
Computer Science
Technical Report

Decision Tree Function Approximation in
Reinforcement Learning

Larry D. Pyeatt Adele E. Howe
Colorado State University
Fort Collins, CO 80523

email: fpyeatt,howeg@cs.colostate.edu
URL: http://www.cs.colostate.edu/˜fpyeatt,howeg

October 15, 1998

Technical Report CS-98-112

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



Decision Tree Function Approximation in
Reinforcement Learning

Larry D. Pyeatt Adele E. Howe
Colorado State University
Fort Collins, CO 80523

email: fpyeatt,howeg@cs.colostate.edu
URL: http://www.cs.colostate.edu/˜fpyeatt,howeg

October 15, 1998

Abstract

We present a decision tree based approach to function approximation in rein-
forcement learning. We compare our approach with table lookup and a neural net-
work function approximator on three problems: the well known mountain car and
pole balance problems as well as a simulated automobile race car. We find that
the decision tree can provide better learning performance than the neural network
function approximation and can solve large problems that are infeasible using table
lookup.

1 Motivation

A popular approach for estimating the value function in reinforcement learning is the
table lookup method. This approach is guaranteed to converge, subject to some restric-
tions on the learning parameters [2]. However, table lookup does not scale well with
the number of inputs, although some variations of this approach, such as sparse coarse
coding and hashing [9], have been used to improve scalability. Another approach is to
use a neural network to learn the value function. That approach scales better, but is not
guaranteed to converge and often performs poorly even on relatively simple problems
[3]. We propose an approach that exploits decision trees for learning to estimate the
value function.

We started to investigate this problem because we are building a reinforcement learn-
ing based agent for two simulated robotic environments: Robot Automobile Racing
Simulator (RARS) and Khepera. The dimensionality of these problems was too large
for a table lookup method. we found that a major drawback to a standard neural net-
work based reinforcement learning implementation was its tendency to over-train on
the portion of the state space that it visits often and forget the value function for por-
tions of the state space that it has not visited recently. This leads to a cycle where it
learns to perform well for a time and then begins to perform poorly. In this paper, we

2



State Space

Decision Nodes

State Nodes

Figure 1: Dividing the state space with a decision tree.

show empirically that our new approach avoids this problem by providing stable and
reliable convergence to the estimated value function.

2 Approaches to Estimating the Value Function

The goal in reinforcement learning is to find the optimal policy. The optimal policy is
the mapping from states to actions that maximizes the sum of the rewards. The value
of a state is defined as the sum of the rewards received when starting in that state and
following the policy to a terminal state. The value function can be approximated using
any general function approximator such as neural network, look-up table, or decision
tree.

2.1 Table Lookup

Table lookup does not scale well with the number of dimensions in the space. Even the
simplest implementation for the RARS robot has six inputs. Table lookup with each
input dimension divided into 20 regions would result in 206 table entries.

2.2 Neural Network

The neural network approach can solve larger problems than table lookup but it is not
guaranteed to converge. In practice, the neural network approach often performs poorly
even on relatively simple problems [3].

2.3 Our Approach: Decision Tree-Based

The straightforward table lookup method subdivides the input space into equal intervals.
Each part of the state space has the same resolution. A better approach would allow high
resolution only where needed. Some attempts have been made to use variable resolution
tables, with limited success [3]. Decision trees [6] allow the space to be divided with
varying levels of resolution. Figure 1 shows an example of a decision tree that divides

3



the state space into 5 regions. The tree can be used to map an input vector to one of the
leaf nodes, which corresponds to a region in the state space. Reinforcement learning
can be used to associate a value with each region.

G-learning [5] uses a decision tree to learn compact representations of the value
function for problems with binary inputs. Our approach extends the method to an al-
gorithm that handles real values. The goal is to provide robust convergence along with
scalability. The decision tree is learned along with the policy.

2.4 Overview of Algorithm

We use a variation of reinforcement learning known as Q-learning [11, 12], which maps
state-action pairs instead of states. The estimated value Q(st; at) of a state-action pair
is updated according to the equation

�Q(st; at) = �[rt+1 + 
max
at+1

Q(st+1; at+1)�Q(st; at)]

where t is the current time step, rt+1 is the immediate reward received at time t+1, st
is the state at time t, and at is the action performed at time t. � is a learning parameter
such that 0 � � � 1. 
 controls the ratio of immediate reward to return from future
states.

Our decision tree contains two types of nodes: decision nodes and leaf nodes. A
decision node represents a single decision about one input variable. This decision de-
termines which branch is taken to find the next node. Each leaf node stores the estimated
values for its corresponding region in the state space. We use Q-learning, so each leaf
node stores one value for each possible action that can be taken, along with statistics
which are used to decide whether the region represented by the node should be split.

