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Decision Trees for Error Concealment
in Video Decoding

Song Cen and Pamela C. Cosman, Senior Member, IEEE

Abstract—When macroblocks are lost in a video decoder such
as MPEG-2, the decoder can try to conceal the error by estimating
or interpolating the missing area. Many different methods for
this type of post-processing concealment have been proposed,
operating in the spatial, frequency, or temporal domains, or some
hybrid combination of them. In this paper, we show how the use of
a decision tree that can adaptively choose among several different
error concealment methods can outperform each single method.
We also propose two promising new methods for temporal error
concealment.

Index Terms—Adaptive error concealment, decision trees,
MPEG video.

I. INTRODUCTION

WHEN video signals are compressed and transmitted over
unreliable channels, some strategy for error control or

concealment must be employed. Possible strategies include
forward error correction added at the encoder, post-processing
methods employed by the decoder, and interactive requests
for repeated data, involving both encoder and decoder. In this
paper, we are concerned with post-processing methods em-
ployed by the decoder. We consider the single-layer case where
coding modes, motion vectors, quantized DCT coefficients,
and other information about macroblocks are all sent with the
same priority. When errors strike the bitstream, we assume the
decoder loses all information about that slice up to the next
resynchronization point. In the absence of block interleaving, a
horizontal swath of macroblocks is missing, and the decoder’s
post-processing methods must conceal this from the viewer.

Many post-processing error concealment methods have been
proposed (see, e.g., [1], [2], [4], [5], [7]–[10], [12]–[15]). They
can be divided into three main approaches: frequency, spatial,
and temporal. There are also hybrids of these three main groups,
and the methods can be made adaptive.

In frequency concealment[9], [12], DCT coefficients of
missing blocks are estimated using the corresponding DCT
coefficient of neighboring blocks, or using the neighbor’s DC
values, or other neighborhood features. These methods usually
attempt to estimate low frequency coefficients.
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Spatial concealment:One can interpolate directly in the spa-
tial domain (e.g., [10], [13], [14]). If one had neighboring blocks
on all four sides, then each pixel in the missing macroblock
(MB) could be reconstructed with bilinear interpolation from
the four nearest pixels that are not missing. If MBs are available
only above and below the missing MB, then one can do one-di-
mensional linear interpolation from the nearest pixels from the
blocks above and below the missing MB. Other strategies exist,
e.g., directional interpolation that seeks to preserve edges [14].
In general, spatial concealment is complex since a computation
must be done for each pixel.

In temporal concealment, blocks from other frames are used
for concealment, either by attempting to reconstruct the motion
vector of the lost MB, or by searching for a block that has a
good match to the sides and neighborhood of the missing block
(see, for example, [1], [2], [8]). If the estimation of the mo-
tion vector (MV) is inaccurate, the block obtained will have dis-
tracting artifacts at the boundaries with its neighbors. The MV
can be estimated using, for example, the average or median of
the MVs from MBs above, below, and diagonal. Alternatively,
each neighboring macroblock’s MV can be considered as a can-
didate MV for the missing MB, and the corresponding candidate
reference blocks are all checked to see which one produces the
best match for the boundary pixels.

Hybrid methods:A variety of hybrid algorithms have been
proposed which combine more than one of the frequency,
spatial, and temporal approaches. For example, in temporal
concealment, the referenced block can be improved by spatial
smoothing at its edges, to make it conform to the neighbors, at
the expense of additional complexity. In [17], a MB is estimated
by satisfying a weighted combination of spatial and temporal
smoothness constraints.

Adaptive methods:Often, error concealment (EC) involves
using a single fixed method for reconstructing any MB which
is lost, however, a few adaptive EC methods have been pro-
posed. In [17], the coding mode and block loss patterns are clus-
tered into four groups, and the weighting between the spatial
and temporal smoothness constraints depends on the group. A
further level of adaptivity appears in [11] and [6]. In [11], tem-
poral concealment is used for most blocks. However, a scene
detector (which looks at the mean and variance of the MVs in a
frame, as well as at the number of intracoded blocks) attempts to
detect scene changes and irregular motion, in which case tem-
poral concealment is likely to do poorly. In that case, a decision
is made next on complexity. If there are too many lost blocks,
then spatial concealment cannot be used in real time for this
frame. If the complexity constraint is satisfied, then a last choice
is made between frequency and spatial concealment based on a
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TABLE I
OUR SET OF AVAILABLE METHODS FORERRORCONCEALMENT

five-category classification of the overall activity and color re-
quirements of the video. Similar criteria are used in [6]. For P
and B frames, if the variance of the MVs in the frame does not
exceed a threshold, and also the number of intracoded MBs does
not exceed its threshold, then spatial concealment is used, oth-
erwise temporal is used. For I-frames, a choice is made between
spatial and frequency concealment.

