
Mach Learn (2008) 73: 185–214

DOI 10.1007/s10994-008-5077-3

Decision trees for hierarchical multi-label classification

Celine Vens · Jan Struyf · Leander Schietgat · Sašo Džeroski · Hendrik Blockeel

Received: 16 October 2007 / Revised: 11 June 2008 / Accepted: 8 July 2008 /

Published online: 1 August 2008

Springer Science+Business Media, LLC 2008

Abstract Hierarchical multi-label classification (HMC) is a variant of classification where

instances may belong to multiple classes at the same time and these classes are organized

in a hierarchy. This article presents several approaches to the induction of decision trees for

HMC, as well as an empirical study of their use in functional genomics. We compare learn-

ing a single HMC tree (which makes predictions for all classes together) to two approaches

that learn a set of regular classification trees (one for each class). The first approach defines

an independent single-label classification task for each class (SC). Obviously, the hierarchy

introduces dependencies between the classes. While they are ignored by the first approach,

they are exploited by the second approach, named hierarchical single-label classification

(HSC). Depending on the application at hand, the hierarchy of classes can be such that

each class has at most one parent (tree structure) or such that classes may have multiple

parents (DAG structure). The latter case has not been considered before and we show how

the HMC and HSC approaches can be modified to support this setting. We compare the

three approaches on 24 yeast data sets using as classification schemes MIPS’s FunCat (tree

structure) and the Gene Ontology (DAG structure). We show that HMC trees outperform

HSC and SC trees along three dimensions: predictive accuracy, model size, and induction

Editor: Johannes Fürnkranz.

C. Vens (�) · J. Struyf · L. Schietgat · H. Blockeel

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven,

Belgium

e-mail: celine.vens@cs.kuleuven.be

J. Struyf

e-mail: jan.struyf@cs.kuleuven.be

L. Schietgat

e-mail: leander.schietgat@cs.kuleuven.be

H. Blockeel

e-mail: hendrik.blockeel@cs.kuleuven.be

S. Džeroski

Department of Knowledge Technologies, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

e-mail: saso.dzeroski@ijs.si

mailto:celine.vens@cs.kuleuven.be
mailto:jan.struyf@cs.kuleuven.be
mailto:leander.schietgat@cs.kuleuven.be
mailto:hendrik.blockeel@cs.kuleuven.be
mailto:saso.dzeroski@ijs.si

186 Mach Learn (2008) 73: 185–214

time. We conclude that HMC trees should definitely be considered in HMC tasks where

interpretable models are desired.

Keywords Hierarchical classification · Multi-label classification · Decision trees ·

Functional genomics · Precision-recall analysis

1 Introduction

Classification refers to the task of learning from a set of classified instances a model that

can predict the class of previously unseen instances. Hierarchical multi-label classification

(HMC) differs from normal classification in two ways: (1) a single example may belong to

multiple classes simultaneously; and (2) the classes are organized in a hierarchy: an example

that belongs to some class automatically belongs to all its superclasses (we call this the

hierarchy constraint).

Examples of this kind of problems are found in several domains, including text clas-

sification (Rousu et al. 2006), functional genomics (Barutcuoglu et al. 2006), and object

recognition (Stenger et al. 2007). In functional genomics, which is the application on which

we focus, an important problem is predicting the functions of genes. Biologists have a set

of possible functions that genes may have, and these functions are organized in a hierarchy

(see Fig. 1 for an example). It is known that a single gene may have multiple functions.

In order to understand the interactions between different genes, it is important to obtain an

interpretable model.

Several methods can be distinguished that handle HMC tasks. A first approach trans-

forms an HMC task into a separate binary classification task for each class in the hierarchy

and applies an existing classification algorithm. We refer to it as the SC (single-label classi-

fication) approach. This technique has several disadvantages. First, it is inefficient, because

the learner has to be run |C| times, with |C| the number of classes, which can be hundreds

or thousands in some applications. Second, it often results in learning from strongly skewed

class distributions: in typical HMC applications classes at lower levels of the hierarchy of-

ten have very small frequencies, while (because of the hierarchy constraint) the frequency

of classes at higher levels tends to be very high. Many learners have problems with strongly

skewed class distributions (Weiss and Provost 2003). Third, from the knowledge discovery

point of view, the learned models identify features relevant for one class, rather than iden-

tifying features with high overall relevance. Finally, the hierarchy constraint is not taken

into account, i.e. it is not automatically imposed that an instance belonging to a class should

belong to all its superclasses.

A second approach is to adapt the SC method, so that this last issue is dealt with. Some

authors have proposed to hierarchically combine the class-wise models in the prediction

Fig. 1 A small part of the

hierarchical FunCat classification

scheme (Mewes et al. 1999)

1 METABOLISM
1.1 amino acid metabolism
1.1.3 assimilation of ammonia, metabolism of the
glutamate group
1.1.3.1 metabolism of glutamine
1.1.3.1.1 biosynthesis of glutamine
1.1.3.1.2 degradation of glutamine
...
1.2 nitrogen, sulfur, and selenium metabolism
...
2 ENERGY
2.1 glycolysis and gluconeogenesis
...

Mach Learn (2008) 73: 185–214 187

stage, so that a classifier constructed for a class c can only predict positive if the classifier

for the parent class of c has predicted positive (Barutcuoglu et al. 2006; Cesa-Bianchi et al.

2006). In addition, one can also take the hierarchy constraint into account during training

by restricting the training set for the classifier for class c to those instances belonging to the

parent class of c (Cesa-Bianchi et al. 2006). This approach is called the HSC (hierarchical

single-label classification) approach throughout the text.

A third approach is to develop learners that learn a single multi-label model that predicts

all the classes of an example at once (Clare 2003; Blockeel et al. 2006). Next to taking

the hierarchy constraint into account, this approach is also able to identify features that are

relevant to all classes. We call this the HMC approach.

Given our target application of functional genomics, we focus on decision tree methods,

because of their interpretability. In Blockeel et al. (2006), we presented an empirical study

on the use of decision trees for HMC tasks. We presented an HMC decision tree learner, and

showed that it can outperform the SC approach on all fronts: predictive performance, model

size, and induction time.

In this article, we further investigate the suitability of decision trees for HMC tasks, by

extending the analysis along several dimensions. The most important contributions of this

work are the following:

– We consider three decision tree approaches towards HMC tasks: (1) learning a separate

binary decision tree for each class label (SC), (2) learning and applying such single-label

decision trees in a hierarchical way (HSC), and (3) learning one tree that predicts all

classes at once (HMC). The HSC approach has not been considered before in the context

of decision trees.

– We consider more complex class hierarchies. In particular, the hierarchies are no longer

constrained to trees, but can be directed acyclic graphs (DAGs). To our knowledge, this

setting has not been thoroughly studied before. We show how the decision tree approaches

can be modified to support class hierarchies with a DAG structure.

– The approaches are compared by performing an extensive experimental evaluation on 24

data sets from yeast functional genomics, using as classification schemes MIPS’s Fun-

Cat (Mewes et al. 1999) (tree structure) and the Gene Ontology (Ashburner et al. 2000)

(DAG structure). The latter results in datasets with (on average) 4000 class labels, which

underlines the scalability of the approaches to large class hierarchies.

– When dealing with the highly skewed class distributions that are characteristic for the

HMC setting, precision-recall curves are the most suitable evaluation tool (Davis and

Goadrich 2006). We propose several ways to perform a precision-recall based analysis in

domains with multiple (hierarchically organized) class labels and discuss the difference

in their behavior.

The text is organized as follows. We start by discussing previous work in Sect. 2. Sec-

tion 3 presents the three decision tree methods for HMC in detail. In Sect. 4, we extend the

algorithms towards DAG structured class hierarchies. In Sect. 5, we propose the precision-

recall based performance measures, used for the empirical study described in Sect. 6. Finally,

we conclude in Sect. 7.

2 Related work

Much work in hierarchical multi-label classification (HMC) has been motivated by text clas-

sification. Rousu et al. (2006) present the state of the art in this domain, which consists

mostly of Bayesian and kernel-based classifiers.

188 Mach Learn (2008) 73: 185–214

Koller and Sahami (1997) consider a hierarchical text classification problem setting

where each text document belongs to exactly one class at the bottom level of a topic hi-

erarchy. For each topic in an internal node of the hierarchy, a Bayesian classifier is learned

that distinguishes between the possible subtopics, using only those training instances that

belong to the parent topic. Test documents are then classified by filtering them through the

hierarchy, predicting one topic at each level, until the documents reach the bottom level,

thereby ensuring the hierarchy constraint. Errors made at higher levels of the hierarchy are

unrecoverable at the lower levels. The procedure is similar to the HSC approach. Neverthe-

less, as only one path in the hierarchy is predicted, the method is not strictly multi-label.

Another difference with HSC is that the node classifiers are not binary.

In the work of Cesa-Bianchi et al. (2006), every data instance is labeled with a set of class

labels, which may belong to more than one path in the hierarchy. Instances can also be tagged

with labels belonging to a path that does not end on a leaf. At each node of the (tree-shaped)

taxonomy a binary linear threshold classifier is built, using as training instances only those

instances belonging to the node’s parent class. This is thus an HSC method. The parameters

of the classifier are trained incrementally: at each timestamp, an example is presented to

the current set of classifiers, the predicted labels are compared to the real labels, and the

classifiers’ parameters are updated. In that process, a classifier can only predict positive if

its parent classifier has predicted positive, ensuring that the hierarchy constraint is satisfied.

Barutcuoglu et al. (2006) recently presented a two-step approach where support vector

machines (SVMs) are learned for each class separately, and then combined using a Bayesian

network model so that the predictions are consistent with the hierarchy constraint.

Rousu et al. (2006) presented a more direct approach that does not require a second step

to make sure that the hierarchy constraint is satisfied. Their approach is based on a large

margin method for structured output prediction (Taskar et al. 2003; Tsochantaridis et al.

2005). Such work defines a joint feature map Ψ (x, y) over the input space X and the output

space Y . In the context of HMC, the output space Y is the set of all possible subtrees of

the class hierarchy. Next, it applies SVM based techniques to learn the weights w of the

discriminant function F(x, y) = 〈w,Ψ (x, y)〉, with 〈·, ·〉 the dot product. The discriminant

function is then used to classify a (new) instance x as argmaxy∈Y F(x, y). There are two

main challenges that must be tackled when applying this approach to a structured output

prediction problem: (a) defining Ψ , and (b) finding an efficient way to compute the argmax

function (the range of this function is Y , which is of size exponential in the number of

classes). Rousu et al. (2006) describe a suitable Ψ and propose an efficient method based on

dynamic programming to compute the argmax.

