Decision Trees for Entity Identification:
Approximation Algorithms and Hardness Results

Venkatesan T.
Chakaravarthy

Pranjal Awasthi

Vinayaka Pandit

Sambuddha Roy

Mukesh Mohania

IBM India Research Lab, New Delhi
{vechakra, pvinayak, sambuddha, prawasth, mkmukesh}@in.ibm.com

ABSTRACT

We consider the problem of constructing decision trees for
entity identification from a given relational table. The input
is a table containing information about a set of entities over a
fixed set of attributes and a probability distribution over the
set of entities that specifies the likelihood of the occurrence
of each entity. The goal is to construct a decision tree that
identifies each entity unambiguously by testing the attribute
values such that the average number of tests is minimized.
This classical problem finds such diverse applications as ef-
ficient fault detection, species identification in biology, and
efficient diagnosis in the field of medicine. Prior work mainly
deals with the special case where the input table is binary
and the probability distribution over the set of entities is
uniform. We study the general problem involving arbitrary
input tables and arbitrary probability distributions over the
set of entities. We consider a natural greedy algorithm and
prove an approximation guarantee of O(rx - log N), where
N is the number of entities and K is the maximum number
of distinct values of an attribute. The value rx is a suit-
ably defined Ramsey number, which is at most log K. We
show that it is NP-hard to approximate the problem within
a factor of Q(log N), even for binary tables (i.e. K = 2).
Thus, for the case of binary tables, our approximation al-
gorithm is optimal upto constant factors (since r2 = 2). In
addition, our analysis indicates a possible way of resolving
a Ramsey-theoretic conjecture by Erdos.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms]: Database Management

General Terms
Algorithms, Theory

Keywords

Decision tree, Ramsey theory, Approximation algorithm

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODS 07, June 11-14, 2007, Beijing, China.

Copyright 2007 ACM 978-1-59593-685-1/07/00065.00.

1. INTRODUCTION

Decision trees for the purposes of identification and diag-
nosis have been studied for a long time now [13]. Consider a
typical medical diagnosis application. A hospital maintains
a table containing information about diseases. Each row in
the table is a disease and each column is a medical test and
the corresponding entry specifies the outcome of the test
for a person suffering from the given disease. Some of the
medical tests are costly (e.g. MRI scans) and some require
few days for the result to be known (e.g. blood cultures).
When the hospital receives a new patient whose disease has
not been identified, it would like to determine the short-
est sequence of tests which can unambiguously determine
the disease of the patient. Such a capability would enable
it to achieve objectives like saving the expenditure of the
patients, quickly determining the disease to start the treat-
ment early etc. Motivated by such applications, we consider
the problem of constructing decision trees for entity identi-
fication from the given data.

Decision Trees for Entity Identification - Problem
Statement. The input is a table D having N rows and
m columns. Each row is called an entity and the columns
are the attributes of these entities. Additionally, we are also
given a probability distribution P over the set of entities.
For each entity e, P specifies p(e), the likelihood of the oc-
currence of e. A solution is a decision tree in which each
internal node is labeled by an attribute and its branches are
labeled by the values that the attribute can take. The enti-
ties are the leaves of the tree. The main requirement is that
the tree should identify each entity correctly. The cost of
the tree is the expected distance of an entity from the root,
(i.e., Xep(e)d(e), where d(e) is the distance of the entity e
from the root). The goal is to construct a decision tree with
the minimum cost. We call this the D7 problem.

Figure 1 shows an example table and two decision trees
for it. When the probability distribution is uniform, the cost
of the first decision tree is 14/6 and that of the second (and
the optimal) decision tree is 8/6.

For a given table, the maximum number of distinct values
that any attribute takes is called its branching factor. In the
above example, the branching factor of the given table is 5.
Interesting special cases of the D7 problem can be obtained
in two ways:

e The case in which every input instance has a branching
factor of at most K; we call this the K-D7 problem.
Of particular interest is the 2-D7 problem, where the
tables are binary.

e The case in which the probability distribution over the
set of entities is given to be uniform; we call this the
UDT problem.

The special case in which both the above restrictions apply
is called the K-UDT problem.

Previous results. Much of the previous literature deals
with the special case of the 2-U4D7T problem. Hyafil and
Rivest [12] showed that the 2-UD7T problem is NP-hard.
Garey [6, 7] presented a dynamic programming based algo-
rithm for the 2-UDT problem that finds the optimal solu-
tion, but the algorithm runs in exponential time in the worst
case. Recently, Heeringa and Adler [11] proved the first
non-trivial approximation ratio of (1+1n V) for 2-UDT (see
also [10]). They also showed that it is NP-hard to approxi-
mate the 2-U/DT problem within a ratio of (1+¢€), for some
€ > 0. They left open the problem of obtaining an approxi-
mation algorithm for 2-D7 .

Our results. We study the D7 problem where the at-
tributes can take multiple values and the input probability
distribution can be arbitrary. This occurs commonly, for ex-
ample, in medical diagnosis applications (e.g. blood-group
can take multiple values; some diseases are more prevalent
than others).

We present an O(log N)-approximation algorithm for the
2-DT problem. Heeringa and Adler [11] show an (14 In N)
approximation ratio for the 2-UD7T problem; our analysis
builds on their work. We also show that it is NP-hard to
approximate the 2-D7 problem within a ratio of Q(log V).
Thus, our results for the 2-D7 problem are optimal upto
constant factors. For the K-D7 problem, we get an ap-
proximation ratio of O(rx log N), where rx is a suitably
defined Ramsey number which is at most (2 4 0.641og K).
For the general D7 problem, the same result applies; here,
K refers to the branching factor of the input table.

For the K-UDT problem we get an approximation ratio
of rx(1+1n N). We also show that it is NP-hard to approx-
imate the UDT and the 2-UDT problems within ratios of
(4 —€) and (2 — ¢€) respectively, for any € > 0. The latter re-
sult improves the hardness result of Heeringa and Adler [11].
The results are summarized in the following table, where
previously known results are cited accordingly.

Problem | Apprx. Ratio | Hardness of Apprx.
2UDT | 1+InN [11] | (2—¢) for any € > 0
uDT rk(1+InN) | (4—¢) for any e > 0
2-DT O(log N) Q(log N)
DT O(rk log N) Q(log N)

Ramsey Numbers and Connections to Erdés’ Con-
jecture. As mentioned earlier, our analysis of the approx-
imation algorithms has interesting connections with Ram-
sey theory and an unresolved conjecture by Erdds. Ramsey
theory, treated at length in the book by Graham et. al [9],
deals with coloring the edges of complete graphs (or hyper-
graphs) with a specified number of colors satisfying certain
constraints. For our purposes, we need the following specific
type of Ramsey numbers.