The research presented in this paper is in a similar spirit of
adaptivity, with the added new feature that the encoder can
guide the decoder in choosing among EC methods. Of the
many methods available, which one is best will depend on
the characteristics of the missing block, its neighbors, and the
overall frame. We design a decision tree which can examine
these characteristics and choose among several EC methods.
The tree splits are chosen based on a sequence of data, and
thus the trees are tailored for particular sequences, or for an
individual group of pictures (GOP). The decision trees must
therefore get included as side information with each sequence
or with each GOP.

There are other approaches in which enhanced capability for
error concealment comes at the expense of added side informa-
tion. The MPEG-2 standard allows the use of concealment mo-
tion vectors (CMVs) to be transmitted for all intracoded MBs
[4]; this leads to enhanced EC, but the bits employed for the
CMVs detract from the source coding rate. Similarly, the use of
more slices per horizontal strip costs more bits but allows faster
re-synchronization. The transmission of EC decision trees pro-
vides yet an additional tradeoff between the bit-rate for side in-
formation and the EC advantage under noisy conditions.

As we will see, the decision tree provides lower distortion in
the concealed blocks than does the use of any single fixed con-
cealment method among those tested. We also present two new
methods for temporal EC. The paper is organized as follows.
In Section II, we present our new EC methods, as well as other
ones available to our decision tree. In Section III, we discuss the
classification tree design and our experiments. Results and con-
clusions are described in Section IV.

II. ERRORCONCEALMENT METHODS

We considered the eight different EC methods listed in
Table I. The first column lists the name by which we reference
the method, the second column lists the types of frames for
which it is used, and the last column summarizes how it works.
Note that we consider only MBs which have both top and
bottom vertical neighbors in a frame, i.e., do not reside in the
first or last slice of a frame.

The spatial interpolation method works by linearly interpo-
lating within a vertical column from the two nearest pixels in
the adjacent top and bottom MBs. For us, an MB consists of 6
blocks of 8 8 pixels, four from the luminance plane and one
from each chrominance plane. In frequency interpolation, the
lowest nine DCT coefficients (for each of the six blocks com-
posing the missing MB) are estimated by a weighted average of
the corresponding lowest nine DCT coefficients of the blocks
above and below. Both spatial and frequency interpolation can
be used for any type of frame. However, this frequency interpo-
lation requires the presence of the neighbor’s DCT coefficients,
thus both top and bottom MBs must be intracoded, which nor-
mally happens less than 5% of the time for P frames and 0.5%
for B frames. So frequency concealment is not used for P and
B frames.

There are five different methods which depend on the pres-
ence of other motion vectors in the frame, and so are not im-
mediately applicable to I frames. Two of these are new, and are
denoted “panning” and “top/botMV.”

Panning:When a camera pans, many MBs in a scene have
similar MVs corresponding to the true panning motion. Indi-
vidual MBs might have different MVs for a variety of reasons
(e.g., noise, object motion). If the global panning MV can be
estimated, it might constitute a better estimate for EC purposes
than the MVs of the neighboring blocks. We estimate the pan-
ning MV by putting all nonzero MVs for the current frame into
a histogram with 47 47 bins, which represents MVs ranging
from half pixels in both dimensions. The histogram
bin with the largest count is assumed to represent the global pan.
This was found to give better results compared to just averaging
together all nonzero MVs for the frame, since averaging in-
cludes objects which may be moving contrary to the global pan-
ning direction. This method can be applied to I frames by using
the panning parameters estimated from the previous P frame.