From the point of view of knowledge discovery, it is sometimes useful to obtain more

interpretable models, such as decision trees, which is the kind of approach we study here.

Clare and King (2001) presented a decision tree method for multi-label classification in

the context of functional genomics. In their approach, a tree predicts not a single class but

a vector of Boolean class variables. They propose a simple adaptation of C4.5 to learn such

trees: where C4.5 normally uses class entropy for choosing the best split, their version uses

the sum of entropies of the class variables. Clare (2003) extended the method to predict

classes on several levels of the hierarchy, assigning a larger cost to misclassifications higher

up in the hierarchy, and presented an evaluation on the twelve data sets that we also use here.

Blockeel et al. (2006) proposed the idea of using predictive clustering trees (Blockeel et

al. 1998; Blockeel et al. 2002) for HMC tasks. As mentioned in the introduction, this work

(Blockeel et al. 2006) presents the first thorough empirical comparison between an HMC

and SC decision tree method in the context of tree shaped class hierarchies.

Geurts et al. (2006) recently presented a decision tree based approach related to predic-

tive clustering trees. They start from a different definition of variance and then kernelize

Mach Learn (2008) 73: 185–214 189

this variance function. The result is a decision tree induction system that can be applied to

structured output prediction using a method similar to the large margin methods mentioned

above (Tsochantaridis et al. 2005; Taskar et al. 2003). Therefore, this system could also be

used for HMC after defining a suitable kernel. To this end, an approach similar to that of

Rousu et al. (2006) could be used.

3 Decision tree approaches for HMC

We start this section by defining the HMC task more formally (Sect. 3.1). Next, we present

the framework of predictive clustering trees (Sect. 3.2), which will be used to instantiate

three decision tree algorithms for HMC tasks: an HMC algorithm (Sect. 3.3), an SC algo-

rithm (Sect. 3.4), and an HSC algorithm (Sect. 3.5). Section 3.6 compares the three algo-

rithms at a conceptual level. In this section, we assume that the class hierarchy has a tree

structure. Section 4 will discuss extensions towards hierarchies structured as a DAG.

3.1 Formal task description

We define the task of hierarchical multi-label classification as follows:

Given:

– an instance space X,

– a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial order (structured

as a rooted tree for now) representing the superclass relationship (for all c1, c2 ∈ C: c1 ≤h

c2 if and only if c1 is a superclass of c2),

– a set T of examples (xi, Si) with xi ∈ X and Si ⊆ C such that c ∈ Si ⇒ ∀c′ ≤h c : c′ ∈ Si ,

and

– a quality criterion q (which typically rewards models with high predictive accuracy and

low complexity).

Find: a function f : X → 2C (where 2C is the power set of C) such that f maximizes q and

c ∈ f (x) ⇒ ∀c′ ≤h c : c′ ∈ f (x). We call this last condition the hierarchy constraint.

In this article, the function f is represented with decision trees.

3.2 Predictive clustering trees

The decision tree methods that we present in the next sections are set in the predictive clus-

tering tree (PCT) framework (Blockeel et al. 1998). This framework views a decision tree

as a hierarchy of clusters: the top-node corresponds to one cluster containing all data, which

is recursively partitioned into smaller clusters while moving down the tree. PCTs are con-

structed so that each split maximally reduces intra-cluster variance. They can be applied to

both clustering and prediction tasks, and have clustering trees and (multi-objective) classifi-

cation and regression trees as special cases.

PCTs (Blockeel et al. 1998) can be constructed with a standard “top-down induction of

decision trees” (TDIDT) algorithm, similar to CART (Breiman et al. 1984) or C4.5 (Quinlan

1993). The algorithm (Table 1) takes as input a set of training instances I . The main loop

(Table 1, BestTest) searches for the best acceptable attribute-value test that can be put in a

node. If such a test t∗ can be found then the algorithm creates a new internal node labeled t∗

and calls itself recursively to construct a subtree for each subset (cluster) in the partition P
∗

induced by t∗ on the training instances. To select the best test, the algorithm scores the tests

190 Mach Learn (2008) 73: 185–214

Table 1 The top-down induction algorithm for PCTs. I denotes the current training instances, t an attribute-

value test, P the partition induced by t on I , and h the heuristic value of t . The superscript ∗ indicates the

current best test and its corresponding partition and heuristic. The functions Var, Prototype, and Acceptable

are described in the text

procedure PCT(I) returns tree

1: (t∗, P ∗) = BestTest(I)

2: if t∗ �= none then

3: for each Ik ∈ P ∗ do

4: treek = PCT(Ik)

5: return node(t∗,
⋃

k{treek})

6: else

7: return leaf(Prototype(I))

procedure BestTest(I)

1: (t∗, h∗, P ∗) = (none,0,∅)

2: for each possible test t do

3: P = partition induced by t on I

4: h = Var(I) −
∑

Ik∈P

|Ik |
|I |

Var(Ik)

5: if (h > h∗) ∧ Acceptable(t, P) then

6: (t∗, h∗, P ∗) = (t, h, P)

7: return (t∗, P ∗)

by the reduction in variance (which is to be defined further) they induce on the instances

(Line 4 of BestTest). Maximizing variance reduction maximizes cluster homogeneity and

improves predictive performance. If no acceptable test can be found, that is, if no test signif-

icantly reduces variance, then the algorithm creates a leaf and labels it with a representative

case, or prototype, of the given instances.

The above description is not very different from that of standard decision tree learners.

The main difference is that PCTs treat the variance and prototype functions as parameters,

and these parameters are instantiated based on the learning task at hand. To construct a re-

gression tree, for example, the variance function returns the variance of the given instances’

target values, and the prototype is the average of their target values. By appropriately defin-

ing the variance and prototype functions, PCTs have been used for clustering (Blockeel et al.

1998; Struyf and Džeroski 2007), multi-objective classification and regression (Blockeel et

al. 1998, 1999; Struyf and Džeroski 2006; Demšar et al. 2006), and time series data analysis

(Džeroski et al. 2006). Section 3.3 shows how PCTs can, in a similar way, be applied to

hierarchical multi-label classification.

The PCT framework is implemented in the Inductive Logic Programming system TILDE

(Blockeel et al. 1998) and in the CLUS system. We will use the CLUS implementation. More

information about CLUS can be found at http://www.cs.kuleuven.be/~dtai/clus.

3.3 Clus-HMC: an HMC decision tree learner

To apply PCTs to the task of hierarchical multi-label classification, the variance and proto-

type parameters are instantiated as follows (Blockeel et al. 2002, 2006).

First, the example labels are represented as vectors with Boolean components; the i’th

component of the vector is 1 if the example belongs to class ci and 0 otherwise. It is easily

checked that the arithmetic mean of a set of such vectors contains as i’th component the

proportion of examples of the set belonging to class ci . We define the variance of a set of

examples as the average squared distance between each example’s label vi and the set’s

mean label v, i.e.,

Var(S) =

∑

i d(vi, v)2

|S|
.

In the HMC context, it makes sense to consider similarity on higher levels of the hierarchy

more important than similarity on lower levels. To that aim, we use a weighted Euclidean

distance

d(v1, v2) =

√

∑

i

w(ci) · (v1,i − v2,i)2,

http://www.cs.kuleuven.be/~dtai/clus

Mach Learn (2008) 73: 185–214 191

Fig. 2 (a) A small hierarchy. Class label names reflect the position in the hierarchy, e.g., ‘2.1’ is a subclass

of ‘2’. (b) The set of classes {1,2,2.2}, indicated in bold in the hierarchy, and represented as a vector

where vk,i is the i’th component of the class vector vk of an instance xk , and the class

weights w(c) decrease with the depth of the class in the hierarchy (e.g., w(c) = w
depth(c)

0 ,

with 0 < w0 < 1). Consider for example the class hierarchy shown in Fig. 2, and two exam-

ples (x1, S1) and (x2, S2) with S1 = {1,2,2.2} and S2 = {2}. Using a vector representation

with consecutive components representing membership of class 1, 2, 2.1, 2.2 and 3, in that

order,

d([1,1,0,1,0], [0,1,0,0,0]) =

√

w0 + w2
0 .

The heuristic for choosing the best test for a node of the tree is then maximization of the

variance reduction as discussed in Sect. 3.2, with the above definition of variance. Note that

this essentially corresponds to converting the example labels to 0/1 vectors and then using

the same variance definition as is used when applying PCTs to multi-objective regression

(Blockeel et al. 1998, 1999), but with appropriate weights. In the single-label case, this

heuristic is in turn identical to the heuristic used in regression tree learners such as CART

(Breiman et al. 1984), and equivalent to the Gini index used by CART in classification tree

mode.

A classification tree stores in a leaf the majority class for that leaf; this class will be

the tree’s prediction for examples arriving in the leaf. But in our case, since an example

may have multiple classes, the notion of “majority class” does not apply in a straightfor-

ward manner. Instead, the mean v̄ of the vectors of the examples in that leaf is stored; in

other words, the prototype function returns v̄. Figure 3a shows a simple HMC tree for the

hierarchy of Fig. 2.

Recall that v̄i is the proportion of examples in the leaf belonging to class ci , which can

be interpreted as the probability that an example arriving in the leaf has class ci . If v̄i is

above some threshold ti , the example is predicted to belong to class ci . To ensure that the

predictions fulfill the hierarchy constraint (whenever a class is predicted its superclasses are

also predicted), it suffices to choose ti ≤ tj whenever ci ≤h cj .

Exactly how the thresholds should be chosen is a question that we do not address here.

Depending on the context, a user may want to set the thresholds such that the resulting

classifier has maximal predictive accuracy, high precision at the cost of lower recall or vice

versa, maximal F1-score (which reflects a particular trade-off between precision and recall),

minimal expected misclassification cost (where different types of mistakes may be assigned

different costs), maximal interpretability or plausibility of the resulting model, etc. Instead

of committing to a particular rule for choosing the threshold, we will study the performance

of the predictive models using threshold-independent measures. More precisely, we will use

precision-recall curves (as will be clear in Sect. 5).

192 Mach Learn (2008) 73: 185–214

Fig. 3 (a) HMC: one tree predicting, in each leaf, the probability for each class in the hierarchy. (b) SC: a

separate tree T (ci) for each class ci . (c) HSC: a separate tree for each hierarchy edge. The left part of (c)

shows how the HSC trees are organized in the class hierarchy. The right part shows T (2.1|2) and T (2.2|2);

trees T (1), T (2), and T (3) are identical to those of SC. Note that the leaves of T (2.1|2) and T (2.2|2) predict

conditional probabilities

Finally, the function Acceptable in Table 1 verifies for a given test that the number of

instances in each subset of the corresponding partition P is at least mincases (a parameter)

and that the variance reduction is significant according to a statistical F -test. We call the

resulting algorithm CLUS-HMC.

