization), and we use the term heteroge-
neous to refer to techniques that achieve diversity through
the use of multiple algorithms. A thorough comparison of
randomization-based decision tree ensemble methods is in
[2]. Our approach is heterogeneous and is compared with
one well-known homogeneous approach, namely random
forests.

3 Mean Margins Decision Tree Learning

We first describe a new decision tree learning algo-
rithm called Mean Margins Decision Tree (MMDT) learn-
ing, which builds oblique decision boundaries. The MMDT
algorithm is designed to be simple, efficient, and free of pa-
rameters. It is, therefore, well-suited for use in ensembles.
Suppose we have a set of patterns, P , for a binary classi-
fication problem such that PT is the subset of patterns of
class true, and PF is the subset of patterns of class false.
Further, suppose all patterns are vectors of real values.

At a high level, an MMDT is constructed in a manner
very similar to that of any other decision tree, as shown
in Figure 1. The difference is that the MMDT algorithm
chooses decision boundaries in the form of linear combi-
nations of inputs that maximize the margins between the
means of PT and PF , as illustrated in Figure 2.

Of course, not all classification tasks have exactly two
classes and only real-valued inputs. However, the MMDT
algorithm is easily extended to handle nominal attributes,
and any number of classes. To handle nominal attributes,
we represent each value as an orthogonal dimension. For
example, suppose some nominal attribute ranges over the
values {red, green, blue}, and some pattern contains the
value v = red. We would represent this value with three real

function build tree(P)
~µ, ~ν ← choose decision boundary(P)
Pleft, Pright ← divide data(~µ, ~ν, P)
if |Pleft| == 0

return new LeafNode(Pright)
if |Pright| == 0

return new LeafNode(Pleft)
nodeleft ← build tree(Pleft)
noderight ← build tree(Pright)
return new InteriorNode(nodeleft, noderight)

function choose decision boundary(P)
~µF ← 1

|PF |
∑

~p∈PF
~p

~µT ← 1
|PT |

∑
~p∈PT

~p

~µ← ~µF +~µT

2
~ν ← ~µT − ~µF
return ~µ, ~ν

function divide data(~µ, ~ν, P)
Pleft ← {}
Pright ← {}
for each ~p ∈ P

if (~p− ~µ) · ~ν ≥ 0
Pright ← Pright + ~p

else
Pleft ← Pleft + ~p

return Pleft, Pright

Figure 1. MMDT Learning Algorithm

values< 1, 0, 0 >. These values may be thought of as a cat-
egorical distribution of confidence over the nominal values.
(Note that this technique also naturally provides a mecha-
nism for handling missing nominal values: just assign equal
confidences to each value, e.g., < 0.33, 0.33, 0.33 >.) To
convert back to a nominal value, just find the value with the
maximum confidence.

To handle more than two classes, we use the following
technique. If class labels are nominal, they are also con-
verted to real vectors as per the above procedure, such that
L is the set of real vector labels (one for each pattern in P).
Each time before choose decision boundary is called, we
first divide P into PT and PF in the following manner:

1. Compute the mean ~µL and first principal component
~νL of L.

2. For each ~l ∈ L, if (~l − ~µL) · ~νL ≥ 0 then PT contains
patterns with label ~l, otherwise PF contains patterns
with label ~l.

Thus, the MMDT algorithm can easily work with multiple

2

Figure 2. Margin Maximization

function compute 1st principal component(L)
for i = 1 to d
~νLi ← random standard normal()

~νL ← ~νL

|~νL|
do 10 times
~α← 0d
for each ~l ∈ L
~α← ~α+ ((~l − ~µL) · ~νL)(~l − ~µL)

~νL ← ~α
|~α|

Figure 3. Computing 1st Principal Component

classes, including continuous labels. For completeness, the
pseudocode, derived from [20], to quickly compute the first
principal component about the mean of L in d dimensions is
shown in Figure 3. In some rare cases, more iterations may
be required to obtain a precise estimate of the first principal
component, but for this algorithm an imprecise estimate will
work just fine, so ten iterations are sufficient.