The decision tree starts out with only one leaf node that represents the entire in-
put space. As the algorithm runs, the leaf node gathers information in its history list.
When it has enough information, a test is performed to determine whether the leaf node
should be split (see section 2.5). If a split is required, the test also determines the deci-
sion boundary. A new decision node is created to replace the leaf node, and two new leaf
nodes are created and attached to the decision node. The old leaf node is then deleted. In
this manner, the tree grows from the root downward, continually subdividing the input
space into smaller regions. Figure 2 summarizes our algorithm.

2.5 When and Where to Split a Leaf Node

The decision about when a node should be split and where to place each decision bound-
ary is crucial. We investigated three methods from the decision tree literature plus a new
method that is similar to G-learning. All four of the methods use mean and standard de-
viation of�Q(st�1; at�1) to determine if a node should be split (see Figure 2), but they
use different algorithms to choose a decision boundary.

Information Gain This is the classic method used in Quinlan’s ID3 [8]. It measures
the information gained from a particular split.

4



1. Receive input vector and reward rt for time t.

2. Use input vector to find a leaf node representing state st.

3. Select the action at with the largest value of Q(st; at), or select a random action with
some small probability.

4. If the action was not chosen at random, calculate �Q(st�1; at�1) and update
Q(st�1; at�1).

5. Add �Q(st�1; at�1) to the history list for the leaf node corresponding to st�1.

6. Decide if st�1 should be divided into two states by examining the history list for st�1.

(a) if history list length < history list min size then split := False

(b) else

i. calculate average � and standard deviation � of �Q(st�1; at�1) in the
history list

ii. if j�j < 2� then split := True

iii. else split := False

7. Perform split, if required

8. Save rt, at and st so that they can be used for training on the next iteration.

9. Return at.

Figure 2: Algorithm for decision tree based reinforcement learning.

Gini Index This metric is based on the Gini Criterion by Breiman [4], but modified as
in OC1 by Murthy [7]. The Gini Index measures the probability of misclassifying
a set of instances.

Twoing Rule This metric, also proposed by Breiman and used in Murthy’s OC1, com-
pares the number of examples in each category on each side of the proposed split.

T-statistic Our approach is based on the T-statistic. The algorithm calculates the means
and variances for each input variable. If the node has not received any positive
�Q(st�1; at�1) in its history list, then the input variable with the highest vari-
ance is chosen as the decision variable for the new decision node. Otherwise,
the decision is made by calculating the T statistic for each variable and selecting
the variable with the highest T statistic. This approach is similar to that used by
Chapman and Kaelbling [5], although we remove the restriction that all inputs be
binary.

3 Empirical Performance Study

To assess the performance of our decision tree based reinforcement learning algorithms,
we compared them to table lookup and neural network reinforcement learning on three
problem domains. Our study focused on answering the following questions:

1. Which reinforcement learning algorithm performs best after training?

2. How quickly does each algorithm learn?

5



Table 1: Performance during the fourth period: each column shows average and stan-
dard deviation.

Mountain Car Pole Balance RARS Crashes RARS Times
Ave. Sd Ave. Sd Ave. Sd Ave. Sd

Gini 206 0.7 No result 15.7 22.4 3617 751.8
Info Gain 170 2.2 2000 0 1.1 1.9 2956 82.8
NN 328 45.4 1008 225.6 2.8 4.6 1172 566.0
Table 160 13.6 2000 0 No result No result
T-test 170 0.3 2000 0 0.01 0.1 723 14.8
Twoing 219 53.4 1848 360.2 1.4 2.7 1869 418.0

3. Is the decision tree based approach less prone to the learn/forget cycle than the
neural network approach?

3.1 Problem Domains

Mountain car is a classic reinforcement learning task where the goal is to learn the
proper acceleration to get out of a valley and up a mountain [3]. The car does not
have enough power to simply climb up the mountain, so it has to rock back and
forth across the valley until it gains enough momentum to carry it up the moun-
tain.

Pole balance is another classic problem where the goal is to balance a pole that is af-
fixed to a cart by a hinge [1]. The cart moves in one dimension on a finite track.
At each time step, the controller decides whether to push the cart to the left or to
the right.

RARS is an environment where a simulated race car driver is responsible for control-
ling acceleration and steering as the car races against other cars [10].

3.2 Results

For each problem domain, we ran all of the reinforcement learning algorithms and then
divided the total run time for each algorithm into four periods. The number of iterations
in each domain was determined by how long it took the algorithms to reach a stable
policy. On the Mountain car problem, we ran each algorithm for a total of 10,000 trials;
each trial lasted for 10,000 time steps or until the car reached the goal state. On the pole
balancing problem, we ran each algorithm for 20,000 trials of 2,000 time steps or until
the controller failed to maintain the pole in a balanced position. In the RARS domain,
each algorithm was run for 300 laps around the track, regardless of how many time steps
were required.

3.2.1 Performance after learning

We calculated a one way ANOVA on each period with algorithm as the independent
variable and performance as the dependent variable. The F ratio for the Mountain car

6



problem was F = 113:45. For the pole balance problem, F = 219:67. For RARS lap
time, F = 506:13 and for crashes, F = 29:43. For all tests, P < 0:01, indicating
statistically significant differences. Table 1 shows the performance for each algorithm
over the fourth period.