For n > 0, let G, denote the complete graph on n vertices.
A k-coloring of Gy, is a coloring of the edges of G, using k
colors. For k > 0, Ry is defined to be the smallest number
n such that any k-coloring of GG, contains a monochromatic
triangle . The inverses of the Ramsey numbers are more

LA monochromatic triangle is a triplet of vertices such that

convenient for our purposes. For n > 0, we define r, to be
the smallest number k such that we can color the edges of
G, using only k colors without inducing any monochromatic
triangle.

The exact values of the Ramsey numbers for £ > 3 are

not known. However, it is known that for any k, # <
R, <1+ kle (see [24, 15, 23]). Erdds made the conjecture
that for some constant o, for all k, Ry < aF.

In terms of the inverse Ramsey numbers, the above bounds
translate as follows: (i) for any n, r,, < 2+0.64logn=0(logn);
(ii)) rn = Q(logn/loglogn). The Erdds conjecture now
reads

rn = Q(logn).

Our results provide interesting approaches to address the
conjecture. Exhibit a constant ¢ > 0 and show that for
all K > 2, it is NP-hard to approximate the K-D7 problem
within a factor of clog K log N. Notice that this would prove
the conjecture under the assumption that NP # P. Another
way of proving the conjecture would be to construct a family
of bad instances for our algorithm (which is a simple greedy
heuristic). We discuss the details later in the paper.

Applications and Related Work. Decision trees for
entity identification (as defined in this paper) have been used
for medical diagnosis (as described earlier), species identifi-
cation in biology, fault detection etc. [13]. Taxonomists re-
lease field guides to help identify species based on their char-
acteristics. These guides are often presented in the form of
decision trees labeled by species characteristics. Typically, a
field biologist identifies the species of a specimen at hand by
referring to such guides (hopefully with as few look-ups as
possible). Taxonomists refer to such decision trees as “iden-
tification keys” and an article on identification keys can be
found in [26]. There are several online interactive guides for
species identification: Californian lawn weeds [16], Aquatic
macroinvertebrates [18], Snakes of Florida [17], South Aus-
tralian frogs [1]. In fact, computer programs and algorithms
for identification and diagnosis applications have been de-
veloped for nearly four decades (e.g., [19, 22, 25]).

Murthy [14] and Moret [13] present excellent surveys on
the use of decision trees in such diverse fields as machine
learning, pattern recognition, taxonomy, switching theory
and boolean logic.

2. PRELIMINARIES

In this section, we define the D7 problem and its special
cases. We also develop some notation used in the paper.

Let D be a relational table having N tuples and m at-
tributes. We call each tuple an entity. Let £ and A denote
the set of entities and attributes, respectively. For z € £ and
a € A, x.a denotes the value of the entity x on the attribute
a. For a € A, V, denotes the set of distinct values taken by
a in D. Let K = maxqca{|V.|}. Notice that K < N. We
call K the branching factor of D.

A decision tree T for the table D is a rooted tree satisfying
the following properties. Each internal node u is labeled by
an attribute ¢ and has at most K children. Every branch
(edge) out of u is labeled by a distinct value from the set

all the three edges between them have the same color. In
Ramsey theory, Ry is denoted R(3,3,...,3), where “3” is
repeated k£ times. For example, it is known that Ry = 3,
R =6, R3s =17 [20]

€1 |1 1 1

e2 |1 |2 |0

ez |1 |3 |1

eq |2 |4 |o

es |2 |4 |1

eg |2 |5 |0

Input Table with uniform probability distribution A Decision Tree of cost 14/6 ~Optimal Decision Tree of Cost 8/6

Figure 1: Example decision trees

V.. The entities are the leaves of the tree and thus the tree
has exactly N leaves. The main requirement is that the
tree should identify every entity correctly. In other words,
for any entity x, the following traversal process should cor-
rectly lead to . The process starts at the root node. Let u
be the current node and a be the attribute label of u. Take
the branch out of w labeled by x.a and move to the corre-
sponding child of u. The requirement is that this traversal
process should reach the entity x.

Observe that the values of the attributes are used only
for taking the correct branch in the traversal process. So,
we can map each value of an attribute to a distinct number
from 1 to K and assume that V, is a subset of {1,2,..., K}.
In the rest of the paper, we assume that for any x € £ and
a€ A zae{l,2. ... K}

For a tree T', we use “u € T” to mean that u is an internal
node in 7. We denote by (z,y), an unordered pair of distinct
entities.

Let T be a decision tree for D. For an entity = € &, path
length of = is defined to be the number of internal nodes in
the path from the root to z; it is denoted ¢7(x). The sum
of all path lengths is called total path length and is denoted
|T|, i.e., |T| = Bzeeclr(z). Let w(-) be a weight function
that assigns a real number w(z) > 0, for each z € £. We
define the cost of T with respect to w(-) as follows:

cost(T,w) = Zw(m)(cp(x).

€&

We will denote cost(T,w) as w(T).

As mentioned in the introduction, input to the D7 prob-
lem includes a probability distribution P over &£ specify-
ing the likelihood of the occurrence of each entity and the
goal is to construct a tree having the minimum expected
path length. We view probabilities as weights and assume
that the distribution is specified as a weight function p(-)
that associates a weight p(x) > 0, for each entity z. No-
tice that when an entity is chosen at random according to
the above distribution, the expected path length is given by
p(T) = cost(T,p). We assume that the probabilities p(x)
are given as rational numbers. We can easily write these
numbers in such way that for any entity z, p(x) = w(z)/L,
where w(z) > 1 is an integer and L is an integer giving the
common denominator. And so, without loss of generality,
we assume the probability distribution will be given as an
integer weight function w(-) over a set of entities, i.e, for all
z € &, w(z) > 1is an integer. Notice that p(T') = w(T")/L
and hence, finding an optimal 7' under p(-) and w(-) are
equivalent.

DT Problem. The input is a relational table D and a
probability distribution P represented as an integer weight
function w(-). The goal is to construct a decision tree T
having the minimum cost w(T).

For a positive integer K, the K-D7 problem is a special
case of the DT problem where the input table is required
to have a branching factor of at most K. Notice that in the
K-DT problem, the input is a table whose entries are drawn
from the set {1,2,..., K}.

Of particular interest is the special case called UDT in
which the probability distribution is uniform. In this prob-
lem, the weight function is given by w(z) =1, for all z € £.
Note that the cost of a tree T is w(T') = |T'|. For an integer
K > 2, the special case of the UD7 where the input table
is required to have a branching factor of at most K is called
the K-UDT problem.

Remark. Since we are representing probability distri-
butions as integer weight functions, the UD7 and D7 can
be thought of as unweighted and weighted versions of the
problem respectively.