3.4 Clus-SC: learning a separate tree for each class

The second approach that we consider builds a separate tree for each class in the hierarchy

(Fig. 3b). Each of these trees is a single-label binary classification tree. Assume that the tree

learner takes as input a set of examples labeled positive or negative. To construct the tree for

class c with such a learner, we label the class c examples positive and all the other examples

negative. The resulting tree predicts the probability that a new instance belongs to c. We

refer to this method as single-label classification (SC).

In order to classify a new instance, SC thresholds the predictions of the different single-

label trees, similar to CLUS-HMC. Note, however, that this does not guarantee that the

hierarchy constraint holds, even if the thresholds are chosen such that ti ≤ tj whenever

ci ≤h cj . Indeed, the structure of the SC trees can be different from that of their parent

class’s SC tree,1 and therefore, the tree built for, e.g., class 2.1 may very well predict a higher

probability than the tree built for class 2 for a given instance. In practice, post-processing

1Figure 3 was chosen to show that the different approaches (HMC/SC/HSC) are able to express the same

concept; the SC trees all have the same structure and are subtrees of the CLUS-HMC tree. In general, this is

not the case.

Mach Learn (2008) 73: 185–214 193

techniques can be applied to ensure that a class probability does not exceed its parent class

probability. This problem does not occur with CLUS-HMC; CLUS-HMC always predicts

smaller probabilities for specific classes than for more general classes.

The class-wise trees can be constructed with any classification tree induction algorithm.

Note that CLUS-HMC reduces to a single-label binary classification tree learner when ap-

plied to such data; its class vector then reduces to a single component and its heuristic

reduces to CART’s Gini index (Breiman et al. 1984), as pointed out in Sect. 3.3. We can

therefore use the same induction algorithm (CLUS-HMC) for both the HMC and SC ap-

proaches. This makes the results easier to interpret. It has been confirmed (Blockeel et al.

2006) that on binary classification tasks, CLUS-HMC performs comparably to state of the

art decision tree learners. We call the SC approach with CLUS-HMC as decision tree learner

CLUS-SC.

3.5 Clus-HSC: learning a separate tree for each hierarchy edge

Building a separate decision tree for each class has several disadvantages, such as the pos-

sibility of violating the hierarchy constraint. In order to deal with this issue, the CLUS-SC

algorithm can be adapted as follows (Fig. 3c).

For a non-top-level class c, it holds that an instance can only belong to c if it belongs

to c’s parent par(c). An alternative approach to learning a tree that directly predicts c, is

therefore to learn a tree that predicts c given that the instance belongs to par(c). Learning

such a tree requires fewer training instances: only the instances belonging to par(c) are

relevant. The subset of these instances that also belong to c become the positive instances

and the other instances (those belonging to par(c) but not to c) the negative instances. The

resulting tree predicts the conditional probability P (c|par(c)). W.r.t. the top-level classes,

the approach is identical to CLUS-SC, i.e., all training instances are used.

To make predictions for a new instance, we use the product rule P (c) = P (c|par(c)) ·

P (par(c)) (for non-top-level classes). This rule applies the trees recursively, starting from

the tree for a top-level class. For example, to compute the probability that the instance be-

longs to class 2.2, we first use the tree for class 2 to predict P (2) and next the tree for class

2.2 to predict P (2.2|2). The resulting probability is then P (2.2) = P (2.2|2) · P (2). Again,

these probabilities are thresholded to obtain the predicted set of classes. As with CLUS-

HMC, to ensure that this set fulfills the hierarchy constraint, it suffices to choose a threshold

ti ≤ tj whenever ci ≤h cj . We call the resulting algorithm CLUS-HSC (hierarchical single-

label classification).

3.6 Comparison

To conclude this section, we compare the three proposed approaches (HMC, SC, and HSC)

at a conceptual level, according to the properties mentioned in the introduction: the effi-

ciency of learning the models, how skewed class distributions are dealt with, whether the

hierarchy constraint is obeyed, and whether global or local features are identified. Other

comparison measures, such as predictive performance and model size, will be investigated

in depth in the experiments section. Table 2 gives an overview.

Concerning efficiency, Blockeel et al. (2006) have shown that CLUS-HMC is more ef-

ficient than CLUS-SC. The CLUS-HSC algorithm is expected to be more efficient than

CLUS-SC, since smaller training sets are used for constructing the trees. Experimental eval-

uation will have to demonstrate how CLUS-HMC and CLUS-HSC relate.

As mentioned in the introduction, CLUS-SC has to deal with highly skewed class distri-

butions for many of the trees it builds. CLUS-HSC reduces the training data for each class

194 Mach Learn (2008) 73: 185–214

Table 2 Comparing the three decision tree approaches at a conceptual level

CLUS-HMC CLUS-HSC CLUS-SC

efficiency + + −

dealing with imbalanced class distributions ? +/− −

obeying the hierarchy constraint + + −

identifying global features + − −

by discarding negative examples that do not belong to the parent class. In most cases, this

yields a more balanced class distribution, although there is a small probability that the distri-

bution becomes even more skewed.2 On average we expect CLUS-HSC to suffer less from

imbalanced class distributions than CLUS-SC. For CLUS-HMC, which learns all classes at

once, it is difficult to estimate the effect of individual imbalanced class distributions.

As explained before, both CLUS-HMC and CLUS-HSC obey the hierarchy constraint if

appropriate threshold values are chosen for each class (e.g., if all thresholds are the same),

while CLUS-SC does not.

Finally, whereas the models found by CLUS-HSC and CLUS-SC will contain features

relevant for predicting one particular class, CLUS-HMC will identify features with high

overall relevance.

4 Hierarchies structured as DAGs

Until now, we have assumed that the class hierarchy is structured as a rooted tree. In this

section, we discuss the issues that arise when dealing with more general hierarchies that are

structured as directed acyclic graphs (DAGs). Such a class structure occurs when a given

class can have more than one parent class in the hierarchy. An example of such a hierarchy

is the Gene Ontology (Ashburner et al. 2000), a biological classification hierarchy for genes.

In general, a classification scheme structured as a DAG can have two interpretations: if an

instance belongs to a class c, then it either belongs also to all superclasses of c, or it belongs

also to at least one superclass of c. We focus on the first case, which corresponds to the

“multiple inheritance” interpretation, where a given class inherits the properties (classes) of

all its parents. This interpretation is correct for the Gene Ontology.

In the following sections, we discuss the issues that arise when dealing with a DAG type

class hierarchy, and discuss the modifications that are required to the algorithms discussed in

the previous section to be able to deal with such hierarchies. Obviously, CLUS-SC requires

no changes because this method ignores the hierarchical structure of the classes.

4.1 Adaptations to Clus-HMC

CLUS-HMC computes the variance based on the weighted Euclidean distance between class

vectors, where a class c’s weight w(c) depends on the depth of c in the class hierarchy (e.g.,

2Suppose we have 200 examples, of which 100 belong to class 1 and 20 to class 1.1; then when learning class

1.1 from the whole set, 10% of the training examples are positive, while when learning from examples of

class 1 only, 20% are positive. So, the problem becomes better balanced. If, on the other hand, among the 100

class 1 examples, 90 belong to 1.1, then the original distribution has 90/200 = 45% positives, whereas when

learning from class 1 examples only we have 90% positives: a more skewed dataset. Generally, the problem

will become more balanced for classes c where
Nc
N

+
Nc

Npar(c)
< 1 (N denotes the number of examples and

par(c) the parent class of c).

Mach Learn (2008) 73: 185–214 195

w(c) = w
depth(c)

0). When the classes are structured as a DAG, however, the depth of a class

is no longer unique: a class may have several depths, depending on the path followed from

a top-level class to the given class (see for instance class c6 in Fig. 4a). As a result, the class

weights are no longer properly defined. We therefore propose the following approach. Ob-

serve that w(c) = w
depth(c)

0 can be rewritten as the recurrence relation w(c) = w0 ·w(par(c)),

with par(c) the parent class of c, and the weights of the top-level classes equal to w0. This

recurrence relation naturally generalizes to hierarchies where classes may have multiple par-

ents by replacing w(par(c)) by an aggregation function computed over the weights of c’s

parents. Depending on the aggregation function used (sum, min, max, average), we obtain

the following approaches:

– w(c) = w0

∑

j w(parj (c)) is equivalent to flattening the DAG into a tree (by copying

the subtrees that have multiple parents) and then using w(c) = w
depth(c)

0 . The more paths

in the DAG lead to a class, the more important this class is considered by this method.

A drawback is that there is no guarantee that w(c) < w(parj (c)). For example, in Fig. 4a,

the weight of class c6 is larger than the weights of both its parents.

– w(c) = w0 · minjw(parj (c)) has the advantage that it guarantees ∀c, j : w(c) <

w(parj (c)). A drawback is that it assigns a small weight to a class that has multiple

parents and that appears both close to the top-level and deep in the hierarchy.

– w(c) = w0 · maxjw(parj (c)) guarantees a high weight for classes that appear close to the

top-level of the hierarchy. It does not satisfy w(c) < w(parj (c)), but still yields smaller

weights than w(c) = w0

∑

j w(parj (c)).

– w(c) = w0 · avgjw(parj (c)) can be considered a compromise in between the “min” and

“max” approaches.

We compare the above weighting schemes in the experimental evaluation. Note that all

the weighting schemes become equivalent for tree shaped hierarchies.

Fig. 4 (a) A class hierarchy structured as a DAG. The class-wise weights computed for CLUS-HMC with

the weighting scheme w(c) = w0
∑

j w(parj (c)) and w0 = 0.75 are indicated below each class. (b) The

trees constructed by CLUS-HSC. Assume that these trees predict, for a given test instance, the conditional

probabilities indicated below each tree. CLUS-HSC then predicts the probability of a given class c with the

combining rule P(c) = minj P(c|parj (c)) · P(parj (c)) (indicated below each class)

196 Mach Learn (2008) 73: 185–214

4.2 Adaptations to Clus-HSC

Recall that CLUS-HSC builds models that predict P (c|par(c)). This approach can be triv-

ially extended to DAG structured hierarchies by creating one model for each combina-

tion of a parent class with one of its children (or equivalently, one model for each hi-

erarchy edge) predicting P (c|parj (c)) (Fig. 4b). To make a prediction, the product rule

P (c) = P (c|parj (c)) · P (parj (c)) can be applied for each parent class parj (c), and will

yield a valid estimate of P (c) based on that parent. In order to obtain an estimate of P (c)

based on all parent classes, we aggregate over the parent-wise estimates.