As an illustration of MMDT’s performance in complex
environments, we design the following simple interpolation
task. Of course, better techniques for image interpolation
exist. The purpose here is only to assist an intuition of the
workings of MMDT. We create a training set with one pat-
tern per pixel from a small 20x20 pixel image. We then
evaluate at sub-pixel positions to interpolate a 160x160 im-
age. We compare bagged MMDT with a random forest of
standard entropy-reducing decision trees (ERDTs). The re-
sults are shown in Figure 4. Note how bagged MMDT is
better able to follow non-axis-aligned contours.

As it turns out, the MMDT algorithm is not as effective
overall as ERDT learning for common classification tasks,
but MMDT tends to perform well in many cases where
ERDT does poorly. On a set of 43 common datasets from
the UCI repository [1], ERDT achieves higher predictive ac-
curacy (measured by 5x2 cross-validation) than MMDT on
almost two thirds (26 out of 43) of the datasets. However,

Figure 4. MMDT vs RDT Interpolation

MMDT appears to cover an important deficiency in the re-
maining one third. MMDT computes mean values in order
to choose its decision boundaries. Mean values can be esti-
mated with more accuracy when there is plenty of data. It
seems intuitive, therefore, that the MMDT algorithm might
do well with datasets that densely sample their input space.

To test this notion, we compute the sample density of
each dataset as the product of the arity of each attribute
divided by the number of patterns. Since there is no con-
cept of arity with continuous values, we use a value of 5
for continuous attributes, which is close to the average arity
of nominal values in the datasets we consider. In a pair-
wise comparison between bagged MMDT (size 100) and
bagged ERDT (size 100) across only the densest half of the
datasets, MMDT performs better than ERDT on 45.5% (10
out of 22) of the datasets. On the densest quarter, MMDT
does best on 72.7% (8 out of 11) of the datasets, and on the
densest eighth, it also does best on 83.3% (5 out of 6) of the
datasets. Hence, sample density does seem to characterize a
significant portion of the strength of MMDT. There also re-
main 7 out of 21 datasets (33.3%) among the sparsest half of
the datasets on which bagged MMDT outperforms bagged
ERDT.

4 Decision Tree Ensemble Learning

We will refer to a bagged ensemble of 100 random deci-
sion tree (RDT) instances as “100×RDT”, to a bagged en-
semble of 100 ERDT instances as “100×ERDT”, and like-

3

wise for other algorithms.
We first compare the predictive accuracy of three bagged

ensembles: 100×RDT, 100×ERDT, and 100×MMDT. We
measure predictive accuracy on 43 common datasets from
the UCI repository [1] using 5x2 cross-validation (5x2CV).
Our choice of 5x2CV, rather than the somewhat more pop-
ular 10-fold cross-validation, is motivated by recent re-
sults which suggest that 5x2CV yields lower type II error
than 10-fold cross-validation [8]. In this experiment, each
ensemble is homogeneous in that it contains multiple in-
stances of just one algorithm. The results are shown in Table
1. The column “Baseline” corresponds to a majority learner
that chooses the most common class. It is shown in order
to contrast the effectiveness of the various ensemble tech-
niques. 100×RDT is the most accurate with the most (17)
datasets. RDTs are particularly effective at creating diver-
sity within the ensemble, so this result emphasizes the im-
portance of having model diversity. 100×ERDT does best
on 13 datases, while 100×MMDT does best on 12 datasets.
One dataset has no clear winner.

Given the complementary nature of the strengths of
ERDT and MMDT as discussed above, it would seem that
performance could be further improved by building hetero-
geneous ensembles. Rather than combining several ERDTs
and MMDTs, we first design the following simple, cross-
validation-based decision tree learning algorithm, which we
refer to as CVDT (Cross-Validation Decision Tree).

1. Perform 1x2CV on the training set with ERDT

2. Perform 1x2CV on the training set with MMDT

3. Select the algorithm that performed best and train on
full training set

We then create heterogeneous ensembles of CVDTs
through bagging. When one of the two algorithms (ERDT
or MMDT) is clearly better than the other for a particular
problem, this is equivalent to a bagged ensemble of that
model. When both algorithms achieve similar accuracy, the
bagged ensemble will contain a mixture of both algorithms
in proportion to the number of times that each achieved bet-
ter accuracy during cross-validation.