Mountain car: The table lookup method performed better than any other method. How-
ever, information gain and T-test decision tree methods also performed well. We
performed a one tailed T-test of information gain vs. T-test methods and found no
significant difference (t = 1:35; p < 0:18).

Pole balance: Information gain, table lookup and T-test all achieved perfect perfor-
mance and were able to balance the pole for 2000 time steps for every trial in
period four. The neural network approach did not converge well and was rather
unstable.

RARS: The T-test approach shows significantly better performance than the other meth-
ods. The neural network approach performed well, but crashed a great deal more
often than any of the top three decision tree methods.

3.2.2 Time to learn

We processed the data using a 9 mean smooth to show longer trends (see Figure 3).

Mountain car: This is the easiest of the three problem domains, having only two in-
puts and three possible actions. All of the decision tree methods converged to
about the same level of performance.

Pole balance: This domain is a little more difficult than the Mountain car problem. The
T-test decision tree method converged to a stable solution after less than 2,000
trials and successfully balanced the pole thereafter. Only the neural network ap-
proach failed to find a stable solution within the time limit.

RARS: The T-test decision tree method quickly finds a good state-space representation
and achieves good performance. The neural network approach also finds a good
policy. The other decision tree methods do not perform as well; they were still
searching for suitable state-space representations at the end of the run.

3.2.3 Learn/Forget cycle

The main motivation for this work was to overcome the learn/forget cycles that we had
encountered using the neural network approach. We assessed whether a method suf-
fered from a learn/forget cycle by examining the learning curves and comparing stan-
dard deviation (shown in Table 1) in its ultimate (period four) performance.

Mountain car: The neural network approach initially found a good policy, but became
overtrained after about 6,000 trials. The high standard deviations show that the
neural network and Twoing value approaches were unstable. The T-test, Gini,
and information gain methods had low standard deviations.

7



0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e 
St

ep
s

Trials

t-test
twoing

Gini index
Information Gain

Neural Network
Table Lookup

(a) mountain car problem.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e 
St

ep
s

Trials

t-test
twoing

Information Gain
Neural Network

Table Lookup

(b) pole balance problem.

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

T
im

e 
St

ep
s

Trials

t-test
twoing

Gini index
Information Gain

Neural Network

(c) time steps per lap in RARS.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

C
ra

sh
es

Trials

t-test
twoing

Gini index
Information Gain

Neural Network

(d) number of crashes per lap in RARS.

Figure 3: Smoothed learning performance.

Pole balance: The T-test, table lookup, and information gain methods all had zero stan-
dard deviation and perfect performance.

RARS: The T-test method had the lowest standard deviation in both performance mea-
sures. The neural network approach performed almost as well as the T-test based
decision tree method for some time. However, after about 250 trials, the neural
network became overtrained. Its high standard deviation indicates that it did not
converge to a stable solution at that time.

4 Future Work and Conclusions

Following recent work in the decision tree literature, we will augment our approach to
use oblique instead of axis parallel decision boundaries. Oblique boundaries lead to
smaller decision trees by allowing each node to use several input variables.

We have evaluated four methods for selecting the decision boundaries. In our future
work, we plan to explore some alternative approaches with a view to characterizing how

8



well each approach works in a given domain. We do not expect to find a single method
that works best in all cases.

Decision tree based reinforcement learning provides good learning performance and
meets our needs for more reliable convergence than the neural network approach. It also
has lower memory requirements than the table lookup method, and scales better to large
input spaces.

References

[1] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13:834–846, 1983.

[2] Andrew G. Barto and Richard S. Sutton. An Introduction to Reinforcement Learn-
ing. MIT Press, Cambridge, MA, 1997.

[3] Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learning:
Safely approximating the value function. In G. Tesauro, D.S. Touretsky, and T. K.
Leen, editors, Advances in Neural Information Processing Systems 7, Cambridge,
MA, 1995. MIT Press.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Technical report, Wadsworth International, Monterey, CA, 1984.

[5] David Chapman and Leslie Pack Kaelbling. Input generalization in delayed re-
inforcement learning: An algorithm and performance comparisons. In John My-
lopoulos and Ray Reiter., editors, Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pages 726–731, San Mateo, Ca.,
1991. Morgan Kaufmann.

[6] Kolluru Venkata Sreerama Murthy. On Growing Better Decision Trees from Data.
PhD thesis, Johns Hopkins University, Baltimore, Maryland, 1996.

[7] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction
of oblique decision trees. JAIR, 2:1–33, 1994.

[8] J R Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[9] Richard S. Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. In Advances in Neural Information Processing
Systems 8, pages 1038–1044, Cambridge, MA, 1996. MIT Press.

[10] Mitchell E. Timin. Robot automobile racing simulator (RARS). Anonymous ftp
ftp.ijs.com:/rars, 1995.

[11] Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, UK, 1989.

[12] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

9