Recall that CLUS-HSC fulfills the hierarchy constraint in the context of tree struc-

tured class hierarchies. We want to preserve this property in the case of DAGs. To that

aim, we use as aggregate function the minimum of the parent-wise estimates, i.e., P (c) =

minjP (c|parj (c)) ·P (parj (c)). CLUS-HSC applies this rule in a top-down fashion (starting

with the top-level classes) to compute predicted probabilities for all classes in the hierarchy.

Figure 4b illustrates this process.

Instead of building one tree for each hierarchy edge, one could consider building a tree

for each hierarchy node and using as training set for such a tree the instances labeled with

all parent classes. This would yield trees predicting P (c|
∧

parj (c)). While this approach

builds fewer trees, it has two important disadvantages. First, the number of training instances

per tree can become very small (only the instances that belong to all parent classes are used).

Second, the predicted class probabilities are now given by the rule P (c) = P (c|
∧

parj (c)) ·

P (
∧

parj (c)), and it is unclear how the last term of this rule can be estimated for a test

example. CLUS-HSC therefore relies on the approach outlined above with one model per

hierarchy edge.

5 Predictive performance measures

After having proposed three decision tree methods for HMC tasks with DAG structured

class hierarchies, our next step is to compare their predictive performance, model size, and

induction times. Before proceeding, we discuss how to evaluate the predictive performance

of the classifiers.

5.1 Hierarchical loss

Cesa-Bianchi et al. (2006) have defined a hierarchical loss function that considers mistakes

made at higher levels in the class hierarchy more important than mistakes made at lower

levels. The hierarchical loss function for an instance xk is defined as follows:

lH (xk) =
∑

i

[vk,i �= yk,i and ∀cj ≤h ci : vk,j = yk,j],

where i iterates over all class labels, v represents the predicted class vector, and y the real

class vector. In the work of Cesa-Bianchi et al., the class hierarchy is structured as a tree,

and thus, it penalizes the first mistake along the path from the root to a node. In the case of a

DAG, the loss function can be generalized in two different ways. One can penalize a mistake

if all ancestor nodes are predicted correctly (in this case, the above definition carries over),

or one can penalize a mistake if there exists a correctly predicted path from the root to the

node.

In the rest of the article, we do not consider this evaluation function, since it requires

thresholded predictions, and we are interested in evaluating our methods regardless of any

threshold.

Mach Learn (2008) 73: 185–214 197

5.2 Precision-recall based evaluation

As argued before, we wish to evaluate our predictive models independently from the thresh-

old, as different contexts may require different threshold settings. Generally, in the binary

case, two types of evaluation are suitable for this: ROC analysis and analysis of precision-

recall curves (PR curves). While ROC analysis is probably better known in the machine

learning community, in our case PR analysis is more suitable. We will explain why this is

so in a moment, first we define PR curves.

Precision and recall are traditionally defined for a binary classification task with positive

and negative classes. Precision is the proportion of positive predictions that are correct, and

recall is the proportion of positive examples that are correctly predicted positive. That is,

Prec =
TP

TP + FP
, and Rec =

TP

TP + FN
,

with TP the number of true positives (correctly predicted positive examples), FP the number

of false positives (positive predictions that are incorrect), and FN the number of false neg-

atives (positive examples that are incorrectly predicted negative). Note that these measures

ignore the number of correctly predicted negative examples.

A precision-recall curve (PR curve) plots the precision of a model as a function of its

recall. Assume the model predicts the probability that a new instance is positive, and that we

threshold this probability with a threshold t to obtain the predicted class. A given threshold

corresponds to a single point in PR space, and by varying the threshold we obtain a PR

curve: while decreasing t from 1.0 to 0.0, an increasing number of instances is predicted

positive, causing the recall to increase whereas precision may increase or decrease (with

normally a tendency to decrease).

Although a PR curve helps in understanding the predictive behavior of the model, a

single performance score is more useful to compare models. A score often used to this end

is the area between the PR curve and the recall axis, the so-called “area under the PR curve”

(AUPRC). The closer the AUPRC is to 1.0, the better the model is.

The reason why we believe PR curves to be a more suitable evaluation measure in this

context is the following. In HMC datasets, it is often the case that individual classes have

few positive instances. For example, in functional genomics, typically only a few genes have

a particular function. This implies that for most classes, the number of negative instances

by far exceeds the number of positive instances. We are more interested in recognizing the

positive instances (that an instance has a given label), rather than correctly predicting the

negative ones (that an instance does not have a particular label). Although ROC curves are

better known, we believe that they are less suited for this task, exactly because they reward

a learner if it correctly predicts negative instances (giving rise to a low false positive rate).

This can present an overly optimistic view of the algorithm’s performance. This effect has

been convincingly demonstrated and studied by Davis and Goadrich (2006), and we refer to

them for further details.

A final point to note is that PR curves can be constructed for each individual class in

a multi-label classification task by taking as positives the examples belonging to the class

and as negatives the other examples. How to combine the class-wise performances in order

to quantify the overall performance, is less straightforward. The following two paragraphs

discuss two approaches, each of which are meaningful.

198 Mach Learn (2008) 73: 185–214

5.2.1 Area under the average PR curve

A first approach to obtain an overall performance score is to construct an overall PR curve

by transforming the multi-label problem into a binary problem as follows (Yang 1999;

Tsoumakas and Vlahavas 2007; Blockeel et al. 2006). Consider a binary classifier that takes

as input an (instance, class) couple and predicts whether that instance belongs to that class

or not. Precision is then the proportion of positively predicted couples that are positive and

recall is the proportion of positive couples that are correctly predicted positive. A rank clas-

sifier (which predicts how likely it is that the instance belongs to the class) can be turned into

such a binary classifier by choosing a threshold, and by varying this threshold a PR curve

is obtained. We will evaluate our predictive model in exactly the same way as such a rank

classifier.

For a given threshold value, this yields one point (Prec,Rec) in PR space, which can be

computed as follows:

Prec =

∑

i TPi
∑

i TPi +
∑

i FPi

, and Rec =

∑

i TPi
∑

i TPi +
∑

i FNi

,

where i ranges over all classes. (This corresponds to micro-averaging the precision and

recall.) In terms of the original problem definition, Prec corresponds to the proportion of

predicted labels that are correct and Rec to the proportion of labels in the data that are

correctly predicted.

By varying the threshold, we obtain an average PR curve. We denote the area under this

curve with AU(PRC).

5.2.2 Average area under the PR curves

A second approach is to take the (weighted) average of the areas under the individual (per

class) PR curves, computed as follows:

AUPRCw1,...,w|C|
=

∑

i

wi · AUPRCi .

The most obvious instantiation of this approach is to set all weights to 1/|C|, with C the

set of classes. In the results, we denote this measure with AUPRC. A second instantiation is

to weigh the contribution of a class with its frequency, that is, wi = vi/
∑

j vj , with vi ci ’s

frequency in the data. The rationale behind this is that for some applications more frequent

classes may be more important. We denote the latter measure with AUPRCw .

A corresponding PR curve that has precisely AUPRCw1,...,w|C|
as area can be drawn by

taking, for each value on the recall axis, the (weighted) point-wise average of the class-wise

precision values. Note that the interpretation of this curve is different from that of the micro-

averaged PR curve defined in the previous section. For example, each point on this curve

may correspond to a different threshold for each class. Section 6.3 presents examples of both

types of curves and provides more insight in the difference in interpretation.

6 Experiments in yeast functional genomics

In earlier work (Blockeel et al. 2006), CLUS-HMC has been compared experimentally to

CLUS-SC on a tree-shaped hierarchy, showing that CLUS-HMC has advantages with re-

spect to accuracy, model size, and computational efficiency (time needed for learning and

Mach Learn (2008) 73: 185–214 199

applying the model). Here we report on a broader and more detailed experimental study,

which differs from the previous one in the following ways:

– In the earlier work it was assumed that it is sensible to use greater weights in CLUS-

HMC’s distance measure for classes higher up in the hierarchy. This was not validated

experimentally, however. Here we experiment with different weighting schemes.

– Besides CLUS-HMC and CLUS-SC, CLUS-HSC is included in the comparison. One

could argue that CLUS-HSC is a better baseline learner to compare to than CLUS-SC,

because the general principle of applying single class learners hierarchically has been

proposed before, though not in the decision tree context.

– Only tree-shaped hierarchies were considered previously. We have described how the

method can be extended to DAG-shaped hierarchies, but it is not obvious that results on

tree-shaped hierarchies will carry over towards DAG-shaped hierarchies.

– For multi-label classification, it is not obvious how to measure the overall performance of

a predictive system, averaged out over all classes. In our previous work, precision-recall

curves were constructed, using a natural definition of precision and recall over all classes

together. Here we suggest a number of alternative measures. It turns out that different

measures may give a quite different view of the relative performance of the methods.

Before presenting the results (Sect. 6.3), we first discuss the data sets used in our evaluation

(Sect. 6.1) and the applied methodology (Sect. 6.2).

6.1 Data sets

Saccharomyces cerevisiae (baker’s or brewer’s yeast) is one of biology’s classic model or-

ganisms, and has been the subject of intensive study for years.

We use 12 yeast data sets from Clare (2003) (Table 3), but with new and updated class

labels. The different data sets describe different aspects of the genes in the yeast genome.

They include five types of bioinformatic data: sequence statistics, phenotype, secondary

structure, homology, and expression. The different sources of data highlight different aspects

of gene function. Below, we describe each data set in turn.

D1 (seq) records sequence statistics that depend on the amino acid sequence of the pro-

tein for which the gene codes. These include amino acid ratios, sequence length, molecular

weight and hydrophobicity. Some of the properties were calculated using PROTPARAM (Ex-

pasy 2008), some were taken from MIPS (Mewes et al. 1999) (e.g., the gene’s chromosome

number), and some were simply calculated directly. D1’s attributes are mostly real valued,

although some (like chromosome number or strand) are discrete.

D2 (pheno) contains phenotype data, which represents the growth or lack of growth of

knock-out mutants that are missing the gene in question. The gene is removed or disabled

and the resulting organism is grown with a variety of media to determine what the modified

organism might be sensitive or resistant to. This data was taken from EUROFAN, MIPS and

TRIPLES (Oliver 1996; Mewes et al. 1999; Kumar et al. 2000). The attributes are discrete,

and the data set is sparse, since not all knock-outs have been grown under all conditions.

