
Decision Trees for
Hierarchical Multilabel Classification:
A Case Study in Functional Genomics

Hendrik Blockeel1, Leander Schietgat1, Jan Struyf1,2,
Sašo Džeroski3, and Amanda Clare4

1 Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Leuven, Belgium

{hendrik.blockeel, leander.schietgat, jan.struyf}@cs.kuleuven.be
2 Dept. of Biostatistics and Medical Informatics, Univ. of Wisconsin, Madison, USA

3 Department of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Saso.Dzeroski@ijs.si
4 Department of Computer Science, University of Wales Aberystwyth, SY23 3DB, UK

afc@aber.ac.uk

Abstract. Hierarchical multilabel classification (HMC) is a variant of
classification where instances may belong to multiple classes organized
in a hierarchy. The task is relevant for several application domains. This
paper presents an empirical study of decision tree approaches to HMC
in the area of functional genomics. We compare learning a single HMC
tree (which makes predictions for all classes together) to learning a set
of regular classification trees (one for each class). Interestingly, on all 12
datasets we use, the HMC tree wins on all fronts: it is faster to learn
and to apply, easier to interpret, and has similar or better predictive
performance than the set of regular trees. It turns out that HMC tree
learning is more robust to overfitting than regular tree learning.

1 Introduction

Classification refers to the task of learning from a set of classified instances
a model that can predict the class of previously unseen instances. Hierarchical
multilabel classification differs from normal classification in two ways: (1) a single
example may belong to multiple classes simultaneously; and (2) the classes are
organized in a hierarchy: an example that belongs to some class automatically
belongs to all its superclasses.

Examples of this kind of problems are found in several domains, including
text classification [1] and functional genomics [2]. In functional genomics, an
important problem is predicting the functions of genes. Biologists have a set of
possible functions that genes may have, and these functions are organized in a
hierarchy. It is known that a single gene may have multiple functions.

Hierarchical multilabel classification (HMC) can be performed by just learning
a binary classifier for each class separately, but this has several disadvantages.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 18–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decision Trees for HMC: A Case Study in Functional Genomics 19

First, it is less efficient, because the learner has to be run |C| times, with |C|
the number of classes, which can be hundreds or thousands. Second, it often
results in learning from strongly skewed class distributions: among hundreds of
classes, there are likely to be some that occur infrequently. Many learners have
problems with strongly skewed class distributions [3]. Third, hierarchical rela-
tionships between classes are not taken into account. The constraint that an
instance belonging to a class must belong to all its superclasses is not automat-
ically imposed. Finally, from the knowledge discovery point of view, the learned
models identify features relevant for one class, rather than identifying features
with high overall relevance.

Some authors have therefore studied HMC as a separate learning task, and
developed learners that learn a single model that predicts all the classes of an ex-
ample at once (see below). These learners include a few decision tree approaches,
but for these no in-depth empirical study has been presented up till now. In this
paper we perform such an in-depth study, using datasets from functional ge-
nomics. Our study yields novel insights about the suitability of decision trees for
HMC, and in particular gene function prediction.

In Section 2 we discuss previous work; in Section 3 we present the system
used for the empirical study described in Section 4. In Section 5 we conclude.

2 Related Work

Much work in hierarchical multilabel classification (HMC) has been motivated
by text classification. Rousu et al. [1] present the state of the art in this domain,
which consists mostly of Bayesian and kernel-based classifiers.

Another application domain of HMC is functional genomics: a typical learn-
ing task is to learn a model that assigns to a gene a set of functions, selected
from a hierarchy. Barutcuoglu et al. [2] recently presented a two-step approach
where support vector machines are learned for each class separately, and then
combined using a Bayesian learner so that the predictions are consistent with
the hierarchical relationships; this solves one of the four issues mentioned above.

From the point of view of knowledge discovery, it is sometimes useful to ob-
tain more interpretable models, such as decision trees, and that is the kind of
approach we will study here.

