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Abs t rac t 
Decision tree grafting adds nodes to an existing 
decision tree wi th the objective of reducing pre­
diction error. A new grafting algorithm is pre­
sented that considers one set of training data 
only for each leaf of the init ial decision tree, 
the set of cases that fail at most one test on the 
path to the leaf. This new technique is demon­
strated to retain the error reduction power of 
the original grafting algorithm while dramati­
cally reducing compute time and the complex­
i ty of the inferred tree. Bias/variance analyses 
reveal that the original grafting technique oper­
ated primarily by variance reduction while the 
new technique reduces both bias and variance. 

1 In t roduc t i on 
Decision committee techniques, notably AdaBoost [Fre-
und & Schapire, 1996] and bagging [Breiman, 1996] have 
demonstrated spectacular success at reducing decision 
tree error across a wide variety of learning tasks [Quin­
lan, 1996; Bauer & Kohavi, in press]. These techniques 
apply a base learning algorithm multiple times to form a 
committee of classifiers. A l l committee members vote to 
classify an unseen case. The success of these approaches 
has demonstrated that there is room to improve upon 
the average case prediction performance of standard de­
cision tree learning algorithms. However, decision com­
mittees deliver this improvement at a cost. Whereas 
a single decision tree provides a model that is straight 
forward to interpret, comprehension of a decision com­
mittee requires juxtaposition of all constituent models. 
This is infeasible in non-trivial cases. While it is possi­
ble to construct a single decision tree that expresses the 
model inherent in a decision committee, for even small 
committees there is an exponential increase in the size of 
the derived single tree model relative to the unmodified 
model of the base learning algorithm [Quinlan, 1998]. 
For any but the most simple of domains, this wi l l reduce 
ease of comprehension critically. 

Decision tree grafting has been presented as a tech­
nique that obtains some of the benefit of a decision com­
mittee while creating only a single tree [Webb, 1997]. 

Grafting is applied as a postprocess to an inferred de­
cision tree. It identifies regions of the instance space 
that are not occupied by training examples, or occupied 
only by misclassified training examples, and considers 
alternative classifications for those regions. Support for 
those classifications is obtained by considering alterna­
tive branches that could have been selected at ancestor 
nodes to the leaf containing the region in question. If 
those alternative branches indicate stronger support for 
an alternative classification than that assigned to the 
region by the current tree, a new branch is grafted to 
the tree that imposes the new classification on the re­
gion. While the increase in tree complexity of this tech­
nique is much lower than that of forming a single tree 
from a committee, the average increase in accuracy is 
also lower. Also, init ial techniques were limited in ap­
plication to continuous valued attributes. This paper 
presents extensions to decision tree grafting that extend 
grafting to discrete valued attributes; dramatically re­
duce induction time; reduce the complexity of inferred 
trees; and increase average prediction accuracy. It also 
provides a bias/variance analysis of grafting's error re­
duction, demonstrating that the original algorithm re­
duced error primarily through variance reduction while 
the new algorithm reduces both bias and variance. 

2 Previous Gra f t i ng A lgo r i t hms 
The first decision tree grafting algorithm, was 
developed to investigate the ut i l i ty of Occam's razor 
[Webb, 1996]. It was not init ial ly conceived as a prac­
tical learning technique. The success of the technique 
at reducing prediction error led to further development 
aimed at creating a practical learning algorithm. This 
led to a postprocessor for C4.5 Release 8, that 
demonstrated frequent, if modest, reductions in predic­
t ion error from that of the unmodified C4.5 over a wide 
cross-selection of learning tasks [Webb, 1997]. 

Appendix A presents the grafting algo-
r i thm extended in a straight-forward manner to handle 
discrete valued attributes. This algorithm investigates 
in turn each leaf of an existing tree. For each leaf, l, and 
attribute a, it climbs the tree investigating at ancestor 
nodes for I alternative cuts on a that would project across 
the region of the instance space encompassed by l. It as-
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sesses for each such alternative cut the evidence that it 
would have presented about the class of objects that fall 
wi thin its projection across l, if selected instead of the 
cut actually imposed at the ancestor. If that evidence 
provides stronger support for an alternative classification 
to the support for the original classification at the leaf, 
the new cut is saved for possible imposition. When all 
such cuts have been identified at ancestors of l, they are 
ordered and imposed on l from best supported to least. 
Support for a classification from a leaf or cut is obtained 
by applying the Laplace accuracy estimate 

where pos(X,c) is the number of members of the set of 
training examples X that belong to class c. 