D3 (struc) stores features computed from the secondary structure of the yeast proteins.

The secondary structure is not known for all yeast genes; however, it can be predicted from

the protein sequence with reasonable accuracy. The program PROF (Ouali and King 2000)

was used to this end. Due to the relational nature of secondary structure data, Clare per-

formed a preprocessing step of relational frequent pattern mining; D3 includes the con-

structed patterns as binary attributes.

D4 (hom) includes for each yeast gene, information from other, homologous genes. Ho-

mology is usually determined by sequence similarity. PSI-BLAST (Altschul et al. 1997)

200 Mach Learn (2008) 73: 185–214

Table 3 Data set properties: number of instances |D|, number of attributes |A|

Data set |D| |A| Data set |D| |A|

D1 Sequence (Clare 2003)

(seq)

3932 478 D7 DeRisi et al. (1997) (derisi) 3733 63

D2 Phenotype (Clare 2003)

(pheno)

1592 69 D8 Eisen et al. (1998) (eisen) 2425 79

D3 Secondary structure

(Clare 2003) (struc)

3851 19628 D9 Gasch et al. (2000) (gasch1) 3773 173

D4 Homology search (Clare

2003) (hom)

3867 47034 D10 Gasch et al. (2001) (gasch2) 3788 52

D5 Spellman et al. (1998)

(cellcycle)

3766 77 D11 Chu et al. (1998) (spo) 3711 80

D6 Roth et al. (1998)

(church)

3764 27 D12 All microarray (Clare 2003)

(expr)

3788 551

was used to compare yeast genes both with other yeast genes, and with all genes indexed

in SwissProt 39. This provided for each yeast gene, a list of homologous genes. For each

of these, various properties were extracted (keywords, sequence length, names of databases

they are listed in, . . .). Clare preprocessed this data in a similar way as the secondary struc-

ture data, to produce binary attributes.

D5, . . . ,D12. The use of microarrays to record the expression of genes is popular in bi-

ology and bioinformatics. Microarray chips provide the means to test the expression levels

of genes across an entire genome in a single experiment. Many expression data sets ex-

ist for yeast, and several of these were used. Attributes for these data sets are real valued,

representing fold changes in expression levels.

We construct two versions of each data set. The input attributes are identical in both

versions, but the classes are taken from two different classification schemes. In the first

version, they are from FunCat (http://mips.gsf.de/projects/funcat), a scheme for classifying

the functions of gene products, developed by MIPS (Mewes et al. 1999). FunCat is a tree-

structured class hierarchy; a small part is shown in Fig. 1. In the second version of the

data sets, the genes are annotated with terms from the Gene Ontology (GO) (Ashburner et

al. 2000) (http://www.geneontology.org), which forms a directed acyclic graph instead of a

tree: each term can have multiple parents (we use GO’s “is-a” relationship between terms).3

Table 4 compares the properties of FunCat and GO. Note that GO has an order of magnitude

more classes than FunCat for our data sets. The 24 resulting datasets can be found on the

following webpage http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html.

6.2 Method

Clare (2003) presents models trained on 2/3 of each data set and tested on the remaining

1/3. In our experiments we use exactly the same training and test sets.

The stopping criterion (i.e., the function Acceptable in Table 1) was implemented as fol-

lows. The minimal number of examples a leaf has to cover was set to 5 for all algorithms.

The F-test that is used to check the significance of the variance reduction takes a signifi-

cance level parameter s, which was optimized as follows: for each out of 6 available values

3The GO versions of the datasets may contain slightly fewer examples, since not all genes in the original

datasets are annotated with GO terms.

http://mips.gsf.de/projects/funcat
http://www.geneontology.org
http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html

Mach Learn (2008) 73: 185–214 201

Table 4 Properties of the two classification schemes. |C| is the average number of classes actually used in

the data sets (out of the total number of classes defined by the scheme). |S| is the average number of labels per

example, with between parentheses the average number counting only the most specific classes of an example

FunCat GO

Scheme version 2.1 (2007/01/09) 1.2 (2007/04/11)

Yeast annotations 2007/03/16 2007/04/07

Total classes 1362 22960

Data set average |C| 492 (6 levels) 3997 (14 levels)

Data set average |S| 8.8 (3.2 most spec.) 35.0 (5.0 most spec.)

for s, CLUS-HMC was run on 2/3 of the training set and its PR curve for the remaining 1/3

validation set was constructed. The s parameter yielding the largest area under this average

validation PR curve was then used to train the model on the complete training set. This op-

timization was performed independently for each evaluation measure (discussed in Sect. 5)

and each weighting scheme (Sect. 4.1). The PR curves or AUPRC values that are reported

are obtained by testing the resulting model on the test set. The results for CLUS-SC and

CLUS-HSC were obtained in the same way as for CLUS-HMC, but with a separate run for

each class (including separate optimization of s for each class).

We compare the AUPRC of the different methods, using the approaches discussed in

Sect. 5. For GO, which consists of three separate hierarchies, we left out the three classes

representing these hierarchies’ roots, since they occur for all examples. PR curves were

constructed with proper (non-linear) interpolation between points, as described by Davis

and Goadrich (2006). The non-linearity comes from the fact that precision is non-linear in

the number of true positives and false positives.

To estimate significance of the AUPRC comparison, we use the (two-sided) Wilcoxon

signed rank test (Wilcoxon 1945), which is a non-parametric alternative to the paired Stu-

dent’s t-test that does not make any assumption about the distribution of the measurements.

In the results, we report the p-value of the test and the corresponding rank sums.4

The experiments were run on a cluster of AMD Opteron processors (1.8–2.4 GHz,

>2 GB RAM) running Linux.

6.3 Results

In the experiments, we are dealing with many dimensions: we have 12 different descriptions

of gene aspects and 2 class hierarchies, resulting in 24 datasets with several hundreds of

classes each, on which we want to compare 3 algorithms. Moreover, we consider 3 precision-

recall evaluation measures, and for CLUS-HMC we proposed 4 weighting schemes. In order

to deal with this complex structure, we proceed as follows.

We start by evaluating the different weighting schemes used in the CLUS-HMC algo-

rithm. Then we compare the predictive performance of the three algorithms CLUS-HMC,

CLUS-HSC, and CLUS-SC. Next, we study the relation between the three evaluation mea-

sures AU(PRC), AUPRC, and AUPRCw . Afterwards, we give some example PR curves

for specific datasets. Finally, we compare the model size and induction times of the three

algorithms.

4The Wilcoxon test compares two methods by ranking the pairwise differences in their performances by

absolute value. Then it calculates the sums for the ranks corresponding to positive and negative differences.

The smaller of these two rank sums is compared to a table of all possible distributions of ranks to calculate p.

202 Mach Learn (2008) 73: 185–214

6.3.1 Comparison of weighting schemes

First, we investigate different instantiations for the weights in the weighted Euclidean dis-

tance metric used in the heuristic of CLUS-HMC. We have arbitrarily set w0 to 0.75. The

precise questions that we want to answer are:

1. Is it useful to use weights in CLUS-HMC’s heuristic? In other words, is there a difference

between using weights that decrease with the hierarchy depth and setting all weights to

1.0?

2. If yes, which of the weighting schemes for combining the weights of multiple parents

(Sect. 4.1) yields the best results for data sets with DAG structured class labels?

Tables 5 (upper part) and 6 show the average AUPRC values, and the Wilcoxon test

outcomes for FunCat. As can be seen from the tables, using weights has slight advantages

over not using weights. Therefore, for FunCat only results using weights will be reported in

the rest of the paper. Recall that FunCat is a tree hierarchy, and thus, the second question

does not apply.

For GO, the results are less clear. Table 5 (lower part) shows the average AUPRC values

and Fig. 5 visualizes the Wilcoxon outcomes. W.r.t. AUPRCw , there are no differences be-

tween the methods. For AU(PRC), w(c) = w0 ·avgjw(parj (c)) performs slightly better than

all other methods (although not significant), while for AUPRC, w(c) = w0 ·maxjw(parj (c))

performs better. For the rest of the experiments, we decided to use the former because it also

performs well for AUPRC and because the averaging may make the scheme more robust

than the scheme that takes the parents’ weights maximum.

Conclusion Blockeel et al. (2006) assumed that it is advisable to use weights in the cal-

culation of CLUS-HMC’s distance measure, giving greater weights to classes appearing

higher in the hierarchy. However, it turns out that using weights is only slightly better than

not using weights. For GO, averaging the weights of the parent nodes seems the best op-

tion. Recall that for tree shaped hierarchies, the DAG weighting schemes all become iden-

tical to the tree weighting scheme. As a result, we can use the same weighting method

(w(c) = w0 · avgjw(parj (c))) for both the GO and FunCat experiments.

Table 5 Weighting schemes for FunCat and GO: AU(PRC), AUPRC, and AUPRCw averaged over all data

sets (90% confidence intervals are indicated after the ‘±’ sign)

FunCat AU(PRC) AUPRC AUPRCw

1.0 0.191 ± 0.012 0.042 ± 0.006 0.162 ± 0.015

w0 · w(parj (c)) 0.194 ± 0.013 0.045 ± 0.009 0.164 ± 0.017

GO AU(PRC) AUPRC AUPRCw

1.0 0.364 ± 0.011 0.028 ± 0.005 0.342 ± 0.015

w0
∑

j w(parj (c)) 0.364 ± 0.010 0.028 ± 0.005 0.342 ± 0.015

w0 · minj w(parj (c)) 0.365 ± 0.009 0.027 ± 0.005 0.342 ± 0.014

w0 · avgj w(parj (c)) 0.365 ± 0.009 0.028 ± 0.005 0.342 ± 0.013

w0 · maxj w(parj (c)) 0.364 ± 0.009 0.028 ± 0.005 0.342 ± 0.013

Mach Learn (2008) 73: 185–214 203

Table 6 Weighting schemes for FunCat: comparing w(c) = w0 ·w(par(c)) to w(c) = 1.0. A ‘⊕’ means that

w(c) = w0 ·w(par(c)) performs better than w(c) = 1.0 according to the Wilcoxon signed rank test. The table

indicates the rank sums and corresponding p-values computed by the test

FunCat w(c) = w0 · w(par(c))

Score p

AU(PRC) ⊕51/15 0.12

AUPRC ⊕61/17 0.09

AUPRCw ⊕53/25 0.30

Fig. 5 Weighting schemes for GO: w(c) = 1.0, w(c) = w0
∑

j w(parj (c)), w(c) = w0 · minj w(parj (c)),

w(c) = w0 · avgj w(parj (c)), w(c) = w0 · maxj w(parj (c)). An arrow from scheme A to B indicates that

A is better than B . The line width of the arrow indicates the significance of the difference according to the

Wilcoxon signed rank test

6.3.2 Precision-recall based comparison of CLUS-HMC/SC/HSC

CLUS-HMC has been shown to outperform CLUS-SC before (Blockeel et al. 2006). This

study was performed on datasets with tree structured class hierarchies. Here we investigate

how CLUS-HSC performs, compared to CLUS-HMC and CLUS-SC, and whether the re-

sults carry over to DAG structured class hierarchies.