3. APPROXIMATION ALGORITHMSAND
ANALYSIS

In this section, we present an algorithm for the D7 prob-
lem and prove an approximation ratio of O(rx log N), where
K refers to the branching factor of the input table. As men-
tioned in the introduction, our analysis builds on that of
Heeringa and Adler [11] for the 2-4D7T problem. In order to
achieve our result, we have to extend their ideas to deal with
two issues. Firstly, the attributes can be multi-valued as
opposed to binary; secondly, the entities can have arbitrary
weights. For ease of exposition, we first show how to address
the issue of attributes being multi-valued. Then, we deal
with the case of arbitrary weights. Specifically, Section 3.1
presents an algorithm and analysis for the UD7T problem.
These ideas are generalized in Section 3.2 to obtain an al-
gorithm for the D7 problem.

3.1 TheUnweighted Case: «p7 Problem

This section deals with the UDT problem. Here, the prob-
ability distribution is uniform and so, the weights of all the
entities are 1. The goal is to find a tree T' with the minimum
cost |T.

We present two approximation algorithms for D7 . The
first one uses any given a-approximation algorithm for 2-
UDT as a black-box and provides an «a[log K| approxima-
tion for the K-UDT problem. Hence, it has the advantage
that any improvement in the approximation ratio for the

2-UDT problem automatically yields an improvement for
the K-UDT problem. The second one is a greedy heuristic
which has an approximation ratio of rx (1+In N). We gener-
alize this procedure to obtain an O(rx log N)-approximation
algorithm for the weighted case of the D7 problem.

3.1.1 TheBlack-Box Algorithm

We first present a procedure which uses the (1 + In N)-
approximation algorithm for 2-U4/D7 by Heeringa and Adler
[11] (referred to as the HA-algorithm) as a black box. The
idea is to encode the given UD7T instance as a 2-UD7T in-
stance and then invoke the HA-algorithm on the encoded
instance.

Given an N x m table D having a branching factor of K,
we construct an N x m[log K| binary table D2 as follows.
Each attribute in D is represented by [log K| attributes in
Ds. The former attribute is called the original attribute and
the latter attributes are called as its derived attributes. The
values appearing in an original attribute are represented in
binary in the corresponding derived attributes. Invoke the
HA-algorithm on the binary table D2 and let 72 be the de-
cision tree returned by the algorithm. We obtain a decision
tree 7 for D from 72 by replacing the attributes in its in-
ternal nodes with their original attributes in D and labeling
appropriately. Notice that |7| < |72].

Given a tree T for D, we can construct a tree T> for
D5 such that |Tz| < [log K1|T|. In constructing a deci-
sion tree T for the encoded instance D2, the main task
is to take the correct branches of the internal nodes of T
using the binary derived attributes. We achieve this by re-
placing each internal node with a complete binary tree of
depth [log K] using the derived attributes of the original
attribute of the internal node. Clearly, |T>| < [log K||T|.
This shows that |75°| < [log K1|7*| where 7" and 75" are
the optimal decision trees for D and Da, respectively. Since
|72] < (14 1In N)|7Z5*|, the solution 7 returned by the black-
box algorithm satisfies | 7| < [log K|(1 +In N)|7T*|.

Theorem 3.1. The black-box algorithm has an approz-
imation ratio of [log K1(1 + InN) for the UDT problem
where, K is the branching factor of the input table.

Notice that we did not make use of any specific properties
of the HA-algorithm and so, any other algorithm for the
2-UDT problem can also be used as the black-box.

3.1.2 The Greedy Algorithm

In this section, we present a greedy algorithm for the
UDT problem. The algorithm is similar in spirit to the
HA-algorithm for the 2-U4D7 problem. We build on their
analysis and develop further combinatorial arguments to ob-
tain our approximation ratio.

Given as input an N X m table D having branching factor
at most K, the greedy algorithm produces a decision tree
T as described below. Let £ and A denote the set of enti-
ties and attributes of D, respectively. The intuition is that
any decision tree should distinguish every pair of distinct
entities. So, a natural idea is to make the attribute that
distinguishes the maximum number of pairs as the root of
T, where an attribute a is said to distinguish a pair (z,y),
if z.a # y.a. Choosing such an attribute @ can be easily
done in time O(mN?). Picking the attribute @ as the la-
bel for the root node partitions the set £ into disjoint sets
E1, Es,...,Fk, where E; = {z|z.a = i}. We recursively

Procedure Greedy(E)
Input: E C &, a set of entities in D
Output: A decision tree T for the set E
Begin
1. If |[E| =1,
Return a tree with = € F as a singleton node.
2. Let @ be the attribute that distinguishes the maximum
number of pairs in E:

@ = argmax,e 4 l{(z,y)|z.a # y.a}
3. Create the root node r with @ as its attribute label.
4. For 1 <i< K,
A. Let E; = {z € E|lz.a =1}
B. T; = Greedy(E;)
C. Let r; be the root of T;. Add T; to T by adding a
branch from r to r; with label 3.
5. Return T' with r as the root.
End
Figure 2: The Greedy Algorithm

apply the same greedy procedure on each of these sets to
obtain K decision trees and make these the subtrees of the
root node. The greedy procedure is formally specified in Fig-
ure 2. We get the output tree 7 by calling 7 = Greedy(&).

Theorem 3.2. The greedy algorithm has an approrima-
tion ratio of (rx(1+1nN)) for the UDT problem, where K
is the branching factor of the input table.

We now analyze the greedy algorithm and prove Theo-
rem 3.2. The analysis is divided into two parts. In the first
part, we introduce certain combinatorial objects called tab-
ular partitions and analyze the performance of the greedy
algorithm using these objects. In the second part, we relate
these objects to Ramsey colorings and complete the proof
of Theorem 3.2.

3.1.3 AnalysisInvolving Tabular Partitions

Let 7 and 7 be the greedy and the optimal decision
trees, respectively. In this section, we prove a relationship
between |7| and |77| involving tabular partitions, defined
below.

Definition 3.3 (Tabular Partitions). For any pos-
itive integer n > 1, a tabular partition P of n is a se-
quence Pi, Ps, ..., P, such that P; is a partition of the set
{1,2,...,n}—{i}. We require that for any distinct 1 <i,j <
n, if A is the set in P; containing j and B is the set in P;
containing i, then ANB = (). Let the length of a partition P;
denote the number of sets in it. We define the compactness
of P as comp(P) = max;(length of P;), for 1 <i <mn. We
define Cy, to be the smallest number such that there exists a
tabular partition of n having compactness Ch,.

Theorem 3.4. |7| < Cx(1+InN)|T"|.

We next focus on proving the above result. In Section 3.1.4,
we shall show that Cx < rx and obtain Theorem 3.2 by
combining the two results. We start with some notations
and observations. Let T be any decision tree for D and u
be an internal node of T. We define ET(u) C D to be the
set of entities in the subtree of 7" under w.

Proposition 3.5. For any decision tree T of D, we have
IT| = Buer| BT (u)].