While C4.5++ is reasonably consistent at reducing the 
error of classical decision tree induction, the technique 
has a number of deficiencies. One of these is its com­
putational complexity. The complexity of the algorithm 
is 0(l - d. a.t), where l is the number of leaves in the 
init ial tree, d is the maximum depth of the tree, a is the 
number of attributes, and t is the number of training 
cases. Where these values are large, application of the 
algorithm can become infeasible. Much of the efficiency 
of decision tree learning is derived from the manner in 
which it partitions the data so that, for the majority of 
processing (at the leaves), only very small subsets of the 
training data need be considered. In contrast, C4.5+ and 
C4.5++ require consideration of all training data that 
reaches each ancestor of each leaf, once for each attribute 
for each leaf. Hence, the entire training set (the data at 
the root) must be processed once for each combination 
of attribute and leaf. 

A further concern is that grafting considers very large 
numbers of possible grafts, which must substantially in­
crease risk of overfitting the data. That is, there is a 
substantial risk of finding grafts that appear good by 
chance. This can be viewed as a form of oversearch ef-
fect [Quinlan & Cameron-Jones, 1995]. 

Finally, one of the justifications for grafting is that 
it allows non-local information (examples from outside 
the leaf) to be considered when deciding how to classify 
regions wi th in the leaf that are occupied by few or no 
training examples. However, the manner in which exter­
nal examples may be used is determined by where in the 
tree they are located relative to a leaf, rather than where 
in the instance space they fall. Hence, it is likely that 
an example, e, that is very close to a region, r, being in­
vestigated wi l l have l i t t le influence on the classification 
that is selected if e happens to be divided from r by a 
cut close to the root of the decision tree. A training case 
separated by a single cut closer to the leaf / that contains 
r wi l l have greater influence on the class selected for r, 
as it wi l l be considered at every ancestor of l as the al­
gorithm climbs the tree. A training case x that fails all 
tests leading to l wi l l have as much influence as a case 
y that fails only the test at the root of the tree, even 
though y may directly adjoin r and x fall at the oppo-

Figure 1: Example instance space as partitioned by C4.5 

Figure 2: All-tests-but-one part i t ion for highlighted leaf 

site end of the instance space. Both wi l l be considered 
once only, when the algorithm considers cuts that could 
have been imposed at the root of the tree. 

3 Gra f t ing from the al l-tests-but-one 
pa r t i t i on 

Grafting requires a means of estimating the accuracy 
of a potential new leaf that contains few or no training 
cases. Quinlan [1991] uses the context to estimate the 
accuracy of a leaf wi th few training cases. This context 
is called herein the all-tests-but-one-partition (ATBOP). 
The ATBOP of a leaf l is the region of the instance space 
that is separated from the region covered by I by no more 
than one decision surface. It wi l l be reached by any case 
that fails no more than one test on a path from the root 
of the tree to l This region is illustrated in Figures 1 and 
2. The first figure, replicated from Webb [1997], provides 
a representation of a simple two attribute instance space 
projected as a two-dimensional geometric space. Objects 
of three classes are represented by *, o, and o, where 
each of these symbols represents a different class. The 
dashed lines represent the decision boundaries created 
by the decision tree (presented in Table 1) generated by 
C4.5 Release 8 for this training data. Points on a vertical 
line are included in the region to its left and points on 
a horizontal line are included in the region below. The 
region projected in Figure 2 is the ATBOP for the leaf 
highlighted in Figure 1. As these figures illustrate, the 
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Table 1: C4.5 decision tree for example instance space 

ATBOP for a leaf I is the region formed by removing all 
and only the decision surfaces that enclose /. 

This paper explores the use in decision tree grafting 
of estimation within the ATBOP instead of estimation 
at ancestor nodes. 