Clare and King [4] presented a decision tree method for multilabel classifi-
cation in the context of functional genomics. In their approach, a tree predicts
not a single class but a vector of boolean class variables. They propose a simple
adaptation of C4.5 to learn such trees: where C4.5 normally uses class entropy,
their version uses the sum of entropies of the class variables. Clare [5] extended
the method to predict classes on several levels of the hierarchy, assigning a larger
cost to misclassifications higher up in the hierarchy, and presented an extensive
evaluation on twelve datasets from functional genomics. We use this method as
a reference to validate our own approach; we further refer to it as C4.5H.

Blockeel et al. [6] independently proposed a decision tree learner for HMC
that is based on the concept of predictive clustering trees [7], where decision

20 H. Blockeel et al.

trees are viewed as cluster hierarchies, and present preliminary experiments in
text classification and functional genomics as a proof of concept. The approach
has been used in some later work [8,9].

Until now these approaches have been evaluated mainly from the biologists’
point of view, who commented on the discovered rules and their accuracy. No
thorough performance evaluation from a machine learning point of view (what
are the advantages over learning a single HMC tree over learning several regular
trees?) has been made. Such an evaluation is in fact not trivial, when domain
experts want to see as few rules as possible that predict as many classes as possi-
ble as correctly as possible. This work is the first thorough empirical comparison
between HMC tree learning and learning multiple regular trees.

3 The Clus-HMC Approach

We first define the HMC task more formally; next, we describe the Clus-HMC
system in detail.

3.1 Formal Task Description

We define the hierarchical multilabel classification task as follows:

Given: an instance space X and class hierarchy (C, ≤h), where C is a set of
classes and ≤h is a partial order structured as a rooted tree, representing the
superclass relationship (for all c1, c2 ∈ C: c1 ≤h c2 if and only if c1 is a superclass
of c2); a set T of examples (xi, Si) with xi ∈ X and Si ⊆ C such that c ∈ Si ⇒
∀c′ ≤h c : c′ ∈ Si; and some quality criterion q (which typically rewards models
with high predictive accuracy and low complexity)
Find: a function f : X → 2C (where 2C is the power set of C) such that
c ∈ f(x) ⇒ ∀c′ ≤h c : c′ ∈ f(x) and f maximizes q.

3.2 Clus-HMC: An HMC Decision Tree Learner

Fig. 1 presents the Clus-HMC algorithm. It is a variant of the standard greedy
top-down algorithm for decision tree induction [10,11]. It takes as input a set
of training instances T . The main loop of the algorithm searches for the best
acceptable attribute-value test that can be put in a node. If such a test t∗ can be
found then the algorithm creates a new internal node labeled t∗ and calls itself
recursively to construct a subtree for each subset in the partition P∗ induced
by t∗ on the training instances. If no acceptable test can be found, then the
algorithm creates a leaf.

Up till here, the description is no different from that of a standard decision
tree learner. However, decision tree learners normally predict only one target
attribute, whereas an HMC tree needs to predict a set of classes. To achieve
this, the following changes are made to the learning procedure [6].

First, the example labels are represented as vectors with boolean components;
the i’th component of the vector is 1 if the example belongs to class ci and 0

Decision Trees for HMC: A Case Study in Functional Genomics 21

procedure Clus-HMC(T) returns tree
1: (t∗, h∗, P∗) = (none, ∞, ∅)
2: for each possible test t
3: P = partition induced by t on T
4: h =

∑
Tk∈P

|Tk|
|T | Var(Tk)

5: if (h < h∗) ∧ acceptable(t,P)
6: (t∗, h∗, P∗) = (t, h, P)
7: if t∗ �= none
8: for each Tk ∈ P∗

9: treek = Clus-HMC(Tk)
10: return node(t∗,

⋃
k{treek})

11: else
12: return leaf(v̄)

Fig. 1. The Clus-HMC induction algorithm

otherwise. It is easily checked that the arithmetic mean of a set of such vectors
contains as i’th component the proportion of examples of the set belonging to
class ci. We define the variance of a set of examples as the average squared
Euclidean distance between each example’s label and the set’s mean label.