ProOF. Each entity x contributes a cost equal to its dis-
tance from the root. Let us distribute this cost uniformly

among the internal nodes on the path from z to the root.
Observe that the total cost accumulated at an internal node
w is equal to |ET (u)|. Thus, |T| = Suer|ET (w)]. O

Consider a decision tree T' and a pair (z,y) of entities.
We say that a node u € T separates the pair (x,y), if the
traversal for both x and y passes through w, but = and y
take different branches from u. Formally, v is said to sepa-
rate 2 (x,y), if z,y € ET(u) and x.a # y.a, where a is the
attribute label of u. For any pair (z,y) of entities, there
exists a unique separator in 7" that separates « and y. We
define SEP(u) to be the set of all pairs separated by u. The
separators with respect to the greedy tree 7 will be impor-
tant in our analysis. For each pair (z,y), we denote by sz,y
the separator of (z,y) in 7 and let S, , denote E7 (ss,).

From Proposition 3.5, we see that each node u € 7 con-
tributes a cost of |7 (u)| towards the total cost |7| and sep-
arates the pairs in SEP(u). We distribute the cost |E7 (u)]
equally among the pairs in SEP(u). For each pair (z,y) €
SEP(u), we define the cost ¢y = |E7 (u)|/|SEP(u)|. Since
each pair has a unique separator, the costs c.,, are well-
defined.

It is easy to see that |E7 (u)| = > (2,y) €swp(u) Czy and by
Proposition 3.5, we have [T =3,
mation is taken over all (unordered) pairs of distinct entities.
Notice that each pair {x,y) also has a unique separator in
T*. So, we rewrite the above summation by partitioning
the set of all pairs according to their separators in 7 and
obtain the following equation:

TI= D> o S

2€T* (x,y)ESEP(2)

Cz,y, where the sum-

For each z € T*, we define a(z) to be the term cor-
responding to z in the summation given in Equation 1.
Clearly, a(z) = 32/, ,ycsup(s) Czy- The following lemma
gives an upperbound on a(z).

Lemma 3.6. For any z € T*, a(z) < Cxk(1+In|Z|)|Z|,
where Z = BT (2).

Assuming the correctness of Lemma 3.6, we first prove The-
orem 3.4. The lemma is proved later in the section.

Proof of Theorem 3.4: Replacing the inner summation in
Equation 1 by a(z) we have

IT| < Cx(1+InN) Y |E” (2)] = Ck(1+ 1 N)|T"].
zeT*

The first step is obtained by invoking Lemma 3.6 and the
fact that |Z] < N. Proposition 3.5 gives us the second step.
O

We now proceed to prove Lemma 3.6. Fix any z € 7*. Let
us denote Z = E7 (2). Let a. be the attribute label of z.
The node z partitions the set Z into K sets Z1, Z2,...,Zk,
where Z; = {z € Z|z.a. = i}. We extend the above no-
tations to sets of values. For any A C {1,2,..., K}, define
Za = UieaZ;. We have the following upperbound on cz,y
(See Appendix for the proof).

Lemma 3.7. Let (x,y) € SEP(z). Consider disjoint sets
A,B C{1,2,...,K} satisfying y € Za and x € Zg. Then,
1 1
Coy < + .
Y |Sa,y N Zal |Se,y N ZB|

2We note that the separator of (z,y) is nothing but the least
common ancestor of z and y.

For each (x,y), we shall a choose a suitable pair of disjoint
sets A and B and obtain an upperbound on ¢, by invoking
Lemma 3.7. We make use of tabular partitions for choos-
ing these sets; the motivation for doing so will become clear
in the proof of Lemma 3.10. Let P* be an optimal tab-
ular partition of K having compactness Ck, given by the
sequence Pi, P, ..., Px. Consider any pair (z,y) € SEP(2).
Let i = z.a, and j = y.a, so that x € Z; and y € Z;. Let A
be the set in the partition P; that contains j and B be the
set in the partition P; that contains 7. Notice that, by the
definition of tabular partitions, the sets A and B are dis-
joint. We invoke Lemma 3.7 with A and B as the required
disjoint sets. (Observe that for any ¢ and 7, all the pairs in
Z; x Z; will make use of the same disjoint sets while invoking
the lemma. Thus the sets chosen depend only on the values
z.a, and y.a.). Therefore,

1 1
Coy < + .
. |Sw,yﬂZX| |Sw»yﬂZ}§|

We split the above cost into two parts and attribute the first
term to x and the second term to y. Define

Gy=——— and =
7 |Sw,ymZ,3| 7 |Sz,yme3‘|
It follows that cz,y < 3, +c% . For any x € Z, we imagine
that = pays a cost c; , to get separated from an entity y € Z.
We denote the accumulated cost as Acc.(z) and define it as

x
Coy-

y:(z,y) ESEP(z)

Acc.(z) =

Now the lemma given below follows easily.
Lemma 3.8. For any z, a(z) < Yzezhce.(x).

Our next task is to obtain an upperbound on Acc.(x), so
that we get a bound on a(z). See Appendix for the proof of
the following lemma.

Lemma 3.9. Let x € £ be any entity and Q C £ be any
set of entities such that x € Q. Then,

1
> Sonag S (1+1n|Ql).

YEQ

Lemma 3.10. For any z € Z, Acc.(z) < Cx(1+1n|Z|)

PrROOF. Let r = z.a, and so x € Z,. Let 7 =27-— Zr
be the rest of the entities in Z. Notice that Acc.(z) =
Zyezcivy' We perform the above summation by partition-

ing Z according to P, the r** member of the optimal tab-
ular partition P* = P1, Ps,...,Px. Let P, = s1,582,..., 8¢,
where ¢ < Ck. For 1 < i < £, define Q; = {y € Z|y.a. €

si}. Thus, Z =Q1UQ2U...UQ, and hence,

Acc.(z) = Z Z Carry- (2)

1<i<tyeQy

We derive an upperbound for each term in the outer sum
using Lemma 3.9. Fix any 1 < i < ¢. Notice that for
any y € Q:, we have ¢z, = 1/|5z,, N Q:|, by definition.
Moreover, € ;. Thus, by applying Lemma 3.9 on Q;, we
get

Yo, < +|Qi)) < (1+In|Z)). (3)
YeQ;

We get the lemma by combining Equations 2 and 3, and the
fact that ¢ < Cg. O

Proof of Lemma 3.6: The result is proved by combining
Lemma 3.8 and Lemma 3.10.

a(z) <) Acc.(x)

< > Cx(1+In|Z))
z€Z
= Cx(1+m|Z|)|Z|.

|
3.1.4 Tabular Partitions and Ramsey Colorings

In this section, we introduce the notion of directed Ram-
sey colorings and show that they are equivalent to tabular
partitions. Throughout the discussion, for n > 0, let G,
and G, denote the complete undirected and the complete
directed graph on n vertices, respectively.