Tables 7 and 8 show AUPRC values for the three algorithms for FunCat and GO, respec-

tively. Summarizing Wilcoxon outcomes comparing CLUS-HMC to CLUS-SC and CLUS-

HSC are shown in Table 9. We see that CLUS-HMC performs better than CLUS-SC and

CLUS-HSC, both for FunCat and GO, and for all evaluation measures.

Table 10 compares CLUS-HSC to CLUS-SC. CLUS-HSC performs better than CLUS-

SC on GO, w.r.t. all evaluation measures. On FunCat, CLUS-HSC is better than CLUS-SC

w.r.t. AU(PRC). According to the two other evaluation measures, CLUS-SC performs better,

but the difference is not significant.

Conclusion The result that CLUS-HMC performs better than CLUS-SC carries over to

DAG structured class hierarchies. Moreover, CLUS-HMC also outperforms CLUS-HSC in

both settings. CLUS-HSC in turn outperforms CLUS-SC on GO. For FunCat, the results

depend on the evaluation measure, and the differences are not significant.

6.3.3 Relation between the different AUPRC measures

In Sect. 5, we have proposed several ways of combining class-wise PR-curves into a sin-

gle PR-curve. It turns out that these methods are quite different with respect to what they

measure.

204 Mach Learn (2008) 73: 185–214

Table 7 Predictive performance (AUPRC) of the different algorithms for FunCat

Data set AU(PRC) AUPRC AUPRCw

HMC HSC SC HMC HSC SC HMC HSC SC

seq 0.211 0.091 0.095 0.053 0.043 0.042 0.183 0.151 0.154

pheno 0.160 0.152 0.149 0.030 0.031 0.031 0.124 0.125 0.127

struc 0.181 0.118 0.114 0.041 0.039 0.040 0.161 0.152 0.152

hom 0.254 0.155 0.153 0.089 0.067 0.076 0.240 0.205 0.205

cellcycle 0.172 0.111 0.106 0.034 0.036 0.038 0.142 0.146 0.146

church 0.170 0.131 0.128 0.029 0.029 0.031 0.129 0.127 0.128

derisi 0.175 0.094 0.089 0.033 0.029 0.028 0.137 0.125 0.122

eisen 0.204 0.127 0.132 0.052 0.052 0.055 0.183 0.169 0.173

gasch1 0.205 0.106 0.104 0.049 0.047 0.047 0.176 0.154 0.153

gasch2 0.195 0.121 0.119 0.039 0.042 0.037 0.156 0.148 0.147

spo 0.186 0.103 0.098 0.035 0.038 0.034 0.153 0.139 0.139

expr 0.210 0.127 0.123 0.052 0.054 0.050 0.179 0.167 0.167

Average: 0.194 0.120 0.118 0.045 0.042 0.042 0.164 0.151 0.151

Table 8 Predictive performance (AUPRC) of the different algorithms for GO

Data set AU(PRC) AUPRC AUPRCw

HMC HSC SC HMC HSC SC HMC HSC SC

seq 0.386 0.282 0.197 0.036 0.035 0.035 0.373 0.283 0.279

pheno 0.337 0.416 0.316 0.021 0.019 0.021 0.299 0.239 0.238

struc 0.358 0.353 0.228 0.025 0.026 0.026 0.328 0.266 0.262

hom 0.401 0.353 0.252 0.051 0.053 0.052 0.389 0.317 0.313

cellcycle 0.357 0.371 0.252 0.021 0.024 0.020 0.335 0.275 0.267

church 0.348 0.397 0.289 0.018 0.016 0.017 0.316 0.248 0.247

derisi 0.355 0.349 0.218 0.019 0.017 0.017 0.321 0.248 0.246

eisen 0.380 0.365 0.270 0.036 0.035 0.031 0.362 0.303 0.294

gasch1 0.371 0.351 0.239 0.030 0.028 0.026 0.353 0.290 0.282

gasch2 0.365 0.378 0.267 0.024 0.026 0.023 0.347 0.282 0.278

spo 0.352 0.371 0.213 0.026 0.020 0.020 0.324 0.254 0.254

expr 0.368 0.351 0.249 0.029 0.028 0.028 0.353 0.286 0.284

Average: 0.365 0.361 0.249 0.028 0.027 0.026 0.342 0.274 0.270

This difference is best explained by looking at the behavior of these curves for a default

model, that is, a degenerate decision tree that consists of precisely one leaf (one CLUS-

HMC leaf, or equivalently, a set of single leaf CLUS-SC trees). The class-wise predicted

probabilities of ‘default’ are constant (the same for each test instance) and equal to the

proportion of training instances in the corresponding class, i.e., the class frequency (Fig. 6a).

PR curves of a default classifier The PR-curve of this default predictor for a single class

ci is as follows: if the overall frequency fi of the class is above t , then the predictor predicts

positive for all instances, so we get a recall of 1 and a precision of fi ; otherwise it predicts

Mach Learn (2008) 73: 185–214 205

Table 9 CLUS-HMC compared to CLUS-SC and CLUS-HSC. A ‘⊕’ (‘⊖’) means that CLUS-HMC per-

forms better (worse) than the given method according to the Wilcoxon signed rank test. The table indicates

the rank sums and corresponding p-values. Differences significant at the 0.01 level are indicated in bold

HMC vs. SC HMC vs. HSC

FunCat Score p Score p

AU(PRC) ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRC ⊕51/27 3.8 × 10−1 ⊕43/35 7.9 × 10−1

AUPRCw ⊕73/5 4.9 × 10−3 ⊕74/4 3.4 × 10−3

GO Score p Score p

AU(PRC) ⊕78/0 4.9 × 10−4 ⊕43/35 7.9 × 10−1

AUPRC ⊕68/10 2.1 × 10−2 ⊕55/23 2.3 × 10−1

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

Table 10 CLUS-HSC compared to CLUS-SC. A ‘⊕’ (‘⊖’) means that CLUS-HSC performs better (worse)

than CLUS-SC according to the Wilcoxon signed rank test

HSC vs. SC HSC vs. SC

FunCat Score p GO Score p

AU(PRC) ⊕62/16 7.7 × 10−2 AU(PRC) ⊕78/0 4.9 × 10−4

AUPRC ⊖37/41 9.1 × 10−1 AUPRC ⊕49/29 4.7 × 10−1

AUPRCw ⊖22/56 2.0 × 10−1 AUPRCw ⊕78/0 4.9 × 10−4

negative for all instances, giving a recall of 0 and an undefined precision. This leads to one

point in the PR-diagram at (1, fi). To obtain a PR-curve, observe that randomly discarding

a fraction of the predictions results in the same precision, but a smaller recall. The PR-curve

thus becomes the horizontal line (r, fi) with 0 < r ≤ 1 (Fig. 6b) (Davis and Goadrich 2006).

Consequently, the average PR-curve constructed using the AUPRC and AUPRCw meth-

ods is also a horizontal line, at height 1
|C|

∑

i fi or
∑

i wifi , respectively. The former is

shown in Fig. 6c.

The average PR-curve for AU(PRC) is quite different, though. This curve is constructed

from predictions for all classes together. For a threshold t , all instances are assigned exactly

the classes S with frequency above t , i.e., S = {ci |fi ≥ t}. While decreasing the classification

threshold t from 1.0 to 0.0, S grows from the empty set to the set of all classes C. At the

same time, the average precision drops from the frequency of the most frequent class to

the average of the class frequencies. Correct interpolation between the points (Davis and

Goadrich 2006) leads to curves such as the one shown in Fig. 6d.

Interpretation of different average default curves Now consider the model ‘allclasses’

(Fig. 6a), that predicts each class with probability 1.0. This model’s classwise PR curves

are shown in Fig. 6b and are identical to those of ‘default’. As a consequence, also the

average PR curve combined with AUPRC and AUPRCw is identical to those of ‘default’

(Fig. 6c). Since the set S = C for all values of t for ‘allclasses’, its average PR curve for

AU(PRC) is a horizontal line with precision equal to the average of the class frequencies

(Fig. 6d), just as for AUPRC. These results show that it is more difficult to outperform

‘default’ with AU(PRC) than with AUPRC and AUPRCw : in the latter cases, the model is

206 Mach Learn (2008) 73: 185–214

Fig. 6 Example for a dataset with 100 instances. (a) Two degenerate decision tree models: ‘default’ and

‘allclasses’. The ‘default’ model’s predicted set of classes depends on the classification threshold t , while

the ‘allclasses’ model predicts all classes independent of t . (b) Class-wise PR curves (identical for ‘default’

and ‘allclasses’). (c) Average PR curve corresponding to AUPRC. (d) Average PR curves corresponding to

AU(PRC) (the non-linear curves connecting the points are obtained by means of proper PR interpolation,

Davis and Goadrich 2006)

better than default if it is better than always predicting all classes. Another way of stating

this is that AU(PRC) rewards a predictor for exploiting information about the frequencies

of the different classes. The AUPRC and AUPRCw methods, on the other hand, average the

performance of individual classes, i.e., they ignore the predictor’s ability to learn the class

frequencies.

Comparison of CLUS-HMC/SC/HSC to default Table 11 compares CLUS-HMC, SC,

and HSC to the default model. W.r.t. AUPRC and AUPRCw , all models perform better

than ‘default’, and this is true for all 24 data sets. This means that on average, for each

individual class, the models perform better than always predicting the class. Interestingly,

if we consider AU(PRC), then CLUS-SC, and also CLUS-HSC on FunCat, perform worse

than ‘default’. W.r.t. this evaluation measure, these methods produce overly complex models

and may overfit the training data.

The overfitting can be quantified by subtracting the AUPRC obtained on the test set from

that on the training set. Table 12 shows these differences, which are indeed highest for the

CLUS-SC and CLUS-HSC methods.