The heuristic for choosing the best test in a node of the tree is then minimiza-
tion of the average variance in the created subsets (weighted according to the
size of the subsets, see line 4 of Fig. 1). This corresponds to the heuristic typi-
cally used when learning regression trees and to CART’s Gini index [10], and is
in line with the “predictive clustering trees” view [7]. The heuristic ensures that
examples labelled with similar sets of classes tend to go into the same subset.

In the HMC context, it makes sense to consider similarity on higher lev-
els of the hierarchy more important than similarity on lower levels. To that
aim, we can use for the variance a weighted Euclidean distance d(x1, x2) =√∑

k wk · (v1,k − v2,k)2, where vi,k is the k’th component of the class vector vi

of instance xi, and the weights wk decrease with the depth of the class ck in
the hierarchy (e.g., wk = w

depth(ck)
0). Consider for example the class hierarchy

shown in Fig. 2, and two examples (x1, S1) and (x2, S2) with S1 = {1, 2, 2/2}
and S2 = {2}. Using a vector representation with consecutive components rep-
resenting membership of class 1, 2, 2/1, 2/2 and 3, in that order, d(x1, x2) =
dEuclidean([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =

√
w0 + w2

0 .
A decision tree normally stores in a leaf the majority class for that leaf; this

class will be the tree’s prediction for examples arriving in the leaf. But in our
case, since an example may have multiple classes, there is no “majority class”.
Instead, the mean v̄ of the vectors of the examples in that leaf is stored; in
other words, for each class ci, the proportion of examples belonging to ci is kept.
An example arriving in the leaf will be predicted to belong to class ci if the
i-th component of v̄ is above some threshold ti. To ensure that the predictions
fulfill the constraint that whenever a class is predicted its superclasses are also
predicted, it suffices to choose ti ≤ tj whenever ci ≤h cj.

22 H. Blockeel et al.

1 2

2/1 2/2

3 1 (1) 2 (2)

2/1 (3) 2/2 (4)

3 (5)

(a) (b)

vi = [1,
(1)

1,
(2)

0,
(3)

1,
(4)

0
(5)

]

Fig. 2. (a) A toy hierarchy. Class label names reflect the position in the hierarchy,
e.g., ‘2/1’ is a subclass of ‘2’. (b) The set of classes {1,2,2/2}, indicated in bold in the
hierarchy, and represented as a vector.

The predictive accuracy of the model is maximized by taking all ti = 0.5,
but as we are dealing with skewed class distributions, accuracy is not a very
good evaluation criterion, and hence there is no good reason to try to maximize
it. Precision-recall based evaluation is preferred in such cases [12]. Precision is
the probability that a positive prediction is correct, and recall is the probability
that a positive instance is predicted positive. When decreasing ti from 1 to
0, an increasing number of instances is predicted as belonging to ci, causing
the recall for ci to increase whereas precision may increase or decrease (with
normally a tendency to decrease). Thus, a tree with specified threshold has
a single precision and recall, and by varying the threshold for a single tree a
precision-recall curve (PR curve) is obtained. Such curves allow us to evaluate
the predictive performance of a model regardless of t.

Finally, the function acceptable in Fig. 1 verifies for a given test that the
number of instances in each subset of the corresponding partition P is at least
mincases (a parameter) and that the variance reduction is significant according
to a statistical F -test.

The version of Clus-HMC described here is exactly the same as in Struyf et
al. [8], except that the latter commits to a treshold of 0.5 whereas our version
does not. Commitment to a fixed threshold causes models to be partially ordered
in a precision-recall evaluation (e.g., a model may have higher recall but lower
precision than another model), which is undesirable.

4 Experiments in Yeast Functional Genomics

The goals of our experiments are twofold. First, we wish to validate the “pre-
dictive clustering trees” approach to HMC, as implemented in Clus-HMC, by
comparing its precision-recall behaviour to C4.5H, the state of the art in deci-
sion tree based HMC. Second, and most importantly, we evaluate the strengths
and weaknesses of HMC tree learning as compared to learning a separate tree for
each class. The expectation here is that HMC tree learning is faster and yields a
tree that is more complex than an individual single-class tree, but less complex
than the whole set of trees; one would further hope that this simplicity does not
come at the cost of worse predictive performance.