Definition 3.11. Let n > 0 be an integer. A directed
Ramsey coloring of Gn isa coloring T of the edges such that
for any triplet of distinct vertices x,y and z, if T(x,y) =
T(x,z) then T(y,z) # T(y,2) (and by symmetry, T(z,x) #
7(2,9))-

We define ﬁk to be the smallest number n such that én
cannot be directed Ramsey colored using k colors 3. The
inverse of these numbers will be useful. Define 7, to be the
minimum number of colors required to do a directed Ramsey
coloring of G,,.

We claim that for any n, there exists a tabular partition
P of compactness k if and only if there exists a directed
Ramsey coloring 7 of G, that uses only k colors. A proof
sketch follows. Let P = P1,Ps,...P,. Fix1 < z < n.
Arrange the sets in the partition P, in an arbitrary manner,
say Pr = Sz,1,82,2,---,8z,, where £ < k. The n-1 edges
outgoing from the vertex x are colored according to the par-
tition P;. Meaning, for 1 < ¢ < /4, for y € sg,c, We set
T(xz,y) = c¢. For any y and z, if 7(z,y) = T(x, z), then it
means that y and z belong to the same set in the partition
P.. By the property of tabular partitions, it should be the
case that x and z belong to different sets in the partition
Py, implying that 7(y,z) # 7(y,z). We conclude that 7 is
a directed Ramsey coloring and that 7 uses only &k colors.
The converse is proved using a similar argument. The claim
implies the following proposition.

Theorem 3.12. For any n, Cp =7y

Let us call an edge-coloring of GG,, a Ramsey coloring, if
it does not induce any monochromatic triangles. For any n,
a Ramsey coloring 7 of G,, readily yields a directed Ramsey
coloring T of G,,. For each pair of vertices x and y, we set
T(z,y) = 7(y,z) = 7(x,y). It can easily be verified that 7
is indeed a directed Ramsey coloring of Gn. The number of
colors used in T is the same as that of 7. Therefore, we have
the following proposition.

Proposition 3.13. For any n, 7 < 7n.

Proof of Theorem 3.2: The result follows from Theo-
rem 3.4 and 3.12, and Proposition 3.13 [l

3Such a number exists, as shown in Theorem 5.1

3.2 TheWeighted Case: 7 Problem

In this section, we show how to deal with the weighted
case, namely the DT problem. Let D be the input N x m
table over a set of entities £ and a set of attributes .4, hav-
ing a branching factor of K. Let w(-) be the input weight
function that assigns an integer weight w(x) > 1 to each en-
tity = € £. The problem is to construct an optimal decision
tree 7* having the minimum cost with respect to w(-). We
present an algorithm which generalizes the greedy algorithm
for the UDT problem.

Weighted Greedy Algorithm. Refer to the greedy
algorithm given in Figure 2. The main step in that algorithm
is choosing an attribute that distinguishes the maximum
number of pairs. We modify this step so that the weights
are taken into account. Namely, we choose the following
attribute a:

@ = argmax, c 4 w(x)w(y),
(2,y)€S(a)

where S(a) = {(z,y)|z,y € € and z.a # y.a}, is the set of
pairs distinguished by the attribute a. We call the above
procedure the weighted greedy algorithm.

The following result generalizes Theorem 3.2. Chaudhary
and Gupta [2] obtained the same result independently. Let
W = Y,csw(z) denote the total weight of the entities. Let
T and 7* denote the weighted greedy and the optimal trees,
under the weight function w(-).

Theorem 3.14. w(7) < Cx(1 +InW)w(T™), where W
is the sum of weights of all the entities.

‘We prove the above theorem by adapting the proof of The-
orem 3.2. Due to space constraints, we provide an outline
of the proof.

Intuitively, we imagine that each entity x is replicated
w(zx) times and modify the proof of Theorem 3.2 accordingly.
We reuse notation from the above proof. Let SEP(u) be
the set of all pairs separated by u. For each pair (z,y),
we denote by sg,, the separator of (z,y) in 7 and let Sy,
denote E7 (s,,). Additional notation is introduced below.

For a set of entities X C &, let w(X) denote the total
weight of the entities in X, ie., w(X) = Yzexw(z). We
also define weights on any set of pairs of entities: for a set
of pairs X C & x &, define w(X) = X, yexw(z)w(y).

Proposition 3.5 generalizes to the weighted case as follows.

Proposition 3.15. For a decision tree T of D, w(T) =
Suerw(ET (u)).

For each pair of entities (z, y), define a cost ¢,y as follows:

w(Say)] ‘

Cay = w(z)w(y) [w(sEP(Sz,y))

By Proposition 3.15, we get the following equation, which
is similar to Equation 1.

wT)=> Y cuy (4)

z€T* (x,y)€ESEP(2)
For each z € T*, the inner summation in Equation 4 is
defined as the cost a(z) = 32, v csmp(s) Cay- Our goal is to
derive an upperbound on «(z).

Fix any z € 7*. Let us denote Z = E7 (z). Let a. be
the attribute label of z. The node z partitions the set Z into

K sets Z1,Za,...,ZKk, where Z; = {z € Z|z.a. = i}. We
extend the above notations to sets of values. For any A C
{1,2,...,K}, define Za = U;eaZ;. The following lemma
generalizes Lemma 3.7 to the weighted case.

Lemma 3.16. Let (z,y) € SEP(z). Consider disjoint sets
A, BCH{1,2,...,K} satisfyingy € Za and x € Zp. Then,

1 1
+
x,yﬂZA) w(Sx,yﬂZB)

e S w(E)u(0) | 1

Consider any (z,y) € SEP(z). Let P* be an optimal tab-
ular partition of K having compactness Ck, given by the
sequence Pi, Ps, ..., Pkx. Let i = x.a, and j = y.a, so that
r € Z;andy € Z;. Let A\ be the set in the partition P; that
contains j and B be the set in the partition P; that contains
i. Define

: _ _w(@)w(y)

& _wa)wly) v w(z)w(y)
Y w(Sey N Z3)

d ¢, =—FF5"7"F.
e oy w(Szy N Zg)

By Lemma 3.16, we have that ¢, , < ¢ , +c% ,. For each
entity € E7 (z), define Acc.(z) as below:

Acc.(z) = Z Cay-
y:(z,y) ESEP(z)

We wish to derive an upperbound on Acc(z). The follow-
ing lemma, which generalizes Lemma 3.9, is useful for this
purpose.

Lemma 3.17. Let x € £ be any entity and Q C £ be any
set of entities such that x € Q. Then,

> 7(51:21’%) < (1+Inw(@Q)).

w
yeQ
The following is obtained by generalizing Lemma 3.10.