Top/botMV: In a P or B frame, if both the top and bottom
MBs have MVs associated with them, we can estimate the MV
for the missing MB by taking the average of the ones above
and below (averageMV method). If the MVs above and below
are very different in magnitude or direction from each other,
it might not make sense to average them. Instead, we might
wish to use the MV for the block above for the top half of the
missing MB (8 16 submacroblock for luminance and 48
subblock for chrominance), and use the MV for the block below
for the bottom half. This is called the top/botMV method. This
method performs very well, but it has the disadvantage that since
we are not providing one single MV for the missing MB, we
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cannot consider this error concealer as a front-end to a standard
MPEG-2 decoder. If exactly one of the top or bottom MBs is
intracoded, then we have only one motion vector to go by. We
might want to use this one as the MV for the entire missing MB
(useonlyMV) or we might want to use it only for the half MB to
which it is closer, using spatial interpolation for the other half
(spat onlyMV).

The last method in Table I was employed only for I frames. If
the co-sited MB in the previous P frame was intracoded, or had
a motion vector with value zero, then that MB might be useful
directly as a replacement for the missing MB. If, however, the
co-sited MB had a nonzero motion vector, then likely it is not
an accurate reconstruction of the current missing I frame MB.
This method is referred to as copyPmb.

III. EXPERIMENTS

We encoded six sequences, each of 150 frames, with MPEG-2
at a rate of 1.5 Mbits/s. As the size of each frame is 352240
pixels, there are MBs per frame
that are not in the first or last slices. For all 286 MBs in all frames
that are of the same type (i.e., I, P, or B) in each sequence, a clas-
sification tree was built at the encoder. It was then transmitted
to the receiver. The transmission of the tree was assumed to be
error free which can be achieved by duplicating it several times
in different packets if it were packed together with the video
data, or it can be packed in separate packets and transmitted
using a reliable protocol (e.g., TCP). The video data itself is
transmitted with some unreliable transport protocol (e.g., RTP
or UDP). Upon error when receiving the video data, the decoder
employs the decision tree to find the recommended concealment
method for every lost macroblock.

The tree classifies every MB (not in the first and last slice of
a frame) to a concealment method based on its characteristics.
The true class of every MB is defined to be the best concealment
method for that MB, that is, the method among those applicable
in Table I which provides the minimum MSE. The true class
of every MB is obtained at the encoder by reconstructing every
MB with all applicable candidate methods, and computing the
MSE with the original MB. The true class of every MB is not
available at the decoder. Instead, the decoder will classify each
lost MB using the tree designed by the encoder and transmitted
to the decoder.

The classification parameters are used at the encoder to de-
sign the classification tree, as well as at the decoder to classify
the MB in order to find its recommended concealment method.
They are measurements which describe the spatial, temporal,
and frequency domain context of a MB. They must be parame-
ters which are available to the decoder even if the MB in consid-
eration and the slice containing it are lost. For example, they in-
clude information on the MVs for the MBs above and below, and
on the number of nonzero AC coefficients for the MBs above
and below. For missing I, P, and B frame MBs, the parameters
contained 18, 19, and 21 measurements, respectively. These in-
clude both ordinal and categorical variables. For example, the
coding mode of the top MB is a categorical variable; the mag-
nitude of its MV (if it has one) is an ordinal variable. Some of
these parameters are listed in Table II.

TABLE II
EXAMPLES OFPARAMETERSPROVIDED AS INPUTS TO THECART ALGORITHM.

THE FIRST COLUMN PROVIDES A DESCRIPTION OFWHAT THE PARAMETER

REPRESENTS, AND WHETHER IT IS AN ORDINAL OR CATEGORICAL VARIABLE.
FOR CATEGORICAL VARIABLES, THE NUMBER OFCATEGORIES ISLISTED. THE

SECONDCOLUMN LISTS THETYPES OFFRAME FORWHICH IT IS APPLICABLE

CART1 algorithm for designing classification and regression
trees [3] was used to design the tree at the encoder. It works
as follows. Let be the vector of measurements associated
with the missing MB (including those shown in Table II and
others that are not shown), and let be the set
of eight EC methods listed in Table I. A classifier is a function

which assigns to every vector a class from . A
learning sample (also called a training sequence) consists
of data corresponding to all

MBs from the same type of frames in a video sequence;
that is, “lost” macroblocks for which the best concealment
method is known. equals 2860 MBs and 11 440 MBs for
the ten I frames and the 40 P frames in each video sequence,
respectively.