Decision Trees for HMC: A Case Study in Functional Genomics 23

1 METABOLISM
1/1 amino acid metabolism
1/2 nitrogen and sulfur metabolism
...
2 ENERGY
2/1 glycolysis and gluconeogenesis
...

Fig. 3. A small part of the hierarchical FunCat classification scheme

Table 1. Dataset properties: number of instances |D|, number of attributes |A|

Dataset |D| |A| Dataset |D| |A|
D1 Sequence (seq) 3932 478 D7 DeRisi et al. (derisi) 3733 63
D2 Phenotype (pheno) 1592 69 D8 Eisen et al. (eisen) 2425 79
D3 Secondary structure (struc) 3851 19628 D9 Gasch et al. (gasch1) 3773 173
D4 Homology search (hom) 3867 47034 D10 Gasch et al. (gasch2) 3788 52
D5 Spellman et al. (cellcycle) 3766 77 D11 Chu et al. (spo) 3711 80
D6 Roth et al. (church) 3764 27 D12 All microarray (expr) 3788 551

4.1 Datasets

Saccharomyces cerevisiae (baker’s or brewer’s yeast) is one of biology’s classic
model organisms, and has been the subject of intensive study for years. Its
genes have annotations provided by the Munich Information Center for Protein
Sequences (MIPS) under their FunCat scheme for classifying the functions of
the products of genes. FunCat is a hierarchical system of functional classes. A
small part of this hierarchy is shown in Fig. 3. Many yeast genes are annotated
with more than one functional class.

We use the 12 datasets from [5]. An overview of these datasets is given in Ta-
ble 1. The different datasets describe different aspects of the genes in the yeast
genome. Five types of bioinformatic data for yeast are considered: sequence
statistics (D1), phenotype (D2), predicted secondary structure (D3), homology
(D4), and expression as measured with microarray chips (D5 – D12). The bi-
ologists’ motivation for this is that different sources of data should highlight
different aspects of gene function. More information on how the datasets were
constructed and relevant references to the literature can be found in [5].1

Each gene in the datasets is annotated with one or more classes selected
from the MIPS FunCat hierarchical classification scheme. The annotations and
classification scheme available on 4/24/2002 were used. The hierarchy has 250
classes: 17 at the first level, 102 at the second, 89 at the third, and 42 at the
fourth level.

4.2 Method

Clare [5] presents models trained on 2/3 of each dataset and tested on the re-
maining 1/3. In our experiments we use exactly the same training and test sets.
1 Available together with the datasets at http://www.aber.ac.uk/compsci/Research/
bio/dss/yeastdata/

http://www.aber.ac.uk/compsci/Research/
bio/dss/yeastdata/

24 H. Blockeel et al.

To evaluate C4.5H, we computed the precision and recall of Clare’s models.
These models were presented as rules derived from the trees.

Clus-HMC results were obtained as follows. The weights used for the weighted
Euclidean distance were chosen as wk = w

depth(ck)
0 , with w0 set to 0.75, and

mincases was set to 5. The F-test stopping criterion takes a “significance level”
parameter s, which was optimized as follows: for each out of 18 available values
for s, Clus-HMC was run on 67% of the training set and its PR curve for the
remaining 33% was constructed. The model having the largest area under this
validation PR curve was then used to construct a PR curve for the test set. PR
curves were constructed with non-linear interpolation between points [12].

To compare HMC tree learning to regular tree learning, we can use Clus on
both sides. Indeed, the Clus system can be used for single classification just by
reducing the class vector to a single component; its heuristic then reduces to
CART’s Gini index [10], and it performs comparably to regular decision tree
learners. We refer to this version as Clus-SC. The results for Clus-SC were ob-
tained in the same way as for Clus-HMC, but with a separate run for each class
(including separate optimization of s for each class).

With 250 classes, each of which has its own PR curve, there is the question
of how to evaluate the overall performance of a system. We can construct a
single “average” PR curve for all classes together by counting instance-class-
couples instead of instances. An instance-class couple is (predicted) positive if
the instance has (is predicted to have) that class. The definition of precision and
recall is then as before.