Lemma 3.18. For any © € Z, Acc.(z) < w(z)Ck(1+
Inw(Z))

Proof of Theorem 3.14: Consider any z € T* and
let Z = E7 (z). Then, a(z) < Yzez,Acc.(z). Applying
Lemma 3.18 and Proposition 3.15, we get that

a(z) KCxk(l+Inw(Z))w(Z). (5)

Replacing the inner summation in Equation 4 by «a(z) we
have

w(T) < CxkA+lw) Y wE” (2)
z€T*
Cx(1+InW)w(T). (6)

The first step is obtained by invoking Equation 5 and the
fact that w(Z) < w(€) = W. Proposition 3.15 gives us the
second step. [

Theorem 3.14 shows that the approximation ratio of the
weighted greedy algorithm is logarithmic in N, when the to-
tal weight W is polynomially bounded in N. Unfortunately,
when the weights are arbitrarily large, the ratio could be
worse. We overcome this issue by using the following round-
ing technique.

Rounded Greedy Algorithm. Let D be an input table
having a branching factor of K and let win be the input

integer weight function. Let win™ = maxs win(z) denote

the maximum weight. Define a new weight function w(-) as
follows: for any entity = € £, define

wie) = [,

Run the weighted greedy algorithm with w(-) as the input
weight function and obtain a tree 7. Return the tree 7.
Let 7* and 7;;, be the optimal decision trees under the
weight functions w(-) and win(-), respectively. From The-
orem 3.14, we have a good bound for w(7) with respect

to w(7 ™). But, of course, we need to compare win(7) and
win(7i5). We do this next.

Theorem 3.19. win(7) < 2Ck(1+ 3In N)win(7Tiy).

PRrROOF. Let x € £ be any entity and consider the path
from the root to z in the tree 7;,. Notice that each internal
node along this path separates at least one entity from =x.
(Otherwise, 7;; contains a “dummy” node that does not
separate any pairs and hence, can be deleted to obtain a
tree of lesser cost). So, the length of the above path is at
most N and hence, the following claim is true.

Claim 1: |T;%| < N2.

We next compare win(7i;) and w(7;;;). We have,

w(T) = S w)lr: (a)

IN
/N
E
NN
ElG
i\./
2
+
—
N———
~
N
5 x
&

zeE n
win(Ti) N? .
- e Tl
win
< wlrl(ﬁi)(N2 +N2
win
2win(Ti) N?
< —pmex (7)

mn

The second step is from the definition of w(-) and the fourth
step is obtained from Claim 1. The last inequality is ob-
tained by observing the fact that win(7Ziy) > win™.

Notice that for any entity z € £, 1 < w(z) < N? and so
the total weight W under the function w(-) satisfies W <
N3. So, Theorem 3.14 implies the following claim.

Claim 2: w(T) < Cx(1+3InN)w(T™).

We can now compare win(7) and win(7;;). Note that
T* is the optimal tree under the function w(-) and hence,
w(7T") < w(7;;). We obtain the lemma by combining the
observation with Equation 7 and Claim 2. [

By combining Theorem 3.19, Theorem 3.12 and Proposi-
tion 3.13, we get the following result.

Theorem 3.20. The approrimation ratio of the rounded
greedy algorithm is at most 2rx (1 + 3In N) = O(rx log N).

4. HARDNESS OF APPROXIMATION

In this section, we study the hardness of approximating
the DT and the UDT problems. We show that it is NP-
hard to approximate the 2-D7 problem within a ratio of
Q(log N). We also improve the previous hardness results for
the UDT problem.

4.1 Hardness of Approximating the 2-p7T
Problem

Theorem 4.1. [tis NP-hard to approximate 2-D7T within
a factor of Q(log N), where N is the number of entities in
the input.

PRrROOF. We prove the result via a reduction from the set
cover problem. It is known that approximating set cover
within a factor of Q(logn) is NP-hard [21].

Let (U,S) be the input set cover instance, where U =
{z1,x2,...,2n} is a universe of items and S is a collection of
sets {S1,52,...,Sm} such that S; C U, for each i. Without
loss of generality, we can assume that for any pair of distinct
items z; and z;, there exists a set Si € S containing exactly
one of these two items. (If not, one of these items can be
removed from the system.) Construct an instance of the 2-
DT problem having N = n + 1 entities and m attributes.
The set of entities is & = {z1,x2,..., 2} U{Z}, where each
entity x; corresponds to the item z; and 7 is a special entity.
The set of attributes is A = {51, 52, , Sm}, so that each
attribute S; corresponds to the set S;. The N x m table
D is given as follows. For each entity x; and attribute S,
set z;.5; = 1, if z; € S; and otherwise, set x;.5; = 0. For
the special entity Z, set Z.S; = 0, for all attributes S;. For
each entity x;, set the weight w(z;) = 1. As for the special
entity Z, set its weight as w(Z) = N®. This completes the
construction.

Let T be a decision tree for D. Let C be the set of at-
tributes found along the path from the root to the entity
Z. Recall that the length of the above path is denoted
as £7(T). Observe that C is a cover for (U,S). We have
(IC| = ¢r(%)) < w(T)/N®. On the other hand, given a cover
C, we can construct a decision tree T satisfying the following
two properties: (i) the set of attributes along the path from
the root to Z is exactly the set C so that |[¢7(Z)| = |C]; (ii)
for every other entity x;, ¢r(x;) < N. (The second property
is based on the fact that for any table containing N entities,
it suffices to test at most IV attributes in order to distinguish
any entity from the rest). Thus, w(T) < |C|N® + N2, In
particular, w(T*) < |C*|N® 4 N2, where T* and C* are the
optimal decision tree and optimal cover, respectively.

Based on the above observations, we can prove the follow-
ing claim. If there exists an a(N) approximation algorithm
for the 2-D7 problem then for any € > 0, we can design an
(14 €)a(n) approximation algorithm for the set cover prob-
lem. Therefore, the hardness of set cover problem implies
the claimed hardness result for the 2-D7 problem. [

4.2 Hardnessfor theupr and the 2-upT prob-
lems

In this section, we present improved results of hardness
of approximation for the UD7 and the 2-UDT problems.
For the 2-UDT problem, Heeringa and Adler [11] showed a
hardness of approximation of (1 + €), for some ¢ > 0. We
show that for any e > 0, it is NP-hard to approximate the
UDT and the 2-UDT problems within a factor of (4—e) and
(2 — ¢), respectively. Our reductions are from the Minimum
Sum Set Cover (MSSC) problem.

The input to the MSSC problem is a set system: a col-
lection of sets & = {S1,S2,...,Sm} over a universe U =
{z1,x2,...,xNn} of items, where each S; C U. A solution
is an ordering 7 on the sets in S, with an associated cost

defined as follows. Let m be Si,S5%,...,5.,. Each item in
S1 pays a cost of 1, each item in S5 — S] pays a cost of 2,
and so on. Cost of 7 is the sum of the costs of all items.
Formally, define the costs ¢} = argmin,{z € Si}, for z € U,
and cost(m) = Y . cz- The MSSC problem is to find an
ordering with the minimum cost. For a constant d, the d-
MSSC problem is the special case of MSSC in which every
set in the set system has at most d elements. Feige et. al [5]
proved the following hardness results for these problems.