In and of itself, building a heterogeneous ensemble is
not that novel, and although training a CVDT requires more
computation than training an ERDT or an MMDT, this cost
is only required at training time. Evaluation with a CVDT is
as efficient as the model that it selects. Furthermore, we will
show shortly that, in the context of ensemble learning, sig-
nificantly smaller ensembles of CVDTs may be used, that
achieve higher accuracy and better tolerance to noise than
much larger ensembles of ERDTs or random forests, with
an overall smaller computational footprint.

We compare ensembles of ERDTs and RDTs with en-
sembles of bagged CVDTs. A simple analogy motivates

Table 1. Homogeneous Ensembles

this design. A bagged ensemble of ERDTs may be analo-
gous to a panel of expert medical doctors that all graduated
from the same university. An ensemble of RDTs may be
analogous to a panel of novices that dropped out of medical
schools from all over the world. Even though each novice
may have less talent than any one of the experts, the di-
versity in this group may enable them to produce a better
combined diagnosis. This may explain why ensembles of
RDTs can outperform ensembles of ERDTs. It would seem,
therefore, that an ideal panel of medical doctors would con-
tain both a significant amount of diversity and expert tal-
ent. We seek this balance by using a bagged ensemble of
CVDTs. Each CVDT contains only algorithms that build
their model with deliberate divisions, but diversity is also
enhanced (in addition to the diversity injected as part of the
bagging ensemble technique) by the utilization of more than
one algorithm.

4

Here, we consider bagged ensembles of 1,000 ERDTs
and 1,000 RDTs with bagged ensembles of only 100
CVDTs. The choice of 1,000 for ensembles of ERDTs
and RDTs is rather standard (e.g., see [2]). The results are
shown in Table 2.

Table 2. Heterogeneous Ensemble vs. Homo-
geneous Ensembles

These results indicate that a bagged ensemble of CVDTs
has a higher ceiling of diminishing returns than much
larger ensembles of RDTs or ERDTs. Furthermore, de-
spite having one tenth the size, the much smaller ensem-
ble of 100×CVDT still yields somewhat higher accuracy
on average, and wins outright over both 1, 000×ERDT and
1, 000×RDT on 15 of the 43 datastets. On the 16 datasets
for which 100×CVDT looses out to both competitors, the
loss is usually rather insignificant for at least one of them.
Again, these results are obtained at a much lower com-
putational cost since 100×CVDT builds only 500 models
(200 ERDTs, 200 MMDTs and 100 CVDTs) rather than

Figure 5. Irrelevant Attributes on Vowel

the 1,000 required by the other approaches.
In addition to accuracy, we look at how well our pro-

posed ensemble technique handles irrelevant attributes.
This property is often ignored in the analysis of many algo-
rithms because popular collections of data tend to contain
only attributes that have a fairly significant degree of rele-
vance to the output class. Irrelevant attributes, however, are
becoming more and more prevalent as the ease with which
data can be collected gives rise to a “let us collect everything
we can and worry about its value later” kind of attitude in
many machine learning and data mining applications.

For purposes of experimentation, irrelevant attributes
are not difficult to generate. We inject varying numbers
of attributes containing Gaussian noise into several com-
mon datasets. For each dataset, we measure the predic-
tive accuracy of 100×RDT, 100×ERDT, 100×MMDT, and
100×CVDT. Figure 5 shows results with the vowel dataset.
Other datasets yield very similar trends, so only vowel is
shown here as a representative. Note that the horizontal axis
is shown on a logarithmic scale, so the right side of the chart
represents a broader domain than the left side.

Both 100×ERDT and 100×MMDT handle irrelevant at-
tributes very well. Both algorithms exhibit a nearly linear
decrease in accuracy with an exponential increase in the
number of irrelevant attributes. It follows, as expected, that
the CVDT algorithm, which selects between these two al-
gorithms, also handles irrelevant attributes well. The ac-
curacy of 100×RDT, on the other hand, begins to degrade
very quickly after the majority of attributes are irrelevant
with respect to class labels.