4.3 Results

Comparison with C4.5H. For each of the 12 datasets, average PR curves were
generated and plotted against the points obtained by C4.5H. As we are com-
paring curves with points, we speak of a “win” for Clus-HMC when its curve is
above C4.5H’s point, a “loss” when it is below. Under the null hypothesis that
both systems perform equally well, we expect as many wins as losses. For the
average PR curves, we found 12 wins out of 12 for Clus-HMC. 4 representative
plots are shown in Fig. 4. We have also included results for “Clus05”, the prede-
cessor of Clus-HMC where the s parameter was optimized for maximal precision
given a fixed threshold of 0.5 [8]. Without the F-test optimization, the points
of Clus05 would be on the Clus-HMC curve; small differences are due to the
slightly different optimization criteria. It can clearly be seen that committing to
a threshold of 0.5 kept Clus05 from achieving maximal precision.

We also made a class-by-class comparison: for each dataset and for each class
for which C4.5H produced rules, we compared its PR to the Clus-HMC curve.
Here we found 25 wins and 6 losses. Fig. 5 details the performance on the gasch1
dataset for the 7 classes predicted by C4.5H. Class 6/13/1 is the only class where
Clus-HMC did not yield any classifiers strictly better than C4.5H. For Class 1
the C4.5H point is slightly above the Clus-HMC curve, yet Clus-HMC yields one
classifier with the same precision but more than twice the recall.

Decision Trees for HMC: A Case Study in Functional Genomics 25

Fig. 4. Average precision/recall over all classes for Clus-HMC, C4.5H, and two versions
of Clus-HMC’s predecessor [8]

Fig. 5. Class by class comparison between Clus-HMC and C4.5H (gasch1)

Comparing the interpretability and precision/recall of individual rules (where
a rule describes a single leaf of the tree), Clus-HMC also performs well. For
instance, in the gasch1 dataset, for the class 40/3 (with prior frequency 14%),
C4.5H learned two rules:

IF 29C_Plus1M_sorbitol_to_33C_Plus_1M_sorbitol___15_minutes <= 0.03 AND
constant_0point32_mM_H2O2_20_min_redo <= 0.72 AND
1point5_mM_diamide_60_min <= -0.17 AND
steady_state_1M_sorbitol > -0.37 AND
DBYmsn2_4__37degree_heat___20_min <= -0.67

THEN 40/3

IF Heat_Shock_10_minutes_hs_1 <= 1.82 AND
Heat_Shock_030inutes__hs_2 <= -0.48 AND
29C_Plus1M_sorbitol_to_33C_Plus_1M_sorbitol___5_minutes > -0.1

THEN 40/3

They have a precision/recall of 0.52/0.26 and 0.56/0.18, respectively. Clus-SC’s
most precise rule for 40/3, obtained by selecting a high threshold, is

26 H. Blockeel et al.

IF Nitrogen_Depletion_8_h <= -2.74 AND Nitrogen_Depletion_2_h > -1.94 AND
1point5_mM_diamide_5_min > -0.03 AND 1M_sorbitol___45_min_ > -0.36 AND
37C_to_25C_shock___60_min > 1.28

THEN 40/3

with a precision/recall of 0.97/0.15. The second point on the PR curve turns
out to represent the same rule with the last condition dropped; this rule scores
0.92/0.18. The best model consisting of two rules scores 0.92/0.23, and the best
3-rule model 0.81/0.31.

These results confirm that under precision-recall evaluation Clus-HMC per-
forms at least as well as C4.5H, and can thus be considered a state-of-the-art
HMC tree learner.

Comparison with Single Classification. We now turn to a comparison of
HMC tree learning with learning separate trees for each class, using the Clus-
HMC and Clus-SC instantiations. To limit the total runtime of Clus-SC, 40
classes were sampled from the hierarchy – 10 for each level.

For each dataset two average PR curves were generated: one for single classifi-
cation, one for multilabel classification. Fig. 6 shows a few representative graphs.
The single classification curve usually lies completely below the multilabel classi-
fication curve. Table 2 shows the difference in area under the PR curve (AUPRC)
between Clus-HMC and Clus-SC; all differences are positive.