Theorem 4.2. [5]

1. For anye > 0, it is NP-hard to approzimate the MSSC
problem within a ratio of (4 — €).

2. For any € > 0, there exists a constant d such that it
is NP-hard to approzimate d-MSSC within a ratio of
(2—c¢).

We next prove the hardness result for the UD7T prob-
lem by exhibiting a reduction from MSSC . Given an
MSSC instance S = {51, 52,...,Sm} over a universe U =
{z1,%2,...,xN}, construct an N X m table D as follows.
Each item x corresponds to an entity and each set S; corre-
sponds to an attribute a;. For 1 < j <m, 1 <1i < n, set the
entry x;.a; as below: if z; € S; then set x;.a; = i, else set
zi.a; = 0. Observe that any decision tree for D is left-deep:
for any internal node u, except the branch labeled 0, every
other branch out of u leads to a leaf node.

We claim that given an ordering 7 of S, we can construct a
decision tree 7 such that |7| = cost(7) and vice versa. Let
™ =51,55,...,5;, and a},as,...,a,, be the correspond-
ing sequence of attributes. Construct a left-deep tree 7, in
which the root-node is labeled a} and its 0" child is labeled
ah and so on. In general, label the internal node in i** level
with a}. It can be seen that 7 is indeed a decision tree for
D and that |7| = cost(m). The converse is shown via a sim-
ilar construction. Given a decision tree 7, traverse the tree
starting with the root-node and always taking the branches
labeled 0. Write down the sequence of sets corresponding to
the internal nodes seen in this traversal and let m denote the
sequence. Notice that the sets appearing in this sequence
cover all elements of U and that cost(7) = |T|. (Some sets
in § may not appear in this sequence. To be formally com-
pliant with the definition of solutions, we append the missing
sets in an arbitrary order). The claim, in conjunction with
Theorem 4.2 (Part 1), implies the following result.

Theorem 4.3. For any € > 0, it is NP-hard to approxi-
mate the UDT problem within a ratio of (4 — €).

The same approach can be used to show the inapprox-
imability of (2 — €) for the 2-UYDT problem. For this, we
consider a reduction from d-MSSC instances for suitable
constants d. Observe that the entries in the table can only
be 0 or 1 as opposed to the index of the elements in the pre-
vious construction. The required reduction is obtained by
using [log d] auxiliary columns to identify elements of each
set. Thus, we get the following result, which improves the
hardness result of Heeringa and Adler [11].

Theorem 4.4. For any € > 0, it is NP-hard to approzi-
mate the 2-UDT problem within a ratio of (2 — €).

5. RAMSEY NUMBERSAND ERDOS
CONJECTURE

In this section, we take a closer look at our approxima-
tion ratio and discuss its connection to a Ramsey-theoretic
conjecture by Erdds. We presented an algorithm for the
DT problem having an approximation ratio of O(rx log N).
Let us now focus on bounds for the inverse Ramsey numbers
Tn, for n > 1.

Recall that for any k, Ry > 3k2+1 [15, 23]. From this we
get that for any n, rn, < 2 4 0.64logn. Notice that any
improvement in the upperbound of r, would automatically
improve our approximation ratio. Better upperbounds are
known for r, (see [15, 4, 3]); but, they improve the above
bound only by constant factors. We observe that the up-
perbound for 7, cannot be improved significantly because
of the following result: Ryx < 1+ kle [24], which implies
rn = Q(logn/loglogn).

Observe that our approximation ratio actually involves
Ty, rather than r,. Therefore, one can try to derive a
better upperbound on 7,. Unfortunately, we show that
n = Q(logn/loglogn). The claim is implied by the fol-
lowing theorem which can be proved based on an argument
similar to the one used to obtain the same bound for Ry.

Theorem 5.1. For any k, Ri <1+kle

Notice that there is a gap in the upper and lower bounds
for Ry. Erdos conjectured that for some constant «, for all
k, Rx < oF. This is equivalent to r, = Q(log n).

We discuss the implication of our results in possibly prov-

ing the conjecture. The idea is to show that, in terms of
worst-case performance factors, the rounded greedy algo-
rithm performs poorly! We observe that a lowerbound of
Q(log K log N) on the approximation ratio for the rounded
greedy algorithm would imply the conjecture. More explic-
itly, we note that the following hypothesis implies the con-
jecture.
Hypothesis: There exists a constant G > 0 such that for
any K, there exists a K-D7 table D and a weight function
w(-) on which the tree 7 produced by the rounded greedy
algorithm is such that w(7) > (Blog K log N)w(7T ™), where
T* is the optimal solution.

A result by Garey and Graham [8] could be a starting
point for constructing such instances. They analyzed the
worst-case performance of the greedy procedure for the 2-
UDT problem and by constructing counter-examples, ob-
tained a lowerbound of Q(log N/loglog N) for the approxi-
mation ratio of the procedure.

One can also attempt to prove the conjecture under the as-
sumption NP # P by showing that it is NP-hard to approx-
imate the K-D7T within a factor of Q(log K log N). More
precisely, exhibit a constant ¢ > 0 and show that for all
K > 2, it is NP-hard to approximate the K-D7 problem
within a factor of clog K log N.

6. CONCLUSION AND OPEN PROBLEMS

We studied the problem of constructing good decision
trees for entity identification, in the general setup where
attributes are multi-valued and the entities are associated
with probabilities. We designed an algorithm and proved
an approximation ratio involving Ramsey numbers, and also
presented hardness results.

There are several interesting open questions. An obvious
problem is to design better approximation algorithms and
prove better inapproximability bounds for the K-D7 prob-
lem.

The directed Ramsey numbers 7, introduced in this pa-
per pose challenging open problems: Is 7, = r,, for all n?
Is 7 = O(logn/loglogn)? Proving the second statement
in the affirmative would improve our approximation ratios.
If both the statements are shown to be true then the con-
jecture by Erdos would be disproved! Finally, it would be
interesting, if the conjecture can be proved using the ap-
proach suggested.

7. ACKNOWLEDGMENTS

We thank Himanshu Gupta and Prasan Roy for useful dis-
cussions and comments. We thank the anonymous referees
for their insightful suggestions and feedback.

8. REFERENCES

[1] South Australia Environment Protection Authority.
Frog identification keys.
http://www.epa.sa.gov.au/frogcensus/frog_key.html.

[2] A. Chaudhary and N. Gupta. Personal
communication, 2007.

[3] F. Chung and C. Grinstead. A survey of bounds for
classical Ramsey numbers. Journal of Graph Theory,
7:25-37, 1983.

[4] G. Exoo. A lower bound for Schur numbers and
multicolor Ramsey numbers. Electronic Journal of
Combinatorics, 1(R8), 1994.