5

A common justification for randomly selecting decision
boundaries is that this creates models with more variance,
and if it randomly decides to split on an irrelevant feature,
it may still split on a relevant feature deeper in the tree.
As the number of irrelevant features becomes large, how-
ever, it constructs models with less and less total relevant
information. Consequently, algorithms that identify rele-
vant decision boundaries tend to handle irrelevant attributes
better. We, therefore, suggest that utilizing a diversity of
algorithms, such as the one proposed here, is a better tech-
nique for inducing variance within an ensemble.

5 Conclusion

Although RDT may be somewhat effective at produc-
ing desirable model variance within an ensemble, hetero-
geneous ensembles that select from among multiple mod-
els can outperform such homogeneous ensembles. Further-
more, ensembles of RDT are not robust to irrelevant at-
tributes.

The MMDT algorithm introduced here is intuitive, effi-
cient, simple to implement and parameterless. It is, there-
fore, well-suited for use in ensembles. Although, by itself,
MMDT is often less accurate than ERDT, MMDT tends to
do well with a different set of problems than ERDT. Using
cross-validation selection between ERDT and MMDT cre-
ates a particularly powerful model. Our results demonstrate
that very small ensembles of such cross-validation decision
trees (100 vs. 1,000) can outperform very large homoge-
neous ensembles of RDT both in terms of accuracy and tol-
erance to irrelevant attributes.

References

[1] A. Asuncion and D. Newman. UCI machine learning repos-
itory, 2007.

[2] R. Banfield, L. Hall, K. Bowyer, and W. Kegelmeyer. A
comparison of decision tree ensemble creation techniques.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(1):173–180, 2007.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–
32, 2001.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Wadsworth and Brooks, Mon-
terey, CA, 1984.

[6] C. Brodley and P. Utgoff. Multivariate decision trees. Ma-
chine Learning, 19:45–77, 1995.

[7] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity cre-
ation methods: a survey and categorisation. Information
Fusion, 6(1):5–20, 2005.

[8] J. Demsar. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7:1–
30, 2006.

[9] T. Dietterich. Ensemble methods in machine learning. Lec-
ture Notes in Computer Science, 1857:1–15, 2000.

[10] T. Dietterich. Ensemble learning. In M. A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks, Second
edition, pages 405–408. MIT Press, 2002.

[11] Y. Freund and R. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In
European Conference on Computational Learning Theory,
pages 23–37, 1995.

[12] L. Hansen and P. Salamon. Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(10):993–1001, 1990.

[13] T. Ho. Random decision forests. In Proceedings of the Third
International Conference on Document Analysis and Recog-
nition, pages 278–282, Los Alamitos, CA, USA, 1995. IEEE
Computer Society.

[14] R. Jacobs, M. Jordan, S. Nowlan, and G. E. Hinton. Adap-
tive mixture of local experts. Neural Computation, 3(1):79–
87, 1991.

[15] L. Kuncheva and C. Whitaker. Measures of diversity in clas-
sifier ensembles. Machine Learning, 51:181–207, 2003.

[16] S. Murthy, S. Kasif, and S. Salzberg. A system for induction
of oblique decision trees. Journal of Artificial Intelligence
Research, 2:1–32, 1994.

[17] D. Opitz and R. Maclin. Popular ensemble methods: An
empirical study. Journal of Artificial Intelligence Research,
11:169–198, 1999.

[18] A. Peterson and T. Martinez. Estimating the potential for
combining learning models. In Proceedings of the ICML
Workshop on Meta-Learning, pages 68–75, 2005.

[19] R. Polikar. Ensemble based systems in decision making.
IEEE Circuits and Systems Magazine, 6:21–45, 2006.

[20] S. Roweis. Em algorithms for PCA and SPCA. In M. I.
Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in
Neural Information Processing Systems, volume 10, 1998.

[21] P. Sollich and A. Krogh. Learning with ensembles: How
overfitting can be useful. In D. Touretzky, M. Mozer, and
M. Hasselmo, editors, Advances in Neural Information Pro-
cessing Systems, volume 8, pages 190–196. The MIT Press,
1996.

[22] P. Utgoff. Perceptron trees: A case study in hybrid concept
representations. In Connection Science, volume 1, pages
377–391, 1989.

[23] D. Wolpert. Stacked generalization. Neural Networks,
5(2):241–259, 1992.

6