Using the ATBOP to evaluate the evidence support­
ing alternative classifications of a region within a leaf 
has a number of advantages over using ancestor nodes. 
Computational requirements are greatly reduced. Only 
one set of data is considered at any leaf / (the cases in 
the ATBOP of I ) , rather than one set for each ancestor 
of l Further, that data set cannot be larger and wi l l 
usually be considerably smaller than the largest data set 
used by the original technique—all training data, consid­
ered at the root. A further advantage is that the order 
in which decision boundaries have been imposed by the 
learning algorithm wi l l not affect the outcome, a cut at 
the root is treated identically to the deepest cut within 
a tree. This appears better motivated than the original 
technique. Finally, the number of alternative cuts that 
are evaluated is considerably reduced, decreasing the op­
portunity for chance overfitting of the training data. 

The resulting algorithm is identical to C4.5++, as pre-
sented in Appendix A, except that Steps 2a and 3a are 
each replaced by 

n: n is the all-test-but-one-partition of l 

4 Experimental evaluation 
To evaluate the ut i l i ty of the new grafting technique, 
four algorithms—C4.5, C4.5+, C4.5++, and C4.5A— 
were compared on 34 data sets from the UCI reposi­
tory [Blake, Keogh, & Merz , 1998]. These data sets 
include all of those employed in previous grafting re­
search [Webb, 1996; 1997] augmented by a wide cross-
selection of discrete valued data sets. Note that the data 
sets employed in the earlier studies slightly disadvantage 
grafting as they include the discordant and sick data sets 
that were specifically added because they were variants 
of hypo, the only data set on which C4.5 outperformed 
C4.5X in the first experiment conducted. These are the 
only data sets selected due to specific predictions about 
the performance of grafting, and those predictions were 
that grafting would not perform well. 

A l l four algorithms were implemented as a single mod­
ified version of C4.5 release 8 that incorporates all vari­
ations as options. In each ease grafting was applied to 
pruned decision trees, as previous evaluation has sug­
gested that this provides the best average-case perfor­

mance [Webb, 1997]. A l l experiments were run on a 
SUN Ultra 2 Model 2295 wi th dual 295 MHz CPUs. 

The performance of an algorithm on a data set was 
evaluated by ten rounds of three-fold cross validation. 
In each round, the data were divided into three sub­
sets. For each subset s in tu rn , a decision tree was 
learned from the remaining two subsets and evaluated 
by application to s. This procedure was used to sup­
port estimation of bias and variance. Variance measures 
the degree to which the predictions of different learned 
classifiers vary as a result of differences in the training 
data. Variance impacts on error, as if different predic­
tions (of a single test item) are made as a result of dif­
ferent training data, not all can be correct, and so errors 
must result. Bias measures the error due to the central 
tendency of the learning algorithm. Kohavi & Wolpert's 
[1996] bias/variance decomposition was selected for this 
study as it is both applicable to multiple class domains 
and close to the original bias/variance decomposition for 
numeric regression [Geman, Bienenstock, & Doursat , 
1992]. Some analyses also consider intrinsic noise, the 
minimum possible error for a domain, but this research 
followed Kohavi & Wolpert by aggregating this quantity 
into bias. The use of ten rounds of three-fold cross val­
idation replicated Kohavi & Wolpert's bias/variance es­
timation technique except that cross-validation was sub­
stituted for random sampling, ensuring that all available 
items were used the same number of times for training 
(20 times). Each item was also used the same number of 
times for testing (10). This uniformity in the number of 
times an item was utilized in each role can be expected 
to produce greater consistency across different runs of 
the procedure. Under Kohavi & Wolpert's original pro­
cedure, a given training example x might be used any 
number between zero and 30 times for training and any 
of zero, 10, 20, or 30 times for testing. This variability 
can be expected to increase the (statistical) variance of 
the measures obtained for accuracy, bias, and (learning) 
variance. 

Table 2 presents the mean error (number of Declas­
sifications divided by total classifications) of the th i r ty 
trees learned and evaluated in this manner for each com­
bination of learning algorithm and domain. The last row 
of this table presents the mean error across all data sets. 
As can be seen, all grafting techniques narrowly outper­
form plain C4.5 on this latter measure. However, this 
measure should be treated as indicative only, as it is not 
clear to what extent error rates across different data sets 
are commensurable. 