[5] U. Feige, L. Lovész, and P. Tetali. Approximating min
sum set cover. Algorithmica, 40(4):219-234, 2004.

[6] M. Garey. Optimal binary decision trees for diagnostic
identification problems. Ph.D. thesis, University of
Wisconsin, Madison, 1970.

[7] M. Garey. Optimal binary identification procedures.
SIAM Journal on Applied Mathematics,
23(2):173-186, 1972.

[8] M. Garey and R. Graham. Performance bounds on the
splitting algorithm for binary testing. Acta
Informatica, 3:347-355, 1974.

[9] R. Graham, B. Rothschild, and J. Spencer. Ramsey
theory. John Wiley & Sons, New York, 1990.

[10] B. Heeringa. Improving Access to Organized
Information. Ph.D. thesis, University of
Massachusetts, Amherst, 2006.

[11] B. Heeringa and M. Adler. Approximating optimal
decision trees. TR 05-25, University of Massachusetts,
Ambherst, 2005.

[12] L. Hyafil and R. Rivest. Constructing optimal binary
decision trees is NP-complete. Information Processing
Letters, 5(1):15-17, 1976.

[13] B. Moret. Decision trees and diagrams. ACM
Computing Surveys, 14(4):593-623, 1982.

[14] S. Murthy. Automatic construction of decision trees
from data: A multi-disciplinary survey. Data Mining
and Knowledge Discovery, 2(4):345-389, 1998.

[15] J. Nesetril and M. Rosenfeld. I. Schur, C.E. Shannon
and Ramsey numbers, a short story. Discrete
Mathematics, 229(1-3):185-195, 2001.

[16] University of California, Davis. Guide to healthy
lawns: Identification key to weeds.
http://www.ipm.ucdavis.edu/TOOLS/TURF/

PESTS /weedkey.html.

[17] Florida Museum of Natural History, University of
Florida. Layman’s key to the snakes of florida.
http://www.flmnh.ufl.edu/herpetology /FL-GUIDE/
snakekey.htm.

[18] The Stream Project, University of Virginia. Aquatic
macroinvertebrate identification key.
http://wsrv.clas.virginia.edu/~sos-iwla/Stream-
Study/Key /MacroKeyIntro. HTML.

[19] R. Pankhurst. A computer program for generating
diagnostic keys. The Computer Journal,
13(2):145-151, 1970.

[20] S. Radziszowski. Small Ramsey numbers. Electronic
Journal of Combinatorics, 1(#7), 1994.

[21] Ran Raz and Shmuel Safra. A sub-constant
error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proc.
of the 29th ACM Symposium on Theory of Computing,
pages 475-484, 1997.

[22] A. Reynolds, J. Dicks, I. Roberts, J. Wesselink,

B. Iglesia, V. Robert, T. Boekhout, and

V. Rayward-Smith. Algorithms for identification key
generation and optimization with application to yeast
identification. In FvoWorkshops, LNCS 2611, pages
107-118, 2003.

[23] 1. Schur. Uber die kongruenz z™ + y™ = 2™ (mod p).
Jber. Deustsch. Math. Verein, 25:114-117, 1916.

[24] D. West. Introduction to Graph Theory. Prentice Hall,
2001.

[25] T. Wijtzes, M. Bruggeman, M. Nout, and
M. Zwietering. A computer system for identification of
lactic acid bacteria. International Journal of Food
Microbiology, 38(1):65—-70, 1997.

[26] Wikipedia. Identification key — Wikipedia, The Free
Encyclopedia.
http://en.wikipedia.org/wiki/Dichotomous_key.

APPENDI X
A. PROOFS

A.1 Proof of Lemma3.7

We are given a pair (z,y) € SEP(z). Let s = sz, be
the separator of (x,y) in 7 and the attribute label of s be
as. The cost cq,y is given by |Ss,y|/|SEP(s)|, where S, , =
E7(s). The greedy algorithm chose the attribute a for the
node s. Hypothetically, consider choosing the attribute a,
instead. Let us denote the pairs separated by such a choice
as X, ie., define X = {(z,y)|z,y € Sa,y and z.a. # y.a.}.
Notice that the greedy algorithm chose the attribute as, in-
stead of a., because as distinguishes more pairs compared
to a., meaning, |[SEP(s)| > |X|. It follows that cy, <
|Sz,y|/|X|. Partition Sg,, into Si,Sa,...,Sk, where S; =
{z € Saylr.a. =1}

Then,
IXI= Y ISi-1Sil-
1<i<j<K

We bound the summation by considering only the terms
|Si] - |Sj], where ¢ € A and j € B. Since AN B = () and
[Sz,yl = [S1] +|S2| + - - + |Sk|, we have that

Cay < ! + L .
EieA |Sl| EjeB |Sj|
Observe that for any 1 <17 < K, Sz 4 N Z; C S; and hence,
|Sz,y N Zi| < |Si|. Therefore,
1 1
2icalSey N Zi * YenlSeyNZ;|

Finally, since the sets Z;; and Z;/ are disjoint for any dis-
tinct 1 < i’ < j/ < K, it follows that the first term equals
1/|Sz,y N Z 4| and the second term equals 1/|S; ,NZg|. The
lemma is proved. [

A.2 Proof of Lemma 3.9
Let t = |Q|. We shall prove the following claim:

Cx,y <

t

1 1
2 EaAa ST

yeQ i=1

The claim implies the lemma, since it is well known that
¢, (1/i) < (1 +1nt), for all . We prove the claim by
applying induction on |@Q|. For the base case of |Q| = 1, let
Q = {y}, where y # z. Clearly, y € S, and so, |Sz,,NQ| =
1, and the claim follows. Assuming that the claim is true
for all sets of size at most ¢t — 1, we prove it for any set
Q of size t. Let y* be any entity in @ such that for all
Y € Q, S,y is a descendent of s; 4+ (a node is considered to
be a descendent of itself). If more than one such element
exists, pick one arbitrarily. Intuitively, y* is one among the
first batch of entities in @ to get separated from z. The
main observation is that Q C S; 4+ and so, Sz,y N Q = Q.
Thus, 1/[Sz,y* N Q| = 1/|Q| = 1/t. We apply the induction
hypothesis on the set of remaining entities Q' = Q —y* and
infer that

t—1
1 1
2 L na ST
yeQ 'm0 i=1

Clearly, Q" C @ and hence, |S;, N Q'| < |Sz,y N Q|, So,
in the above summation, if we replace the term |S, , N Q’|

by |Sz,y N Q|, then the resulting inequality is also true. We
conclude that

S Eora = Bondt X Es A
yeQ [Se.y N Q| [Se,y= N Q| veQ! |Sz.y N Q|
t—1
1 1
< = —
-t + — 4
i=1
p— ; 1
- >
=1