Fig. 7 shows some representative PR curves for gasch1. There are notice-
able differences: sometimes Clus-SC performs better, sometimes Clus-HMC. So
for individual classes the outcome is less clear-cut, but on average, Clus-HMC
performs slightly better.

This is unexpected: one would think that Clus-SC has the advantage because
it can learn a different optimal model for each class. Our original conjecture
was that this was due to Clus-HMC performing better on the lower levels of
the hierarchy.2 But a per-level computation of the AUPRC difference (see again
Table 2) does not confirm this: Clus-HMC tends to perform better overall, there
is no clear correlation with depth in the hierarchy.

Further investigation revealed that Clus-SC tends to overfit more than Clus-
HMC. Subtracting the area under the PR curve (AUPRC) obtained on the test
set from that on the training set gives an indication of how strongly the approach
overfits. Clus-SC scored a difference of 0.219, Clus-HMC 0.024.3

In hindsight, it makes sense that Clus-HMC overfits less than Clus-SC: over-
fitting 250 target values is simply more difficult than overfitting a single target
2 Level four classes are very infrequent and therefore difficult to learn, but in Clus-

HMC the parent classes may help in keeping the instances from class x/y/z together
in the tree, and within a node with mainly x/y/z instances, a class x/y/z/u has a
higher relative frequency.

3 To make sure that this overfitting behaviour is not an artifact of our particular
implementation, we also ran M5’ from Weka [13] on the same datasets. M5’ did not
produce better results on the test set than Clus-SC and overfitted even more, with
an AUPRC difference of 0.387. The tendency of M5’ to overfit more than Clus-SC
is consistent with our previous experience and with an earlier analysis by [14].

Decision Trees for HMC: A Case Study in Functional Genomics 27

Fig. 6. Average precision/recall over all classes for Clus-SC and Clus-HMC

Fig. 7. Class by class comparison between Clus-SC and Clus-HMC (gasch1)

value. This is also visible in the tree sizes: Clus-HMC trees contain on average
24 nodes, whereas Clus-SC learns per dataset 250 trees with an average size of
33 nodes. In addition, Clus-HMC naturally takes dependencies between different
classes into account (e.g., the constraints imposed by the hierarchy).

Clus-HMC runs slower than Clus-SC because it takes information about |C|
classes into acount, but on the other hand Clus-SC needs to be run |C| times. On
our twelve datasets Clus-HMC was 4.5 to 65 times faster than running Clus-SC
for 250 classes, with an average speedup factor of 37.

Table 2. Overall and level-wise comparison of the area under the PR curve (AUPRC)
of Clus-HMC and Clus-SC. Numbers are AUPRC(Clus-HMC) – AUPRC(Clus-SC).

Dataset All level 1 level 2 level 3 level 4
seq 0.142 0.135 0.086 0.056 0.025
pheno 0.030 0.025 0.001 0.022 0.010
struc 0.061 0.035 0.001 0.043 0.039
hom 0.057 0.058 0.032 0.028 0.036
cellcycle 0.038 0.037 -0.035 0.007 0.007
church 0.070 0.066 0.052 0.031 0.019
derisi 0.112 0.124 0.029 0.020 0.046
eisen 0.067 0.085 0.023 0.011 0.021
gasch1 0.044 0.027 0.041 0.032 0.018
gasch2 0.096 0.103 0.043 0.055 0.013
spo 0.095 0.102 0.022 -0.012 0.040
expr 0.099 0.071 0.062 0.031 0.021

28 H. Blockeel et al.

5 Conclusions

We have conducted an empirical study of decision tree approaches to hierarchical
multilabel classification.

Minor contributions of this study are, in the context of the predictive cluster-
ing trees (Clus) approach to HMC, (1) the description of a better tuned version
of Clus-HMC (one that does not use thresholds that are suboptimal for precision-
recall evaluation), and (2) a comparison showing that this version is at least as
good as, and perhaps slightly better than, earlier HMC tree learning systems: it
tends to yield rules with higher precision and recall and similar interpretability.