The root node of the tree contains all thetraining cases.
To design the classification tree, we consider, for each terminal
node of the tree, a standard set of possible splits of the data in
that node. In the standard set, each split depends on the value of
only a single variable. For each ordinal variable, we include
all splitting questions of the form “Is ?” For example,
“Is the vertical position of the missing ?” If is
categorical, taking values in , then we in-
clude all questions of the form: “Is ?” as ranges over
all subsets of .

There is a finite number of distinct splits. For each variable,
we find the split which provides the greatest decrease in node
impurity. (We used the Gini index of diversity [3] to measure
the purity of a set of data.) We compare all of these, and find the
best overall split of the data. A class assignment rule assigns an
EC method to every terminal node. We use
the simple plurality rule which assigns to each terminal node
the EC method which was best for the largest number of MBs
in that node.

1CART is a registered trademark of of California Statistical Software, Inc.,
and is exclusively licensed to Salford Systems.
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Once the tree is designed and transmitted to the decoder,
whenever a loss occurs, the decoder will measure the input pa-
rameters associated with each lost MB, and will follow the splits
in the decision tree to find out which EC method to use for that
MB. The decoder will reconstruct each lost MB with the desig-
nated method.

How large a tree should one transmit as side information? The
size of the tree, as measured by the total number of nodes, is di-
rectly proportional to the number of bits that will be required
as side information to transmit the tree to the decoder. At each
stage of tree growth, we are concerned with the size of the tree
and its MSE performance. The MSE performance of the tree is
measured by supposing that each MB in the sequence is lost,
and reconstructing it using the EC method dictated by the tree.
The average MSE for all MBs is then computed. If the tree is al-
lowed to grow large enough, eventually the classification will be
perfect. The MSE will then be what results from each MB being
concealed by itsbestEC method among the set. We call this the
“omniscient minimum” MSE, and it could also be obtained by
transmitting a few bits explicitly for each MB to tell the decoder
which EC method to use for that MB. What we consider the
“maximum” MSE is the MSE that results from using a single
fixed and best method from Table II. The last three methods
are often excluded as candidates for the best fixed method since
for most sequences they can be applied to less than 25% of the
MBs. Since certain P,B methods cannot be used next to intra-
coded MBs, the use of a single fixed method really means em-
ploying one method in all the cases to which it is applicable,
and using other pre-determined methods in those cases where it
is not. The same pre-determined method is also used when the
method dictated by the decision tree is not applicable to the lost
MB.

Our goal is to see whether much of this difference between the
maximum MSE and the omniscient minimum MSE can be effi-
ciently captured by the use of a decision tree, with significantly
less overhead than is required by the explicit specification of EC
methods for each MB. We are therefore interested in looking
at plots of the MSE reduction versus the number of nodes as
the tree grows. Trees were developed for several sequences, in-
cluding mobile calendar, flower garden, bicycle, cact, susi, and
tennis, as well as for separate GOPs from these sequences.

IV. RESULTS

We are interested in a loss scenario where occasional iso-
lated slices (a horizontal strip of macroblocks) gets lost. Rather
than obtaining results by averaging over random loss patterns (in
which case thousands of random loss patterns would be needed,
and the comparison between approaches would be obscured by
the randomness inherent in the simulation), we chose instead
to simulate the loss of each complete horizontal strip in the en-
tire sequence individually, and our MSE results are for recon-
structed frames in whicheveryslice (except the top and bottom
most ones) has been individually lost and concealed. This has
the advantage of directly constructing a useful comparison of
the decision tree concealment approach against any fixed con-
cealment approach. For this reason, we report results primarily
as relative MSE (the MSE of the tree approach compared to that

Fig. 1. Five-terminal-node tree grown for table-tennis I pictures. The ovals
show the test which is used to split the data in that node. The percentages show
the amount of data in each node that has the spatial, panning, or copyPmb
concealment method as the best concealment method.