Mach Learn (2008) 73: 185–214 207

Table 11 CLUS-SC, CLUS-HSC, and CLUS-HMC compared to the default model. A ‘⊕’ (‘⊖’) means that

the given method performs better (worse) than default according to the Wilcoxon signed rank test

SC vs. DEF HSC vs. DEF HMC vs. DEF

FunCat Score p Score p Score p

AU(PRC) ⊖1/77 9.8 × 10−4 ⊖2/76 1.5 × 10−3 ⊕78/0 4.9 × 10−4

AUPRC ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

GO Score p Score p Score p

AU(PRC) ⊖0/78 4.9 × 10−4 ⊕68/10 2.1 × 10−2 ⊕78/0 4.9 × 10−4

AUPRC ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

Table 12 Difference between AUPRC obtained on the training set and AUPRC obtained on the test set.

A higher (lower) difference indicates more (less) overfitting

FunCat GO

HMC HSC SC HMC HSC SC

AU(PRC) 0.034 0.435 0.464 0.027 0.293 0.402

AUPRC 0.075 0.248 0.267 0.045 0.218 0.190

AUPRCw 0.109 0.375 0.389 0.061 0.317 0.308

Conclusion We have shown that the three proposed ways of averaging classwise PR curves

are indeed different. The AU(PRC) evaluation measure looks at the performance of the

model in a mix of classes, whereas the AUPRC and AUPRCw measures evaluate the per-

formance of individual classes independently. W.r.t. the AU(PRC) measure, CLUS-SC, and

also CLUS-HSC on FunCat, were shown to overfit the training data.

6.3.4 Example PR curves for specific datasets

Figures 7 and 8 show averaged PR curves for two data sets. These curves illustrate the above

conclusions. We see that, for both data sets, CLUS-HMC performs best, especially for the

AU(PRC) or AUPRCw evaluation measures. If we consider AU(PRC), then overfitting can

be detected for CLUS-SC and CLUS-HSC.

Figure 9 shows a number of class-wise PR curves for the dataset ‘hom’. We have chosen

the four classes for which CLUS-HMC (parameter s optimized for AU(PRC)) yields the

largest AUPRC on the validation set, compared to the default AUPRC for that class. Since

not all of these classes occurred in the test set, we have chosen the four best classes that occur

in at least 5% of the test examples. We see that for FunCat, CLUS-HMC performs better on

these classes, while for GO, the results are less clear. Indeed, if we look at Table 8, we

see that the three algorithms perform similarly for this data set if all classes are considered

equally important (corresponding to the AUPRC evaluation method). However, the other

evaluation methods (which do take into account class frequencies) show a higher gain for

CLUS-HMC, which indicates that the latter performs better on the more frequent classes.

Plotting the difference in AUPRC against class frequency (Fig. 10) confirms this result.

208 Mach Learn (2008) 73: 185–214

Fig. 7 PR curves averaged over all classes according to the 3 evaluation measures for FunCat (top) and GO

(bottom) for the data set ‘hom’

Fig. 8 PR curves averaged over all classes according to the 3 evaluation measures for FunCat (top) and GO

(bottom) for the data set ‘seq’

Figure 11 shows a part of the tree learned by Clus-HMC for the dataset ‘hom’ for GO.

The tree contains in total 51 leaves, each predicting a probability for each of the 3997 classes.

In the figure, we only show classes for which this probability exceeds 85% and which are

most specific. The homology features are based on a sequence similarity search for each

Mach Learn (2008) 73: 185–214 209

Fig. 9 Example class-wise PR curves for FunCat (top) and GO (bottom) for the data set ‘hom’

Fig. 10 Difference in AUPRC

versus class frequency for GO for

the data set ‘hom’

gene in yeast against all the genes in a large database called SwissProt. The root test, for

instance, tests whether there exists a SwissProt protein A that has a high similarity (e-value

lower than 1.0e-8) with the gene under consideration, has “inner_membrane” listed as one

of its keywords and has references to a database called “prints”.

6.3.5 Comparison of Clus-HMC/SC/HSC’s tree size and induction time

We conclude this experimental evaluation by comparing the model size and computational

efficiency of the three algorithms.

Tables 13 and 14 present the tree sizes obtained with the different methods. We measure

tree size as the number of leaves. The tables include three numbers for CLUS-HMC: one

number for each of the evaluation measures. Recall that CLUS-HMC uses the evaluation

measure to tune its F -test parameter s. Different evaluation measures may yield different

optimal s values and therefore different trees. SC and HSC trees, on the other hand, predict

only one class, so there is no need to average PR-curves; the tree induction algorithm tunes

its F -test parameter to maximize its class’s AUPRC.

Averaged over the evaluation measures and datasets, the HMC trees contain 60.9 (Fun-

Cat) and 53.6 (GO) leaves. The SC trees, on the other hand, are smaller because they each

210 Mach Learn (2008) 73: 185–214

eval(A,S), S < 1e-8, keyword(A, inner_membrane), dbref (A,prints)

+yes: eval(B,S), S < 1e-8, class(B, lagomorpha), keyword(B, transmembrane)

| +yes: eval(C,S), S < 1e-8,molwt(C,M),M < 74079,M > 53922, dbref (C,mim)

| | +yes: eval(D,S), S < 1e-8, class(D, streptococcaceae), db_ref (D,hssp)

| | | +yes: GO0042626s,GO0044464,GO0008150 [10 ex.]

| | | +no: eval(E,S), S < 1e-8, class(E,percomorpha)

| | | +yes: GO0005215,GO0044464,GO0006810 [15 ex.]

| | | +no: GO0003674,GO0005575,GO0008150 [69 ex.]

| | +no: eval(F,S),4.5e-2< S < 1.1,molwt(F,N),N > 109335), class(F, bscg)

| | +yes: eval(G,S), S < 1e-8, class(G,hydrozoa)

| | | +yes: GO0015662,GO0044464,GO0008150 [6 ex.]

| | | +no: GO0003674,GO0044464,GO0008150 [12 ex.]

| | +no: GO0005215,GO0044444,GO0008150 [24 ex.]

| +no: GO0003674,GO0005575,GO0008150 [85 ex.]

+no: ...

Fig. 11 Part of the CLUS-HMC (optimized for AU(PRC)) tree that was learned for the ‘hom’ dataset for

GO. Only the most specific classes for which the predicted probability exceeds 85% are shown

Table 13 Tree size (number of tree leaves) for FunCat

Data set CLUS-HMC CLUS-SC CLUS-HSC

AU(PRC) AUPRC AUPRCw Total Average Total Average

seq 14 168 168 10443 20.9 4923 9.9

pheno 8 8 8 1238 2.7 777 1.7

struc 12 125 56 8657 17.3 3917 7.8

hom 75 190 75 9137 18.3 4289 8.6

cellcycle 24 61 61 9671 19.4 4037 8.1

church 17 17 17 4186 8.4 2221 4.5

derisi 4 68 68 7807 15.6 3520 7.1

eisen 29 55 55 6311 13.7 2995 6.5

gasch1 10 96 96 10447 20.9 4761 9.5

gasch2 26 101 101 7850 15.7 3756 7.5

spo 6 43 43 8527 17.1 3623 7.3

expr 12 161 116 10262 20.6 4711 9.4

Average: 19.8 91.1 72.0 7878 15.9 3628 7.3

model only one class. They include on average 15.9 (FunCat) and 7.6 (GO) leaves. Never-

theless, the total size of all SC trees is on average a factor 311.2 (FunCat) and 1049.8 (GO)

larger than the corresponding HMC tree. This difference is bigger for GO than for FunCat

because GO has an order of magnitude more classes (Table 4) and therefore also an order of

magnitude more SC trees. Comparing HMC to HSC yields similar conclusions.

Compared to Blockeel et al. (2006), we observe a similar average tree size for the single-

label SC trees. However, the HMC trees, which had on average 12.5 leaves for the reported

AU(PRC) measure in Blockeel et al. (2006), now contain on average 19.8 leaves. This can

be explained by the fact that the HMC trees now have to predict more classes: the FunCat

classification scheme has grown from 250 to 1362 classes meanwhile.

Mach Learn (2008) 73: 185–214 211

Table 14 Tree size (number of tree leaves) for GO

Data set CLUS-HMC CLUS-SC CLUS-HSC

AU(PRC) AUPRC AUPRCw Total Average Total Average

seq 15 206 108 38969 9.4 21703 3.7

pheno 6 6 6 6213 2.0 5691 1.3

struc 14 76 76 36356 8.8 19147 3.3

hom 51 135 135 35270 8.5 19804 3.4

cellcycle 21 63 43 36260 8.8 19085 3.3

church 7 21 21 16049 3.9 12368 2.1

derisi 10 38 10 31175 7.6 16693 2.9

eisen 37 68 68 24844 7.0 14384 2.9

gasch1 30 129 30 37838 9.2 20070 3.4

gasch2 27 62 62 34204 8.3 18546 3.2

spo 14 60 60 35400 8.6 15552 2.7

expr 35 145 35 38313 9.3 20812 3.6

Average: 22.2 84.1 54.5 30908 7.6 16988 3.0

Observe that the HSC trees are smaller than the SC trees (a factor 2.2 on FunCat and

2.8 on GO). We see two reasons for this. First, HSC trees encode less knowledge than SC

ones because they are conditioned on their parent class. That is, if a given feature subset is

relevant to all classes in a sub-lattice of hierarchy, then CLUS-SC must include this subset

in each tree of the sub-lattice, while CLUS-HSC only needs them in the trees for the sub-

lattice’s most general border. Second, HSC trees use fewer training examples than SC trees,

and tree size typically grows with training set size.

We also measure the total induction time for all methods. This is the time for building

the actual trees; it does not include the time for loading the data and tuning the F -test

parameter. CLUS-HMC requires on average 3.3 (FunCat) and 24.4 (GO) minutes to build a

tree. CLUS-SC is a factor 58.6 (FunCat) and 129.0 (GO) slower than CLUS-HMC. CLUS-

HSC is a factor 10.2 (FunCat) and 5.1 (GO) faster than CLUS-SC, but still a factor 6.3

(FunCat) and 55.9 (GO) slower than CLUS-HMC.

Conclusion Whereas the size of the individual trees learned by CLUS-HSC and CLUS-SC

is smaller than the size of the trees output by CLUS-HMC, the total model size of the latter

is much smaller than the total size of the models output by the single-label tree learners. As

was expected, the CLUS-HSC models are smaller than the CLUS-SC models. Also w.r.t.

efficiency, CLUS-HMC outperforms the other methods.