Table 3 presents specific comparisons of each pair of 
learning algorithms. Each algorithm is represented by 
three rows in the table. The first row, labeled r, presents 
the geometric mean error ratio of each other algorithm 
against the nominated algorithm. This is the geomet­
ric mean1 of c/r, where c is the error for the algorithm 

1The geometric mean of a set of values x1 to xn is 
This provides a better aggregate evaluation of 

a set of ratio outcomes than arithmetic mean as if the geo-
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Table 2: Error by data set 
Data Set 
anneal 
audio 
autos 
balance-scale 
breast cancer Slov. 
breast cancer Wise. 
Cleveland 
credit (Aust.) 
credit (German) 
discordant 
echocardiogram 
glass 
heart 
hepatitis 
horse-colic 
house-votes-84 
Hungarian 
hypo 
iris 
kr-vs-kp 
labor-neg 
lenses 
lymphography 
new-thyroid 
Pima diabetes 
primary tumor 
promoters 
segment 
sick 
sonar 
soybean large 
splice junction 
tic-tac-toe 
waveform 
A l l data sets 

C4.5 
0.097 
0.255 
0.253 
0.222 
0.294 
0.056 
0.254 
0.147 
0.282 
0.012 
0.286 
0.352 
0.238 
0.206 
0.165 
0.050 
0.213 
0.005 
0.063 
0.008 
0.209 
0.204 
0.228 
0.082 
0.264 
0.618 
0.239 
0.041 
0.013 
0.280 
0.102 
0.068 
0.163 
0.276 
0.184 

C4.5+ 
0.086 
0.255 
0.248 
0.213 
0.294 
0.051 
0.241 
0.146 
0.283 
0.013 
0.285 
0.344 
0.226 
0.192 
0.165 
0.050 
0.209 
0.006 
0.064 
0.008 
0.209 
0.204 
0.228 
0.088 
0.260 
0.618 
0.239 
0.049 
0.015 
0.259 
0.102 
0.068 
0.163 
0.264 
0.181 

C4.5++ 
0.086 
0.257 
0.246 
0.213 
0.290 
0.051 
0.239 
0.148 
0.279 
0.013 
0.285 
0.344 
0.229 
0.194 
0.165 
0.050 
0.208 
0.006 
0.064 
0.007 
0.209 
0.204 
0.220 
0.088 
0.260 
0.617 
0.226 
0.049 
0.015 
0.259 
0.100 
0.081 
0.163 
0.264 
0.180 

C4.5A 
0.087 
0.254 
0.245 
0.221 
0.294 
0.054 
0.248 
0.145 
0.280 
0.012 
0.286 
0.345 
0.234 
0.200 
0.165 
0.049 
0.211 
0.005 
0.061 
0.008 
0.209 
0.204 
0.224 
0.076 
0.263 
0.618 
0.235 
0.039 
0.014 
0.269 
0.102 
0.067 
0.160 
0.267 
0.181 

Table 3: Summary of relative error 

to which a column relates, and r is the error for the 
algorithm to which the row relates. A value below 1.0 
indicates an advantage to the algorithm for the column. 
A value above 1.0 indicates an advantage to the algo­
r i thm for the row. The row labeled s indicates the 
win/draw/loss record. The three numbers for each en­
t ry indicate the number of data sets for which c < r, 
c = r, and c > r, respectively. The row labeled p indi­
cates the two-tailed2 binomial probability of obtaining 
the relevant win/loss outcome by equiprobable chance. 

C4.5+ achieves lower error than C4.5 for twice as many 
data sets as the reverse, but the geometric mean error 
ratio very slightly favors C4.5. It is notable, however, 
that this latter result can be attributed mainly to the 
single hypo data set, for which the error differs by only 

metric mean indicates an advantage in the error for algorithm 
a over that for algorithm b then it will also indicate a dis-
advantage for 6 over a. Arithmetic mean does not have this 
desirable antisymmetry with respect to ratios of outcomes. 

2Two tailed tests are used for consistency throughout be­
cause predictions were not made for the outcomes of some 
pairwise comparisons. 

0.001, but C4.5's error is so low that this results in a very 
high error ratio. If hypo were excluded, the geometric 
mean error ratio would be 0.93 in favor of C4.5+. While 
the win/draw/loss record is not statistically significant, 
many of the data sets do not contain continuous value 
attributes, denying C4.5+ a chance to alter the perfor­
mance of C4.5. 