Fig. 2. Six-terminal-node tree grown for mobile-calendar P pictures.

of the best of the fixed concealment methods). Clearly though,
by calculating the MSE for a frame based on losing each slice in
the frame individually and then concealing it, the MSEs for all
the concealment approaches are very much worse than the MSE
of the compressed and reconstructed sequence with no slice loss.
For this reason, although we also report results as absolute MSE
(the MSE of the concealed frames) these values should not be
compared to the MSE of compressed frames which underwent
no MB loss.

Fig. 1 shows a CART tree with five terminal nodes built for
the 10 I frames of the complete table tennis sequence. Fig. 2
shows the six-terminal-node tree grown for the data from the
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Fig. 3. MSE versus number of tree terminal nodes and bit rate overhead for
10 I frames of cact, susi, and tennis sequences.

mobile-calendar sequence 40 P pictures. At each node of these
trees, the oval lists the splitting test which is applied to split the
data of that node. Above the oval is listed for each node the
percentage of the node data that has the spatial, panning, and
copyPmb EC methods as theirbestEC method. For example,
for the root node of the tree in Fig. 1, copyPmb wins 40%. This
means that, if we takeall the MBs fromall the I-frames in the
sequence, 40% of the time the best concealment method for
those MBs is to use copyPmb. The spatial wins 28% of the time,
panning wins 31%, and the frequency concealment method (not
listed) makes up the remaining 1%. The test applied to this node
is to check whether the co-sited MB in the previous P frame has
motion vector equal to zero. The tree branches are labeled with
the percentages of the data set that go down each branch. For the
terminal nodes, the EC method that has the highest percentage
of wins for that node data is selected by the plurality rule as
the class for all data in the node. We see that 42% of the I-frame
macroblocksdohave a co-sited MB in the previous P-frame that
has a motion vector of zero. For these data, the tree ends. These
MBs will be reconstructed with the copyPmb method (copying
the co-sited MB from the previous P-frame), and for 91% of
them, this will in fact be the best that could be done. Of the
I-frame MBs in the root node, 58%do nothave a co-sited MB
in the previous P-frame with . For these MBs, there are
further splits of the data, and either the panning method or spa-
tial concealment ends up being used. The concealment methods
dictated by this tree would result in an MSE that is 77% of the
best fixed method, which translates to a 1.13 dB improvement
in PSNR.

For long sequences, the overhead of transmitting a tree is
amortized, and one can consider transmitting large trees. Plots
of distortion versus number of terminal nodes and bit rate over-
head for ten I frames of three different sequences—cact, susi,
and tennis, appear in Fig. 3. For the 40 P frames from each of the
same sequences, the plots of distortion reduction versus number
of terminal nodes and bit rate overhead are shown in Fig. 4. In
the plots, the maximum MSE is normalized to 1, corresponding
to the MSE of the best single EC method out of the methods

Fig. 4. MSE versus number of tree terminal nodes and bit rate overhead for
40 P frames of cact, susi, and tennis sequences.

available. In the figure, the dashed horizontal lines show the
omniscient minimum MSE, the lowest MSE which the decision
tree reaches if it grows large enough. Note that misclassifica-
tion error always decreases as the size of the tree increases; this
does not necessarily mean the MSE also decreases because a
larger tree may make fewer classification errors but which are
more costly in terms of MSE. However as shown in the figures,
MSE usually decreases with increasing tree size as well. The bit
rate overhead corresponding to the number of terminal nodes is
computed as follows. The total bit count for the video data is
5 s 1.5 Mbps 7.5 Mbits as the 150 frames are encoded at
1.5 Mbps with 30 frames/s. For a binary tree, the number of in-
ternal nodes is always 1 less than the number of terminal nodes.
For any node, 1 bit is needed to indicate which type of node
it is. Further, for an internal node, another five bits are needed
to specify which variable to split on, and seven more bits to
specify the splitting threshold; while for a terminal node, only
two (for four methods applicable to I frame MBs) or three (for
six methods applicable to P/B frame MBs) more bits are needed
to specify the concealment method to use.