The major contribution however is the comparison between (a) learning a
single tree that predicts all classes at once with a HMC-oriented algorithm, and
(b) learning a separate decision tree for each class. We find that learning a single
HMC tree is much faster than learning many regular trees, and it has the ad-
ditional advantage of identifying features that are relevant for all the functions
together (instead of separate features for each function). Obviously, a single HMC
tree is also much more efficient to apply than 250 separate trees. Somewhat less
expectedly, the HMC tree has on average a comparable predictive performance
for each single class as a regular tree optimized for just that class. Our conjecture
that the information contained in the hierarchy improves classification for infre-
quent classes in the lower parts of the hierarchy, which would partially explain
this, was not confirmed. Instead, it turns out that the HMC approach is less
susceptible to overfitting than the single classification approach. Fitting a model
to many classes is indeed harder than fitting it to one class. Further, the HMC
approach naturally takes into account dependencies between class membership,
which may help it in making the right decisions during learning.

Given that HMC decision trees can yield better efficiency and interpretability
without suffering a decline in predictive accuracy compared to learning separate
trees, their use should definitely be considered in HMC tasks where interpretable
models are desired.

Acknowledgements

H.B. and J.S. are post-doctoral fellows of the Fund for Scientific Research of
Flanders (FWO-Vlaanderen). L.S. is supported by a PhD grant of the Institute
for the Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen). The authors thank Maurice Bruynooghe and Elisa Fromont
for valuable suggestions and proofreading.

References

1. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Learning hierarchical
multi-category text classification models. In De Raedt, L., Wrobel, S., eds.: Pro-
ceedings of the 22nd International Conference on Machine Learning, ACM Press
(2005) 744 – 751

2. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label
prediction of gene function. Bioinformatics 22(7) (2006) 830–836

Decision Trees for HMC: A Case Study in Functional Genomics 29

3. Weiss, G.M., Provost, F.J.: Learning when training data are costly: The effect of
class distribution on tree induction. J. Artif. Intell. Res. (JAIR) 19 (2003) 315–354

4. Clare, A., King, R.: Knowledge discovery in multi-label phenotype data. In
De Raedt, L., Siebes, A., eds.: 5th European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD2001). Volume 2168 of Lecture Notes in
Artificial Intelligence., Springer-Verlag (2001) 42–53

5. Clare, A.: Machine learning and data mining for yeast functional genomics. PhD
thesis, University of Wales, Aberystwyth (2003)

6. Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., Struyf, J.: Hierarchical
multi-classification. In: Proceedings of the ACM SIGKDD 2002 Workshop on
Multi-Relational Data Mining (MRDM 2002). (2002) 21–35

7. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees.
In: Proceedings of the 15th International Conference on Machine Learning. (1998)
55–63

8. Struyf, J., Džeroski, S., Blockeel, H., Clare, A.: Hierarchical multi-classification
with predictive clustering trees in functional genomics. In: Progress in Artificial
Intelligence: 12th Portugese Conference on Artificial Intelligence. Volume 3808 of
Lecture Notes in Computer Science., Springer (2005) 272–283

9. Struyf, J., Vens, C., Croonenborghs, T., Dzeroski, S., Blockeel, H.: Applying pre-
dictive clustering trees to the inductive logic programming 2005 challenge data.
In: Inductive Logic Programming, 15th International Conference, ILP 2005, Late-
Breaking Papers, Institut für Informatik der Technischen Universität München
(2005) 111–116

10. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth, Belmont (1984)

11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann (1993)

12. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
Technical report, University of Wisconsin, Madison (2005)

13. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (1999)

14. Torgo, L.: A comparative study of reliable error estimators for pruning regression
trees. In Coelho, H., ed.: Proceedings of the Iberoamerican Conference on AI
(IBERAMIA-98), Springer (1998)

	Introduction
	Related Work
	The Clus-HMC Approach
	Formal Task Description
	Clus-HMC: An HMC Decision Tree Learner

	Experiments in Yeast Functional Genomics
	Datasets
	Method
	Results

	Conclusions