Both C4.5++ and C4.5A outperform C4.5 on both ge­
ometric mean error ratio and win/loss/draw record, the 
latter advantage being statistically significant at the 0.05 
level on a two-tailed sign test for C4.5A but not C4.5++3. 

C4.5A outperforms C4.5++ on geometric mean error 
ratio, but C4.5++ achieves lower error than C4.5A for 
more data sets than the reverse. This latter advantage 
is not statistically significant at the 0.05 level, however. 
These results do not suggest that either C4.5A or C4.5++ 
holds a strong advantage in general error performance 
over the other. 

Table 4 presents the relative bias performance of the 
algorithms. Only aggregate results are presented due 
to space constraints. This table follows the format of 
Table 3 wi th an additional row labeled Mean that cor­
responds to the final row of Table 2. While the means 
across all data sets vary only slightly, the other compar­
ative statistics suggest that C4.5 enjoys a slight general 
advantage over C4.5+ and C4.5++ (although not statisti­
cally significant at the 0.05 level) and that C4.5A enjoys 
a small but consistent and significant (at the 0.05 level) 
advantage over C4.5 and a small advantage over C4.5+ 
and C4.5++ that approaches significance at the 0.05 level. 

Table 5 presents the algorithms' relative variance per­
formance. A l l the grafting algorithms enjoy a small but 
consistent and significant advantage over C4.5 in this re-
spect. Both C4.5+ and C4.5++ enjoy an advantage over 
C4.5A, this being statistically significant at the 0.05 level 
for C4.5++. There is a straight forward explanation for 
this outcome. The original grafting techniques allow cuts 
that could have been imposed high in the tree to be su­
perimposed further down the tree. If small variations in 
the training data lead C4.5 to different selections of at-

3 As it was predicted that C4.5++ would outperform €4.5, 
it could be argued that a one-tailed sign test should be em-
ployed, in which case the outcome of 0.031 would be signifi­
cant at the 0.05 level. 
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Table 6: Summary of relative complexity 

Table 5: Summary of relative variance 

tr ibute for nodes high in a tree, variance is likely to be 
enhanced. The superimposition of those alternative cuts 
at lower levels in the tree by grafting wi l l counteract this 
upwards influence on variance. C4.5A, by not consider­
ing the data at ancestor nodes has less opportunity to 
superimpose such cuts, but may do so as a consequence 
of supporting evidence for the cut in the ATBOP. 

Table 6 analyses the comparative complexity (mea­
sured by number of nodes) of the trees produced by each 
algorithm. A l l the grafting algorithms consistently in­
crease complexity (as they must). C4.5A consistently 
produces less complex trees than the previous grafting 
algorithms. The mean complexity of the trees produced 
by C4.5A is approximately twice that of C4.5 whereas 
the ratio for C4.5++ is more than 7 to 1. 

A major advantage of C4.5A is a reduction in compu­
tational complexity in comparison to the original graft­
ing algorithms. The average compute times for the four 
systems are C4.5: 0.095; C4.5+: 4.239, C4.5++: 4.422; 
and C4.5A: 0.165 CPU seconds. For the grafting al­
gorithms these times include both induction of the in i ­
t ia l tree and postprocessing to produce the final tree, 
and hence are consistently greater than those for C4.5. 
Times exclude reading the training or test data from disk 
but include application of the classifier to the test data 
and minor overheads associated wi th measuring bias and 
variance. For no data set did C4.5A more than triple the 
compute t ime of C4.5. The greatest increase in compute 

time due to the other grafting algorithms was for the 
segment data set for which both required 112 times the 
compute time of the original C4.5. 