For the table tennis I pictures, the best fixed method
is copyPmb. This corresponds to the max MSE of 1. The
omniscient minimum has a relative value of 0.59 and requires
a bit rate overhead of 0.08% (as two bits are needed for all
2860 MBs ten I frames 286 MBs/frame). As shown in
Fig. 3, a tree with 53 terminal nodes (corresponds to a bit
rate overhead of 0.01%) achieves a relative MSE of 0.67. The
average depth of the 53-terminal-node tree is less than six, so
the decoder needs to follow a sequence of 6 binary tests on
the average to figure out which concealment method to use.
In the same figure, trees with 61 and ten terminal nodes reach
relative MSEs of 0.64 and 0.69 for the cact and susi I pictures,
respectively (which have omniscient minima of 0.56 and 0.58,
respectively). The best fixed method for the cact I frames was
panning; and for the susi I frames, the spatial method. For P
frames of all three sequences, the best fixed methods are the
same, top/botMV.
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TABLE III
MSE RESULTS (AVERAGED OVER 4 LUMINANCE AND 2 CHROMINANCE BLOCKS) FOR VARIOUS CONCEALMENT METHODS.

ALL DECISION TREESHAVE LESSTHAN 120 TERMINAL NODES. (A-MSE: ABSOLUTE MSE; R-MSE: RELATIVE MSE)

As shown in Fig. 4, the gains for P pictures are larger. The
best results are for the susi sequence, where a tiny tree with
about five terminal nodes achieves one third of the MSE of the
best fixed method. This translates to a PSNR improvement of
4.7 dB. The omniscient minimum is about 25% of the MSE of
the best fixed method, so the tiny tree is capturing most of the
available gain. However, the omniscient performance comes at a
cost of 0.45% bit rate overhead (three bits for all 40286 MBs),
whereas a five-terminal node tree takes only about 0.001% bit
rate overhead. The cact and tennis sequences are more typical.
Compared to using the best single error concealment method,
using a small tree (less than 10 terminal nodes) provides a 10%
and 25% reduction in MSE for cact and tennis, respectively.

Some numerical results appear in Table III for the susi and
tennis sequences. The MSE for each fixed method (used only on
the MBs which are applicable) is listed, as well as the omniscient
minimum MSE, and the MSE from using the decision tree. We
list the MSE for the “best fix” which is where the best single
error concealment method is used for all macroblocks for which
it is applicable, and a different method where it is not applicable-
this approach provides the normalized value of 1 in Figs. 3 and 4.
These MSEs are all given in the column A-mse. Relative MSEs
are provided in the column R-mse, where the “best fix” method
is normalized to 1. We also list the MSE of the reconstructed
sequenceswith no MB loss.

When implemented at the level of individual GOPs, tree suc-
cess rates varied. In our experiment each GOP was composed
of 15 frames, including one I frame, four P frames, and ten B
frames. For P frames, in mobile-calendar, trees with about 40
terminal nodes capture 40% to 80% of the available MSE reduc-
tion, capturing on average about 70% and providing MSEs typ-
ically in the range of 75% to 90% of the best fixed EC method.
In the flower garden sequence, often trees with only 20 terminal
nodes can capture 75% to 95% of the available MSE reduction,
providing MSEs in the range of 50% to 70% of the best fixed
EC method. The overhead rate for sending one tree of size 20
terminal nodes for each GOP is 0.04%.

V. CONCLUSIONS

We have presented two new temporal EC methods, one
based on estimating global pan parameters, and another based

on separating a MB into top and bottom halves for separate use
of MVs from above and below. These new EC methods were
often the best choices among the fixed methods. The use of a
decision tree to choose adaptively among the various methods
consistently provided lower distortion than any fixed method
alone.

We envision that decision trees could be designed for indi-
vidual GOPs, or for individual frames; or decision trees could
be designed for variable-length groups of data as the previous
concealment strategy becomes outdated. The decision tree re-
quires only a very small and adjustable level of overhead that
depends on the tree size. The memory and computational re-
quirements for this approach are quite asymmetric. The decoder
only has to store a tiny tree; and the main computational com-
plexity involved is using the tree and having more than one error
concealment method available. On the other hand, the encoder
needs to obtain and store the learning sample. The main com-
putational complexity involved is finding the best concealment
method for each MB and building the tree. As for the memory
requirement at the encoder, the learning sample derived from
a frame is about 20 times smaller than the frame itself, so a
learning sample derived from a GOP or multiple GOPs may
well be reasonable (consider the memory requirements of mo-
tion compensation over a large number of frames as proposed
in [16]).
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