7 Conclusions

In hierarchical multi-label classification, the task is to assign a set of class labels to examples,

where the class labels are organized in a hierarchy: an example can only belong to a class

if it also belongs to the class’s superclasses. An important application area is functional

genomics, where the goal is to predict the functions of gene products.

In this article, we have compared three decision tree algorithms on the task of hierarchical

multi-label classification: (1) an algorithm that learns a single tree that predicts all classes

212 Mach Learn (2008) 73: 185–214

at once (CLUS-HMC), (2) an algorithm that learns a separate decision tree for each class

(CLUS-SC), and (3) an algorithm that learns and applies such single-label decision trees in

a hierarchical way (CLUS-HSC). The three algorithms are instantiations of the predictive

clustering tree framework (Blockeel et al. 1998) and are designed for problems where the

class hierarchy is either structured as a tree or as a directed acyclic graph (DAG). To our

knowledge, the latter setting has not been studied before, although it occurs in real life

applications. For instance, the Gene Ontology (GO), a widely used classification scheme for

genes, is structured as a DAG. The DAG structure poses a number of complications to the

algorithms, e.g., the depth of a class in the hierarchy is no longer unique.

We have evaluated the algorithms on 24 datasets from functional genomics. The predic-

tive performance was measured as area under the PR curve. For a single-label classification

task this measure is well-defined, but for a multi-label problem the definition needs to be ex-

tended and there are several ways to do so. We propose three ways to construct a PR curve

for the multi-label case: micro-averaging precision and recall for varying thresholds, taking

the point-wise average of class-wise precision values for each recall value, and weighing the

contribution of each class in this average by the class’s frequency.

The most important results of our empirical evaluation are as follows. First, CLUS-HMC

has a better predictive performance than CLUS-SC and CLUS-HSC, both for tree and DAG

structured class hierarchies, and for all evaluation measures. Whereas this result was already

shown for CLUS-HMC and CLUS-SC by Blockeel et al. (2006) in a limited setting, it was

unknown where CLUS-HSC would fit in. Somewhat unexpectedly, learning a single-label

tree for each class separately, where one only focuses on the examples belonging to the

parent class, results in lower predictive performance than learning one single model for all

classes. That is, CLUS-HMC outperforms CLUS-HSC. CLUS-HSC in turn outperforms

CLUS-SC for DAGs; for trees the performances are similar.

Second, we have compared the precision-recall behavior of the algorithms to that of a

default model. Using micro-averaged PR curves, we have observed that CLUS-SC performs

consistently (for 23 out of 24 datasets) worse than default, indicating that it builds overly

complex models that overfit the training data. Interestingly, the other precision-recall aver-

aging methods are not able to detect this overfitting.

Third, the size of the HMC tree is much smaller (2 to 3 orders of magnitude) than the total

size of the models output by CLUS-HSC and CLUS-SC. As was expected, the CLUS-HSC

models are smaller than the CLUS-SC models (a factor 2 to 3).

Fourth, we find that learning a single HMC tree is also much faster than learning many

regular trees. Whereas CLUS-HMC has been shown to be more efficient than CLUS-SC be-

fore (Blockeel et al. 2006), it turns out to be also more efficient than CLUS-HSC. Obviously,

a single HMC tree is also much more efficient to apply than 4000 (for GO) separate trees.

Given the positive results for HMC decision trees on predictive performance, model size,

and efficiency, we can conclude that their use should definitely be considered in HMC tasks

where interpretable models are desired.

Acknowledgements Celine Vens is supported by the EU FET IST project “Inductive Querying”, contract

number FP6-516169 and the Research Fund K.U.Leuven. Jan Struyf and Hendrik Blockeel are postdoctoral

fellows of the Research Foundation, Flanders (FWO-Vlaanderen). Leander Schietgat is supported by a PhD

grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-

Vlaanderen).

The authors would like to thank Amanda Clare for providing them with the datasets and Kurt De Grave

for carefully reading the text and providing many useful suggestions. This research was conducted utilizing

high performance computational resources provided by K.U.Leuven, http://ludit.kuleuven.be/hpc.

http://ludit.kuleuven.be/hpc

Mach Learn (2008) 73: 185–214 213

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997).

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids

Research, 25, 3389–3402.

Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. The Gene Ontology Consor-

tium. Nature Genetics, 25(1), 25–29.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene

function. Bioinformatics, 22(7), 830–836.

Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., & Struyf, J. (2002). Hierarchical multi-classification.

In Proceedings of the ACM SIGKDD 2002 workshop on multi-relational data mining (MRDM 2002)

(pp. 21–35).

Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of

the 15th international conference on machine learning (pp. 55–63).

Blockeel, H., Džeroski, S., & Grbović, J. (1999). Simultaneous prediction of multiple chemical parameters

of river water quality with Tilde. In Proceedings of the 3rd European conference on principles of data

mining and knowledge discovery (pp. 32–40).

Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., & Clare, A. (2006). Decision trees for hierarchical multil-

abel classification: a case study in functional genomics. In Proceedings of the 10th European conference

on principles and practice of knowledge discovery in databases (pp. 18–29).

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.

Belmont: Wadsworth.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Incremental algorithms for hierarchical classification.

Journal of Machine Learning Research, 7, 31–54.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P., & Herskowitz, I. (1998). The tran-

scriptional program of sporulation in budding yeast. Science, 282, 699–705.

Clare, A. (2003). Machine learning and data mining for yeast functional genomics. PhD thesis, University of

Wales, Aberystwyth.

Clare, A., & King, R. D. (2001). Knowledge discovery in multi-label phenotype data. In 5th European con-

ference on principles of data mining and knowledge discovery (pp. 42–53).

Davis, J., & Goadrich, M. (2006), The relationship between precision-recall and ROC curves. In Proceedings

of the 23rd international conference on machine learning (pp. 233–240)

Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruus Pedersen, M., & Henning Krogh, P. (2006).

Using multi-objective classification to model communities of soil microarthropods. Ecological Mod-

elling, 191(1), 131–143.

DeRisi, J., Iyer, V., & Brown, P. (1997). Exploring the metabolic and genetic control of gene expression on a

genomic scale. Science, 278, 680–686.

Džeroski, S., Slavkov, I., Gjorgjioski, V., & Struyf, J. (2006). Analysis of time series data with predictive

clustering trees. In Proceedings of the 5th international workshop on knowledge discovery in inductive

databases (pp. 47–58).

Eisen, M., Spellman, P., Brown, P., & Botstein, D. (1998). Cluster analysis and display of genome-wide

expression patterns. Proceedings of the National Academy of Sciences of the USA, 95, 14863–14868.

Expasy (2008). ProtParam. http://www.expasy.org/tools/protparam.html.

Gasch, A., Huang, M., Metzner, S., Botstein, D., Elledge, S., & Brown, P. (2001). Genomic expression re-

sponses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Molecular

Biology of the Cell, 12(10), 2987–3000.

Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., & Brown, P. (2000).

Genomic expression program in the response of yeast cells to environmental changes. Molecular

Biology of the Cell, 11, 4241–4257.

Geurts, P., Wehenkel, L., & d’Alché-Buc, F. (2006). Kernelizing the output of tree-based methods. In Pro-

ceedings of the 23th international conference on machine learning (pp. 345–352)

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Proceedings

of the 14th international conference on machine learning (pp. 170–178).

Kumar, A., Cheung, K. H., Ross-Macdonald, P., Coelho, P. S. R., Miller, P., & Snyder, M. (2000). TRIPLES:

a database of gene function in S. cerevisiae. Nucleic Acids Research, 28, 81–84.

Mewes, H. W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., & Frishman, D. (1999). MIPS:

a database for protein sequences and complete genomes. Nucl. Acids Research, 27, 44–48.

Oliver, S. (1996). A network approach to the systematic analysis of yeast gene function. Trends in Genetics,

12(7), 241–242.

Ouali, M., & King, R. D. (2000). Cascaded multiple classifiers for secondary structure prediction. Protein

Science, 9(6), 1162–1176.

http://www.expasy.org/tools/protparam.html

214 Mach Learn (2008) 73: 185–214

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann.

Roth, F., Hughes, J., Estep, P., & Church, G. (1998). Finding DNA regulatory motifs within unaligned non-

coding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 16, 939–945.

Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical mul-

tilabel classification models. Journal of Machine Learning Research, 7, 1601–1626.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., & Futcher, B.

(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cere-

visiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–3297.

Stenger, B., Thayananthan, A., Torr, P., & Cipolla, R. (2007). Estimating 3D hand pose using hierarchical

multi-label classification. Image and Vision Computing, 5(12), 1885–1894.

Struyf, J., & Džeroski, S. (2006). Constraint based induction of multi-objective regression trees. In Knowledge

discovery in inductive databases, 4th international workshop, KDID’05, revised, selected and invited

papers (pp. 222–233).

Struyf, J., & Džeroski, S. (2007). Clustering trees with instance level constraints. In Proceedings of the 18th

European conference on machine learning (pp. 359–370)

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural informa-

tion processing systems 16 16

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and

interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: an ensemble method for multilabel classification.

In Proceedings of the 18th European conference on machine learning (pp. 406–417).

Weiss, G. M., & Provost, F. J. (2003). Learning when training data are costly: the effect of class distribution

on tree induction. The Journal of Artificial Intelligence Research, 19, 315–354.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83.

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information Retrieval, 1,

69–90.

	Decision trees for hierarchical multi-label classification
	Abstract
	Introduction
	Related work
	Decision tree approaches for HMC
	Formal task description
	Predictive clustering trees
	Clus-HMC: an HMC decision tree learner
	Clus-SC: learning a separate tree for each class
	Clus-HSC: learning a separate tree for each hierarchy edge
	Comparison

	Hierarchies structured as DAGs
	Adaptations to Clus-HMC
	Adaptations to Clus-HSC

	Predictive performance measures
	Hierarchical loss
	Precision-recall based evaluation
	Area under the average PR curve
	Average area under the PR curves

	Experiments in yeast functional genomics
	Data sets
	Method
	Results
	Comparison of weighting schemes
	Conclusion

	Precision-recall based comparison of Clus-HMC/SC/HSC
	Conclusion

	Relation between the different AUPRC measures
	PR curves of a default classifier
	Interpretation of different average default curves
	Comparison of Clus-HMC/SC/HSC to default
	Conclusion

	Example PR curves for specific datasets
	Comparison of Clus-HMC/SC/HSC's tree size and induction time
	Conclusion

	Conclusions
	Acknowledgements
	References