5 Summary and Conclusions 
Grafting from the ATBOP has demonstrated a number 
of advantages over previous grafting algorithms. Wi th ­
out signficantly affecting error performance, grafting 
from the ATBOP dramatically reduces compute times 
and the size of inferred trees. Grafting has not previ­
ously been evaluated in terms of bias and variance. The 
current studies revealed that the previous grafting tech­
niques operated primarily be variance reduction. Graft­
ing from the ATBOP is slightly less effective at variance 
reduction than the previous techniques, but introduces 
a compensating bias reduction effect. The bias/variance 
operational profile of the original grafting techniques is 
similar to that of bagging in that it reduces variance only 
[Bauer & Kohavi, in press]. In contrast, ATBOP grafting 
has a bias/variance reduction profile similar to boosting 
in that it reduces both bias and variance [Bauer & Ko­
havi, in press]. While the error reduction effect of graft­
ing is of much smaller magnitude than that of bagging 
or boosting, ATBOP grafting produces a single decision 
tree which wi l l usually be much more straight forward 
to interpret than the committees of decision trees pro­
duced by boosting and bagging. In consequence, grafting 
deserves serious consideration for machine learning ap­
plications where it is desirable to minimize error while 
producing a single comprehensible classifier. 

A C4-5++ Algor i thm 

Let ca8es(n) denote the set of all training cases that can reach 
node n, unless there are no such cases in which case cases(n) 
shall denote the set of all training cases that can reach the 
parent of n. 
Let value(a, x) denote the value of attribute a for training 
case x. 
Let po8(X,c) denote the number of objects of class c in the 
set of training cases X. 
Let class(x) denote the class of object x. 
Let Laplace(X, c) = where X is a set of training 
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cases, is the number of training cases and c is a class. 
Let upperlim(n,a) denote the minimum value of a cut c on 
continuous attribute a for an ancestor node x of n with re-
spect to which n lies below the branch of x. If there is 
no such cut, upperlim(n, a) = This determines an upper 
bound on the values for a that may reach n. 
Let lowerlim(n, a) denote the maximum value of a cut c on 
continuous attribute a for an ancestor node x of n with re­
spect to which n lies below the branch of x. If there is 
no such cut, lowerlim(n, a) = This determines a lower 
bound on the values for a that may reach n. 
Let prob(x,n,p) be the probability of obtaining x or more 
positive objects in a random selection of n objects if the prob-
ability of selecting a positive object is p. 

To post-process leaf I dominated by class c 
1. Initialize to {} a set of tuples t containing potential tests. 
2. For each continuous attribute o 

(a) Find values of 
n: n is an ancestor of I 

cases(n) & v = value(a,x) k v < 
min(value(a,y): y cases(l) k class(y) = c) k 
v > lowerlim(l, a) 

k: k is a class 
that maximize = Laplace({x: x cases(n) k 
value{a,x) k value(a, x) > lowerlim(l, a)},k). 

(b) Add to t the tuple (n, a, v, k, 
(c) Find values of 

n: n is an ancestor of I 
v: : x € cases{n) k v = value(a, x) & v > 
max(value(a,y): y cases(l) k class(y) = c) k 

upperlim(l, a) 
k: k is a class 

that maximize = Laplace({x: a; cases(n) & 
value(a, x:) > v & value(a, x) upperlim(l, a)},k), 

(d) Add to t the tuple 
3. For each discrete attribute a for which there is no test at 

an ancestor of l 
(a) Find values of 

n: n is an ancestor of / 
v. v is a value for a 
k: k is a class 

that maximize = Laplace({x: x cases(n) k 
value(a,x) = v},k). 

(b) Add to t the tuple (n, o, v, k, , =) 
4. Remove from t all tuples (n,a,v,k,£,x;) such that 

Laplace(cases(l),c) or prob(x,n,Laplace(ca5es(/),c)) 
0.05. 

5. Remove from t all tuples (n, a, v, c, , x) such that there 
is no tuple (n', a',v', , x') such that k' c k, 

6. For each (n,a,v,k, x) in t ordered on £ from highest 
to lowest value 

If x is then 
(a) replace I with a node t with the test a v. 
(b) set the branch for t to lead to a leaf for class k. 
(c) set the > branch for t to lead to I. 

else if x is > then 
(a) replace I with a node t with the test a < v. 

(b) set the > branch for t to lead to a leaf for class k. 
(c) set the < branch for t to lead to I. 

else (x must be =) 
(a) replace I with a node t with the test a = v. 
(b) set the = branch for t to lead to a leaf for class k. 
(c) set the branch for t (implemented as a C4.5 sub­

set branch) to lead to I. 
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